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Abstract

We derive a decomposition scheme of unlabelled triangulations rooted at a sin-
gle cell, where the decomposition depends on whether the automorphism group of
the triangulation contains reflections, rotations, or both. Furthermore, the decom-
position scheme is constructive in the sense that for each of the three cases, there
is a k ∈ N such that the scheme defines a one-to-k correspondence between the
respective triangulations and their decompositions.

1 Introduction

Graphs embedded on a surface, called maps, have been among the most studied objects
in graph theory and combinatorics [23, 24, 30, 31, 32], geometry [2, 4, 28, 29], discrete
probability theory [3, 22], and theoretical physics [8, 15, 25].

Symmetries of maps play an important role in discrete geometry, enumerative combi-
natorics, and random sampling [2, 9, 19, 21, 29]. In his seminal work [31], Tutte conjec-
tured that almost all planar maps (i.e. graphs embedded on the sphere) are asymmetric—a
conjecture that was later proved by Richmond and Wormald [26].

Classically, when maps are considered in terms of enumerative combinatorics, they are
given with a rooting, that is, a vertex, an edge, and a face that are mutually incident are
fixed. This kind of rooting is also known as Tutte rooting [17, 30, 31]. Maps with Tutte
rooting are intrinsically asymmetric, which simplifies the theory necessary to enumerate
them. In contrast, enumerating unrooted maps [16, 18] requires a better understanding
of their symmetries and of how they decompose into isomorphic parts.

1An extended abstract of this paper has been published in the Proceedings of the European Con-
ference on Combinatorics, Graph Theory and Applications (EuroComb15), Electronic Notes in Discrete
Mathematics (2015), 587–594.

2Supported by Austrian Science Fund (FWF): P27290 and W1230 II.
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In the enumeration of graphs and maps, rooted or unrooted, decompositions play a
central role. The most basic example is that every graph is the disjoint union of its compo-
nents, which can in turn be decomposed into 2-connected blocks. For 2-connected graphs,
there are two well-known decompositions. On one hand, there is the ear-decomposition
that decomposes a 2-connected graph into a cycle and edge-disjoint paths. On the other
hand, Tutte [33] proved that every 2-connected graph belongs to one of three disjoint
graph classes. For each of these three classes, there is a unique decomposition of its
graphs into smaller building blocks, where 3-connected graphs are one of the base cases.

All of the decompositions above can be reversed to construct graphs from their com-
ponents, 2-connected blocks etc. However, there is a significant difference between the
ear-decomposition and the others: while the other decompositions are unique, the number
of ear-decompositions of a 2-connected graph is not easy to determine. In an enumera-
tive sense, Tutte’s decomposition is therefore much better suited to construct 2-connected
graphs. For if all base cases are known, then the number of 2-connected graphs can be
derived from that information. Observe that it would also be possible to derive the num-
ber of 2-connected graphs from the base cases if the decomposition were not unique, but
every 2-connected graph had the same number of decompositions.

Motivated by this observation, we introduce the following notation. Suppose that A,B
are classes of graphs or maps and let D consist of finite collections of elements of B. We
say that a decomposition scheme of the elements of A is a function that assigns to each
A ∈ A a non-empty set DA ⊂ D. Each element of DA is called a decomposition of A;
the elements of B are the building blocks. A decomposition scheme is called constructive
decomposition if D =

⋃
ADA and furthermore, for all A1, A2 ∈ A, we have DA1 ∩DA2 = ∅

and |DA1 | = |DA2| <∞. In other words, a constructive decomposition defines a one-to-k
correspondence (for some k ∈ N) from A to D, that is, every D ∈ D is the decomposition
of a unique element of A, and each element of A has precisely k decompositions.

In this paper, we shall study planar triangulations, that is, planar maps in which each
face is bounded by a triangle. Symmetries of triangulations can be related to isometries
of the sphere. Finite subgroups of the isometry group O(3) of the sphere have been
well studied (see e.g.. [10] for an overview). In particular, isometries can be classified to
be either rotations, reflections, or glide reflections. A planar triangulation can then be
constructed by triangulating the orbifold (the quotient space of the sphere obtained by
factoring out the symmetry group). However, this is not a constructive decomposition,
because a given triangulation might be obtained by several different ways of triangulating
the orbifold.

A different approach was taken by Tutte [32], who studied the symmetries of unrooted
planar triangulations and proved that almost all of them are asymmetric. He also derived
(non-constructive) decompositions of triangulations with reflective symmetries and those
of triangulations with rotative symmetries with the additional property that the order of
the automorphism is prime.

In this paper we consider triangulations rooted at a single cell, which might be a vertex,
an edge, or a face. This is motivated by the problem of enumerating unlabelled cubic
planar graphs. Based on a general strategy by Chapuy, Fusy, Kang, and Shoilekova [11],
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this problem can be reduced to enumerating triangulations rooted at a single cell. See
Section 6 for more details.

Observe that by rooting triangulations at a single cell, we exclude glide reflections from
the automorphism group, since glide reflections do not have fixed-points. For these rooted
triangulations, we complete and strengthen the decompositions of Tutte [32] mentioned
above in the sense that (i) we develop decomposition schemes for all possible symmetries
(reflective, rotative, or both types of symmetries) and (ii) for each of the three cases, the
scheme is a constructive decomposition, which was not the case for Tutte’s decomposition.

Our decomposition of triangulations with reflective symmetries will be similar to
Tutte’s decomposition, but furthermore, we prove it to be constructive—a proof in which
the decomposition of triangulations with both reflective and rotative symmetries will play
an essential role. For triangulations with rotative symmetries, Tutte’s decomposition is
not a constructive decomposition and moreover, Tutte only studied the case when the
order of the rotations is prime. To cover all cases, we introduce a new class of auxiliary
graphs (called fyke nets), with the help of which we derive a constructive decomposition
for rotative symmetries. Triangulations with both reflective and rotative symmetries have
not been considered before.

The constructive decomposition of triangulations will be composed of two parts: (i) the
characterisation of the basic building blocks (consisting of building frames and flagstones)
and (ii) the description of how flagstones will be inserted into building frames in order to
construct a triangulation with a specified symmetry.

The building frames capture the essential characteristics of each type of symmetries
that a triangulation T has. There are three classes of building frames, called girdles, fyke
nets, and skeletons, each one corresponding to reflective symmetries, rotative symmetries,
or both reflective and rotative symmetries of T . The flagstones consist of special classes
of planar maps (called near-triangulations) which encompass each type of symmetries of
T . There are three classes of flagstones, each corresponding to one of the three types of
symmetries. In each type of symmetries that T has, T will contain a unique subgraph
G from the respective class of building frames. Vice versa, we will show that T can be
constructed from G by inserting flagstones into some of the faces of G (see Section 2 for
a precise definition of this construction). The process of inserting flagstones into faces is
similar to that used to obtain stack triangulations, objects that proved to have various
applications in geometry [1, 5, 13].

This paper is organised as follows. We start by stating the necessary notation and basic
facts in Section 2. In Sections 3 to 5, we then derive the constructive decompositions into
building frames and flagstones of triangulations with reflective symmetries, with rotative
symmetries, and with both types of symmetries.

2 Preliminaries

A planar embedding of a graph G is a drawing of G on the 2-dimensional sphere S without
crossing edges. Given an embedding of G, the image of G decomposes S into connected
components, the faces of the embedding. If every face is homeomorphic to an open disc,
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the embedding is called (planar) map. A triangulation is a map all of whose faces are
bounded by triangles. We refer to the vertices, edges, and faces of a map as its cells of
dimension 0, 1, and 2, respectively. Two cells of different dimension are called incident
if one is contained in the (topological) boundary of the other. Two cells of the same
dimension are adjacent if there is a third cell incident with both.

All graphs and maps considered in this paper are unlabelled (i.e. are isomorphism
classes of labelled graphs) and simple (i.e. the end vertices of an edge are always distinct
and no two edges have the same two end vertices). Classically, maps are rooted by fixing
a vertex, an edge, and a face that are mutually incident. We call such a rooting a Tutte
rooting. In this paper, triangulations will mostly be given not with a Tutte rooting, but
with a rooting at either a vertex, an edge, or a face.

Call a triangulation trivial if it has at most four vertices, so its underlying graph is a
triangle or the complete graph K4 on four vertices. In view of the results of this paper,
these trivial triangulations represent degenerate cases of the structures considered. We
will thus consider only non-trivial triangulations for the rest of this paper. Note that in
a non-trivial triangulation, no two faces have the same set of vertices.

An isomorphism between planar maps G,H is a bijection ϕ : G→ H that maps each
cell to a cell of the same dimension and preserves incidencies. If G,H are given with the
same type of rooting (i.e. they either both have a Tutte rooting or are both rooted at a
single cell), then an isomorphism is additionally supposed to map the root(s) of G to the
root(s) of H. If G = H, then we call ϕ an automorphism. It is well known that for a
planar map with Tutte rooting, the identity is the only automorphism.

A cell c of a planar map G is invariant under a given automorphism ϕ if ϕ(c) = c. We
also say that ϕ fixes c.1 Analogously, we call a set A of cells invariant if ϕ(A) = A; note
that the elements of A do not have to be invariant themselves. If G is rooted at c, then c
is invariant under all automorphisms by definition. In this case, we denote the group of
these automorphisms by Aut(c, T ).

Throughout this paper, we let T be a non-trivial triangulation and choose a cell c0
as the root of T . The fact that T is non-trivial implies that T is 3-connected and thus
T is the unique embedding (up to automorphisms of the sphere) of its underlying graph
G by Whitney’s theorem [37]. The theorem of Mani [20] states that every 3-connected
planar graph H is the skeleton of a convex polyhedron P in R3 and furthermore, the
automorphisms of H are precisely the isometries of P . Therefore, automorphisms of T
correspond to isometries of a polyhedron, which immediately implies the following.

Lemma 1. Every automorphism in Aut(c0, T ) is uniquely determined by its action on
the cells incident with c0.

The only non-trivial isometries of a polyhedron that have fixed-points are rotations
(around an axis through c0) and reflections (across a plane through c0). We will distinguish

1Note that ϕ fixes an edge uv as soon as ϕ({u, v}) = {u, v}; the vertices u, v themselves do not have
to be invariant under ϕ. Similarly, a face can be invariant although none of its incident vertices or edges
is invariant.
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whether Aut(c0, T ) contains reflections, rotations, or both. Correspondingly, we say that
T has reflective symmetry, rotative symmetry, or both.

A planar map N with a Tutte rooting consisting of a face fN , an edge eN , and a
vertex vN is called a near-triangulation if fN is bounded by a cycle of any length > 3
while all other faces are bounded by triangles (see Figure 1). The root face fN is called
the outer face of N , all vertices and edges on its boundary—in particular the root vertex
vN and the root edge eN—are called outer vertices or outer edges of N , respectively. All
other vertices, edges, and faces of N are its inner vertices, inner edges, or inner faces,
respectively. Deleting the outer face of a near-triangulation yields a bijection between the
class of near-triangulations and the class of triangulations of polygons with a root edge
on the boundary of the polygon and a root vertex incident with the root edge.

u4

u5

u6

vNu1

u2

u3

eN

fN

N

Figure 1: A near-triangulation N with root face fN , root edge eN (blue), and root
vertex vN (red). The outer vertices of N are vN , u1, . . . , u6; the outer edges are
eN = vNu1, u1u2, . . . , u5u6, u6vN .

If a map G contains a cycle C and an edge e that does not belong to C but connects
two vertices of C, then we call e a chord of C. An inner edge of a near-triangulation N
is a chord of N if it is a chord of the cycle bounding the outer face (e.g. the edge u1u4 in
Figure 1 is a chord of N).

In order to describe a constructive decomposition of triangulations, we shall use the
operation of inserting near-triangulations into faces of a given planar map. To make this
operation precise, let N be a near-triangulation with m outer vertices and let G be a
planar map rooted at a cell c; denote by SN and SG the spheres on which N and G are
embedded, respectively. Suppose that f is a face of G that is bounded by a cycle of length
m; let e be an edge on the boundary of f and let v be one of the end vertices of e. We
obtain a new planar map H as follows: deleting the outer face of N from the sphere SN
results in a space DN homeomorphic to the unit disc; similarly, deleting f from the sphere
SG results in a space DG homeomorphic to the unit disc. Note that by construction the
boundary CN of DN (respectively the boundary CG of DG) is the boundary of the outer
face of N (respectively that of f) and thus the point set of a cycle of length m. Let
σ : CN → CG be a homeomorphism that

• maps vertices to vertices;
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• maps the root vertex vN of N to v; and

• maps the (point set of the) root edge eN of N to (the point set of) e.

The quotient space (DN ∪DG)/σ obtained from the union DN ∪DG by identifying every
point x ∈ CN with σ(x) ∈ CG is a sphere on which a graph H is embedded. We say that
H is obtained from G by inserting N into f at v and e (see Figure 2). If the root c of G
is not the face f , then c is also a cell of H and we consider H to be rooted at c. On the
other hand, if c = f , then we choose the unique inner face of N incident with eN as the
root of H.

Definition 2. If T is a triangulation and G is a 2-connected subgraph of T , then T can be
obtained from G by inserting near-triangulations into several of its faces in the following
manner. Let F be the set of faces of G. Suppose that for each face f ∈ F , we choose
on its boundary Cf an edge ef and one of its end vertices vf . On Cf ∪ f , T induces
a triangulation of a polygon; we denote its corresponding near-triangulation by Nf and
say that Nf is the near-triangulation induced by T on f , rooted at vf and ef . Then T
is obtained from G by inserting Nf into f at vf and ef for each f ∈ F (in an arbitrary
order). Vice versa, this gives us a decomposition of T into (G;Nf , f ∈ F).

eN vNN

+

e v

f

G

e v

H

Figure 2: Inserting a near-triangulation N (e.g. ‘flagstone’) into the face f of a map G
(e.g. ‘building frame’) resulting in a map H; vice versa, this is a decomposition of H into
(G;Nf = N).

For every cell c of T of a given dimension k, the numbers of incident cells of dimensions
k + 1 (mod 3) and k + 2 (mod 3) are the same. We call this number the degree of c and
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denote it by deg(c). Clearly, for a vertex this notion of degree equals the graph theoretical
definition; every edge has degree 2; every face of T has degree 3.

Let c, c′ be cells of T . A path P in (the underlying graph of) T is called a path from
c to c′ if

• for the first vertex u of P we either have c = u or c is incident with u, but with no
other vertex of P ; and

• for the last vertex v of P we either have c′ = v or c′ is incident with v, but with no
other vertex of P .

The length of P is the number of edges in P .
Given a cell c of T , the set of cells incident with c has a cyclic order (c1, c2, . . . , c2 deg(c))

in which two cells are consecutive if and only if they are incident in the triangulation (see
Figure 3). We shall think of c1, c2, . . . to lie around c in counterclockwise order; with
this convention, said order is unique (up to cyclic permutation). Two cells cα, cβ with
α, β ∈ {1, 2, . . . , 2 deg(c)} are said to lie opposite at c if |α − β| = deg(c). We observe
that if c is a face, then its boundary is a triangle and every vertex v of this triangle is
opposite at c to the edge of the triangle that is not incident with v. If c is an edge,
then its two incident faces lie opposite at c and so do its end vertices. If c is a vertex,
the situation depends on the parity of deg(c): for deg(c) even, every incident edge lies
opposite to another incident edge while every face lies opposite to a face. For deg(c) odd,
every edge lies opposite to a face.

c c1

c2c3
c4

c5
c6 c7

c8

c

c1

c2

c3

c4

c5 c6

c c1

c2

c3

c4

Figure 3: A cyclic order (c1, c2, . . . , c2 deg(c)) of the cells incident with a cell c.

The cyclic order of the cells incident with c0 provides a purely combinatorial way of
characterising reflections and rotations. If ϕ ∈ Aut(c0, T ) is not the identity, then
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(i) ϕ is a reflection if and only if it changes the orientation of the cyclic order of the
cells incident with c0;

(ii) ϕ is a rotation if and only if it does not change the orientation of the cyclic order.

Reflections and rotations can also be defined via invariant cells incident with c0. Indeed,
ϕ ∈ Aut(c0, T ) is a reflection if and only if it fixes precisely two cells incident with c0;
these cells lie opposite at c0. On the other hand, ϕ is a rotation if and only if it fixes no
cell incident with c0.

The characterisation of isometries of the sphere immediately yields the following char-
acterisation of subgroups of Aut(c0, T ).

Theorem 3. For every subgroup H of Aut(c0, T ) that contains at least one non-trivial
automorphism, the following holds.

(i) If H contains a reflection but no rotation, then it is isomorphic to the 2-element
group Z2.

(ii) If H contains k > 1 rotations but no reflection, then it is isomorphic to the cyclic
group Zk+1 where k + 1 is a divisor of deg(c0).

(iii) If H contains both reflections and rotations, then it is isomorphic to a dihedral group
Dn where n > 2 is a divisor of deg(c0).

3 Reflective symmetries

3.1 Building blocks

In this section, we suppose that Aut(c0, T ) contains a reflection ϕ.
Our first lemma is a structural result that was first obtained by Tutte [32]. We present

(a modified version of) its proof in the appendix for the sake of completeness.

Lemma 4. There is a cyclic sequence (c0, . . . , c`) of pairwise distinct cells such that for
each cell c in the sequence the following holds.

(i) c is invariant under ϕ;

(ii) the predecessor and the successor of c in the sequence are incident with c and lie
opposite at c; and

(iii) no other cell in the sequence is incident with c.

For every edge in the sequence from Lemma 4, its predecessor and its successor are
either its two end vertices or its two incident faces. Every face f in the sequence is
preceded and followed by a vertex and its opposite edge on the boundary of f .

The invariant cells from Lemma 4 play a central role in the constructive decomposition
of T in the case of a reflective symmetry: we will shortly see that these cells are the only
cells invariant under ϕ and thus, they provide a way to define a unique subgraph of T
that will be the basic building frame in our constructive decomposition.
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Definition 5 (Girdle). Let G be the planar map obtained by taking the union of all
vertices and edges that either lie in the sequence (c0, . . . , c`) from Lemma 4 or on the
boundary of a face in this sequence. We call G the girdle with respect to ϕ. Its cells
from the cyclic sequence are called central cells, the other ones (which are only part of G
because they lie on the boundary of a face from the sequence) are called outer cells. By
construction, every face in the sequence is also a face of G (and hence a central cell); the
other faces of G are called its hemispheres. For every face in the sequence, precisely one
of the edges on its boundary is a central cell and so is the other face incident with this
edge. The union of such two faces and their boundaries is called a diamond. Note that
every girdle has at least two central vertices; let j(G) be the smallest index for which cj(G)

is a vertex (e.g. j(G) = 3 in Figure 4).

c1

c2

c3
c4

c5c6
c7

c8c9

c10
c11

c12
c13
c14

c15
c16

c17 c18
c19

c20
c21
c22

c23

c0

Figure 4: The sequence of cells from Lemma 4. The vertices in this picture, together with
all black and all dashed edges, form the girdle G of T (see Definition 5). The central cells
of the girdle are the black vertices, the black edges, and the gray faces. The outer cells
are the gray vertices and the dashed edges. This girdle has three diamonds.

It is easy to see that there are precisely two hemispheres.

Lemma 6 ([32]). The girdle G has exactly two hemispheres f1, f2.

For each hemisphere fi, if we fix a vertex vi and an incident edge ei on the boundary
of fi, then T induces on fi a near-triangulation rooted at vi and ei (see Definition 2). We
choose the root vertices and edges as follows.

Definition 7. Set v1 = v2 := cj(G). Then cj(G)+1 is either an edge or a face.

(i) If cj(G)+1 is an edge, we set e1 = e2 := cj(G)+1;

(ii) if cj(G)+1 is a face, then for i = 1, 2, we let ei be the unique edge on the boundary
of fi that is incident with cj(G)+1.
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We denote the near-triangulation that T induces on fi, rooted at vi and ei, by Ni (see
Figure 5).

Lemma 8 ([32]). The reflection ϕ

(i) induces an isomorphism between N1 and N2 and

(ii) fixes precisely the central cells of G.

c0
c3

c4
G

N1

N2

Figure 5: The girdle G (coloured vertices and edges) of a triangulation T rooted at a face
c0 (purple) with j(G) = 3. The near-triangulations N1 and N2 that T induces on the
hemispheres of G, rooted at c3 (red) and c4 (blue), are isomorphic by Lemma 8(i).

Like for Lemma 4, we provide proofs of Lemmas 6 and 8 in the appendix for the sake
of completeness. By Lemma 8, we can decompose T into its girdle G and two isomorphic
near-triangulations N1, N2. What other properties do G, N1, and N2 have to satisfy?
Clearly, each hemisphere of G is bounded by a cycle whose length matches the number of
outer vertices of N1 and N2. We call this number the length of the girdle. The following
lemma gives a characterisation of the near-triangulations that can occur.

Lemma 9. Let G be a graph that occurs as the girdle of some triangulation and let N be
a near-triangulation. There exists a triangulation T with a reflection ϕ, G as its girdle
with respect to ϕ, and N as the near-triangulation from Lemma 8 if and only if

(i) the number of outer vertices of N is the same as the length of G and

(ii) every chord of N has at least one end vertex that is an outer vertex of G.

Proof. First assume that the triangulation T exists. Property (i) is immediate. In order
to prove (ii), let e = uv be a chord of N . If u and v are central vertices of G, then
Lemma 8(i) would imply that ϕ maps e to an edge ϕ(e) with the same end vertices. Since
e is not contained in G, Lemma 8(ii) shows that ϕ(e) 6= e, contradicting the fact that
there are no double edges.

the electronic journal of combinatorics 25(1) (2018), #P1.34 10



For the reverse implication, assume that N and G satisfy (i) and (ii). Let T̃ be any
triangulation of which G is a girdle. Then T̃ defines vertices v1, v2 and edges e1, e2 on the
boundaries of the hemispheres f1 and f2 of G, respectively. By (i) we can insert N into
each hemisphere fi at vi and ei. The result of this operation does not have any double
edges by (ii); since all its faces are triangular, it is the desired triangulation T .

3.2 Constructive decomposition

In this section, we formalise the decomposition scheme by showing how the graphs that
can serve as girdles can be constructed and how triangulations with reflective symmetry
arise from their girdle and the near-triangulations characterised by Lemma 9.

Constructing all possible girdles is rather easy. Once the length ` of the girdle and
the number d of diamonds are fixed, all that is left is to consider all arrangements of d
diamonds on a girdle of length `. Note that d 6 `

2
is necessary; in the case of c0 being a

face, we furthermore have d > 1.
Let a girdle G be given. The near-triangulations that can be inserted into the hemi-

spheres of G in order to give rise to a triangulation with reflective symmetry have to
satisfy the conditions of Lemma 9. In particular, the distribution of chords is restricted.
This is formalised in the following definition.

Definition 10. Let N be a near-triangulation and let D be a subset of its set of outer
vertices. We call N chordless outside D if every chord of N has at least one end vertex
in D.

More generally, let a cycle C with a root vertex vC and a root edge eC incident with
vC be given and let DC be a set of vertices in C. Suppose that the length of C is the same
as the number of outer vertices of N and let α be the unique isomorphism from C to the
boundary CN of the outer face of N that maps vC to the root vertex vN of N and eC to
the root edge eN of N . We call N chordless outside DC if it is chordless outside α(DC).

Recall that j(G) is the smallest index for which cj(G) is a vertex and let v1, v2, e1, e2
be given as in Definition 7. Denote by CG the cycle in G bounding f1 and let DG be the
set of outer vertices of G in CG. With this notation, Lemmas 8 and 9 give rise to the
following.

Theorem 11. The triangulations T with a reflective symmetry in Aut(c0, T ) are precisely
the ones that can be constructed by choosing

• a girdle G that contains c0 as a central cell and

• a near-triangulation N that is chordless outside DG

and inserting a copy of N into each hemisphere f1 (respectively f2) of G at v1 and e1
(respectively at v2 and e2).

Remark 12. The construction in Theorem 11 is a one-to-two correspondence. To see this,
suppose first that T has precisely one reflection ϕ. Then the two possible orientations of
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the girdle Gϕ yield two different constructions. On the other hand, if T has more than
one reflection, then it has both reflective and rotative symmetries. In order to prove that
we also have a one-to-two correspondence in this case, we shall need some of the notation
which we develop in Section 4. We defer the proof of this case to Remark 23.

4 Reflective and rotative symmetries

4.1 Building blocks

In this section, we assume that Aut(c0, T ) has a subgroup H that contains both reflections
and rotations. By Theorem 3, H is isomorphic to Dn where n > 2 is a divisor of deg(c0),
i.e. there are n reflections and n− 1 rotations (and the identity).

Since the rotations and the identity form a cyclic group, there is a unique cell c1 6= c0
that is invariant under all rotations; we call c0 the north pole and c1 the south pole of T .
For each reflection ϕ, there is a girdle Gϕ by the results of Section 3 (see Definition 5 for
the definition of a girdle and associated notation).

Clearly, no two girdles are the same by Lemma 1 and every girdle contains the
north pole c0 by definition. Thus, there are 2n cells incident with c0 that are invari-
ant under some reflection; denote them by a0, . . . , a2n−1, enumerated in the same order
they lie around c0 in counterclockwise direction. Then for every reflection, there is an
i ∈ {0, . . . , n − 1} such that the invariant cells incident with c0 are ai and an+i; denote
this automorphism by ϕi and its girdle by Gi.

Lemma 13. The girdles G0, . . . , Gn−1 have the following properties.

(i) North and south pole are central cells of every girdle.

(ii) The two poles are the only cells that are central cells of more than one girdle.

Proof. The north pole c0 is a central cell of every girdle by definition. Let Gi, Gj be two
distinct girdles. We first show that there is a cell c 6= c0 that is central in both of them
and then prove that c is the south pole c1. This will prove both (i) and (ii).

Since for each of ϕi, ϕj, the invariant cells incident with c0 lie opposite, the central
cells of Gi incident with the north pole lie in different hemispheres (or on the boundaries
of different hemispheres) of Gj. Since the central cells of a girdle separate its hemispheres,
Gi and Gj meet in at least one central cell apart from the north pole. Let c be such a
cell.

Consider the automorphism ϕi ◦ ϕj. Since c is invariant both under ϕi and under ϕj,
it is also invariant under ϕi ◦ϕj. But the composition of two distinct reflections is always
a rotation and thus, the only cells invariant under ϕi ◦ ϕj are the north and south pole,
implying that c is the south pole.

Since the cells a0, . . . , a2n−1 form a cyclic sequence around c0, we will consider their
indices modulo 2n. In other words, with a slight abuse of notation, we shall write ai
instead of ai (mod 2n). The same kind of notation will be used for the girdles G0, . . . , Gn−1
(modulo n instead of modulo 2n).
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The rotations can be enumerated as ρ1, . . . , ρn−1 so that every ρi satisfies

ρi(aj) = aj+2i

for all j. Thus, we have ρi1 = ρi for all i = 1, . . . , n− 1 (and ρn1 = id).

Lemma 14. For every i = 1, . . . , n− 1, the following holds (see also Figure 6).

(i) For every j, the rotation ρi induces an isomorphism between the girdles Gj and
Gj+2i.

(ii) If n is odd, all girdles are isomorphic.

(iii) If n is even, ρn
2

induces a symmetry of each girdle and every two girdles Gi, Gj with
i− j even are isomorphic.

Proof. First observe that (i) immediately implies (ii) and (iii). On the other hand, for
every j = 0, . . . , n − 1, we have ρi(aj) = aj+2i by definition and thus (i) follows directly
from the fact that the central cells of a girdle are characterised by Lemma 4(ii).

Recall that Lemma 13 tells us that any two girdles cross precisely twice: once at each
of the poles. However, while a central cell of a girdle cannot be a central cell of another
girdle (unless it is one of the poles), it might well be an outer cell of another girdle.

(i) (ii)

c0

G0

G1

c0

G0 G1

G2

Figure 6: Two triangulations and their girdles with respect to a group H ' Dn of auto-
morphisms. In (i), we have n = 2 and the only rotation ρ1 induces a symmetry of each
girdle. In (ii), we have n = 3. The rotation ρ1 maps G0 to G2, G1 to G0, and G2 to G1;
the second rotation is ρ2 = ρ−11 . All three girdles are isomorphic.

The poles divide every girdle Gi into two parts in a natural way: if (xj)j∈Zm is the
cyclic sequence from Lemma 4 with x0 = c0 (observe that by Lemmas 4 and 8(ii) this
sequence is unique up to orientation), then xk = c1 for some k and we can consider the
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sequences x0, x1, . . . , xk and xk, xk+1, . . . , xm−1, x0. One of the sequences contains ai, so
we denote the union of its elements and their boundaries by Mi. The other sequence
contains an+i, we denote the union of its elements and their boundaries by Mn+i. We
call Mi and Mn+i meridians, the cells from the respective sequence of xj’s are the central
cells of Mi and Mn+i, respectively. The other cells are outer cells, as before. Note that a
central cell of Gi that lies on the boundary of one of the poles will be contained in both Mi

and Mn+i. However, it will only be a central cell in one of them. Clearly, Gi = Mi∪Mn+i

and thus
⋃n−1
i=0 Gi =

⋃2n−1
i=0 Mi.

Like the girdles, the meridians form a cyclic sequence; for simplicity, we will write Mi

instead of Mi (mod 2n).

Definition 15 (Skeleton). The union S :=
⋃2n−1
i=0 Mi is called the skeleton of T with

respect to the group H ⊆ Aut(c0, T ) (see Figure 7). For every i = 0, . . . , 2n − 1, we say
that the meridians Mi and Mi+1 are adjacent. Every face of S that is not a central cell of
at least one of the meridians is called a segment of S.

Observe that the skeleton of T is unique since all the girdles are.

Lemma 16. The skeleton S has the following properties (see also Figure 7).

(i) Every reflection ϕi, 0 6 i 6 n− 1, induces an isomorphism between Mi−j and Mi+j

for every j = 1, . . . , n− 1.

(ii) Every rotation ρi, 1 6 i 6 n − 1, induces an isomorphism between Mj and Mj+2i

for every j = 0, . . . , 2n− 1.

(iii) There is an isomorphism in H that maps Mi to Mj if and only if i− j is even.

(iv) For every central cell c of a meridian Mi, 0 6 i 6 2n−1, exactly one of the following
holds.

(C1) c is a pole;

(C2) c lies on the boundary of a pole;

(C3) c is not contained in any other meridian;

(C4) c is an outer cell of both meridians adjacent to Mi and not contained in any
other meridian.

(v) Every segment of S is bounded by a cycle that is contained in the union of two
adjacent meridians.

(vi) There is a non-negative integer s such that for every pair (Mi,Mi+1) of adjacent
meridians there are precisely s such segments.

Proof. Claims (i) and (ii) follow from Lemma 1 and the way ϕi and ρi act on a1, . . . , a2n.
Claim (iii) is an immediate corollary of (i) or (ii).
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To prove (iv), let c be a central cell of Mi. Note first that only one of the cases (C1)–
(C4) can hold. Now assume that (C1)–(C3) do not hold, i.e., c is neither a pole nor lies
on the boundary of a pole and there is at least one meridian Mj with j 6= i that contains
c. By Lemma 13(ii), c is an outer cell of every such meridian Mj.

The central cells of Mi−1 and Mi+1 separate the sphere into two parts, one of which
contains the central cells of Mi (apart from the poles) while the other contains the central
cells (apart from the poles) of all other meridians. This implies that c is an outer cell of
at least one of Mi−1,Mi+1 and not contained in any other meridian; it remains to show
that c is an outer cell of both Mi−1 and Mi+1. By (i), ϕi (or ϕi−n if i > n) induces an
isomorphism between Mi−1 and Mi+1 and since c is invariant under ϕi, it is an outer cell
of both meridians adjacent to Mi. This proves (iv).

For (v), observe first that every segment of S is bounded by a cycle, since S is 2-
connected. To prove the other half of the statement, choose, for each i = 0, . . . , 2n − 1,
an arc Ai (an injective topological path) from c0 to c1 in the union of the central cells
of Mi. By (iv), the Ai meet only in the poles and thus divide the sphere into 2n discs,
each having a boundary that is contained in the union of two arcs Mi,Mi+1. Since every
segment of S is contained in such a disc and no other meridian contains a point in this
disc, (v) follows.

Finally, (vi) follows directly from (i) and (ii).

(i) (ii)

c0

M0

M1

M2
M3

c0

M0 M1

M2

M3M4

M5

Figure 7: Two triangulations and their skeletons. Meridians with the same colour are
isomorphic; each pair (Mi,Mn+i) of meridians forms a girdle. In (i), there is a unique
segment between any two adjacent meridians, i.e. s = 1 in Lemma 16(vi). In (ii), we have
s = 2.

By Lemma 16(vi), we can denote the segments of S whose boundaries are contained in
the union of Mi and Mi+1 by f i1, . . . , f

i
s. Note that the cycle from Lemma 16(v) bounding

f ij is the union of a subpath of Mi and a subpath of Mi+1. These paths meet in their end
vertices; denote by vij their end vertex closer (in S) to the north pole and by wij the one
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closer to the south pole. Without loss of generality, we assume that the enumeration of
f i1, . . . , f

i
s is chosen so that vij is closer to the north pole than vij′ whenever j < j′. Finally,

let eij be the edge on the boundary of f ij that is incident with vij and

(i) contained in Mi if i is even, or

(ii) contained in Mi+1 if i is odd.

With this notation and Lemma 16(i) and (ii), we obtain the following.

Lemma 17. Let j ∈ {1, . . . , s}.

(i) T induces a near-triangulation N i
j on f ij (in terms of Definition 2), rooted at vij and

eij for every i.

(ii) The near-triangulations N0
j , . . . , N

2n−1
j are isomorphic.

For a complete description of all possible skeletons, we need to characterise their
structure at the poles and at other points where two adjacent meridians meet.

Lemma 18. Let S be a skeleton and c be one of the poles of T . Then the structure of S
at c is the following.

(i) If c is a vertex, then either

(a) no two meridians meet in a cell incident with c or

(b) there is a number k > 1 such that every two adjacent meridians meet in their
first k edges starting from c.

(ii) If c = uv is an edge, then two non-adjacent meridians, say M0 and M2, have u
respectively v as a central cell and the other two have its incident faces as central
cells. No two meridians meet in an edge e 6= c incident with u or v.

(iii) If c is a face f with vertices u, v, w on its boundary, then three mutually non-adjacent
meridians, say M0,M2,M4, have u, v, respectively w as a central cell and the other
three have the edges incident with f as central cells. Either

(a) no two meridians meet in a cell incident with exactly one of u, v, w or

(b) there is a number k > 1 such that every two adjacent meridians meet in their
first k edges starting from c.

Proof. Statements (i) and (iii) follow from Lemma 16(i) and (ii). The first claim in (ii) is
immediate, since each of the four meridians contains a different cell incident with c as a
central cell. For i ∈ {1, 3}, denote by fi the face incident with c that is a central cell of Mi

(see Figure 8(ii)). Since u, v are incident with f1 and f3, there are unique vertices w1, w3

different from u and v that are incident with f1 and f3, respectively. Note that w1 and
w3 are distinct, since otherwise f1 and f3 would have the same set of incident vertices,
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c

M0

M1

M2

M3

(i)(a)

c

M0

M1

M2

M3

M4

M5

(i)(b)

c uv f1

f3

w1

w3

M0

M1

M2

M3

(ii)

c

u

v
w

M0

M1

M2

M3

M4

M5

(iii)(a)

c

u

v w

M0

M1

M2

M3

M4

M5

(iii)(b)

Figure 8: The possible structures of a skeleton at a pole as stated in Lemma 18, with
k = 1 in the cases (i)(b) and (iii)(b).
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which is not possible as our triangulations are simple and non-trivial. Suppose that M0

meets M1 in an edge e 6= c incident with u; this has to be the edge uw1. By applying ϕ0,
we see that M0 meets M3 in the edge uw3.

As w1 6= w3, both uw1 and uw3 are outer cells of M0. Thus, there is a face that is
central in M0 and incident with u, w1, and w3. Hence w1 and w3 are connected by an
edge e0 that is central in M0. Applying ϕ1 shows that M2 also has a central edge e2 that
connects w1 and w3. Since our triangulations are simple, the edges e0 and e2 are identical
and T is a K4. Since we assume all triangulations to be non-trivial, this is a contradiction.
We have thus shown (ii).

Lemma 18 describes the structure of the skeleton at the poles. The following lemma
deals with the intersections of adjacent meridians between two segments.

Lemma 19. Let j ∈ {1, . . . , s− 1} be fixed. Then there is a number kj > 0, such that for
every i, the intersection of Mi and Mi+1 has a component that is a path of length kj from
wij to vij+1.

Proof. This follows immediately from Lemma 16(i).

M1 M2 M3

f 1
j f 2

j

f 1
j+1 f 2

j+1

w1
j = v1j+1 w

2
j = v2j+1

e1j+1 e2j+1

(i)

M1 M2 M3

f 1
j f 2

j

f 1
j+1 f 2

j+1

w1
j = w2

j

v1j+1 = v2j+1

e1j+1 = e2j+1

(ii)

Figure 9: The structure of a skeleton between two segments as described in Lemma 19.
In Case (i), we have kj = 0, in Case (ii) kj = 2.

All possible skeletons can thus be constructed by first choosing the numbers n > 2
and s and the dimensions of the poles. Note that a pole can only be an edge if n = 2
and it can only be a face if n = 3. Then choose the structure at the poles according to
Lemma 18 and between the segments according to Lemma 19.

All triangulations with both reflective and rotative symmetry can be obtained by
first taking a skeleton and then inserting the same near-triangulation in each type of
segment according to Lemma 17. Similarly to the case of reflective symmetries, the
near-triangulation inserted into a segment is only allowed to have chords that do not
produce double edges by reflecting. In this case, this means that for every chord of the
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near-triangulation and each meridian bounding the corresponding segment, not both end
vertices of the chord are contained in the meridian and central in it.

4.2 Constructive decomposition

In this section, we describe how to construct all possible skeletons and give a definition
of the class of near-triangulations that can be inserted into the segments of the skeleton.
With this information, we complete the decomposition scheme of triangulations with
both reflective and rotative symmetries by showing how each such triangulation can be
constructed from its skeleton S by inserting near-triangulations into the segments of S.
Finally, we prove that this decomposition scheme is a one-to-two correspondence and thus
in particular a constructive decomposition.

The maps that can serve as a skeleton of a triangulation can be constructed as follows.
Suppose that the number n of reflections is given. Then we can choose

• the number s of isomorphism classes of segments of the skeleton;

• the structure of the skeleton at the poles according to Lemma 18;

• the numbers k1, . . . , ks−1 from Lemma 19; and

• the distances of v1j and w1
j on M1 and on M2 for every j = 1, . . . , s as well as the

number and distribution of diamonds on these meridians between this two vertices.
For arbitrary i, the structure of Mi at the boundaries of the segments is identical
to that of M1 or M2, depending on the parity of i, by Lemma 16(iii).

The near-triangulations that can be inserted into a segment are similar to those that
can be inserted into a hemisphere of a girdle: if such a near-triangulation had a chord both
of whose end vertices are central cells of the same meridian, then applying the reflection
that corresponds to that meridian shows that there is a double edge, a contradiction.
In other words, a chord is only allowed if its end vertices are not in the same meridian
or if they are in the same meridian, but at least one of them is an outer vertex of that
meridian. This is formalised in the following definition.

Definition 20. Let N be a near-triangulation with root vertex vN and root edge eN .
Suppose that a vertex wN 6= vN is fixed, then the boundary of N is the union of two
paths from vN to wN ; denote the path that contains eN by R and the other path by L.
We call L and R the sides of the boundary. If vertex sets DL and DR on L and R are
given, we say that N is 2-sided chordless outside DL and DR if every chord of N whose
end vertices both lie on L or both lie on R has least one end vertex in DL or in DR,
respectively.

More generally, let a cycle C with a root vertex vC and a root edge eC incident with vC
be given. If wC 6= vC is given, let us define subpaths LC and RC as before. Suppose that
DLC

and DRC
are sets of vertices on LC and RC , respectively. If there is an isomorphism

α from C to the boundary of N that respects the rooting and maps wC to wN , then we
say that N is 2-sided chordless outside DLC

and DRC
if it is 2-sided chordless outside

α(DLC
) and α(DRC

).
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Consider a segment f 0
j of the skeleton; let Cj be its boundary. The two sides of Cj

are its intersections Rj with M0 and Lj with M1, the set DRj
(respectively DLj

) is the
set of outer vertices of M0 on Rj (respectively of M1 on Lj). The near-triangulations
that can be inserted into f 0

j are precisely those that are 2-sided chordless outside DLj
and

DRj
. We thus have the following characterisation of triangulations with both reflective

and rotative symmetries.

Theorem 21. The triangulations T for which Aut(c0, T ) has a subgroup H isomorphic
to Dn are precisely those that can be constructed by choosing

• a skeleton SH and

• for every j = 1, . . . , s, a near-triangulation Nj that is 2-sided chordless outside DLj

and DRj
,

and inserting a copy of Nj into f ij at vij and eij for every j = 1, . . . , s and i = 0, . . . , 2n−1.

Remark 22. The construction from Theorem 21 is a one-to-two correspondence. To
see this, let Smax be the skeleton of T with respect to the entire automorphism group
Aut(c0, T ). Once we choose which meridian of Smax to take for M1 in SH , the skeleton SH
is completely defined. There are |Aut(c0, T )| many ways to choose a meridian from Smax.
Two choices M,M ′ of a meridian yield the same construction (in terms of Theorem 21)
if and only if there is an automorphism of T that maps M to M ′. Lemma 16(iii) thus
implies that there are precisely two different constructions.

Remark 23. An analogous argument to the one used in Remark 22 also shows that the
construction from Theorem 11 is a one-to-two correspondence in the case of T having at
least two reflective symmetries (and thus at least one rotative symmetry), which finishes
the proof from Remark 12.

5 Rotative symmetries

5.1 Building blocks

In this section, suppose that Aut(c0, T ) contains a rotation ϕ. Note that the subgroup H
of Aut(c0, T ) generated by ϕ contains no reflections by definition and hence is isomorphic
to a cyclic group by Theorem 3. We fix the group H for the rest of this section; let m
be its order. For every cell c incident with c0, the cells c, ϕ(c), . . . , ϕm−1(c) are distinct,
since ϕ, . . . , ϕm−1 are rotations and thus have no invariant cells incident with c0. Without
loss of generality, we can choose ϕ in such a way that c, ϕ(c), . . . , ϕm−1(c) are arranged
around c0 in that order (in counterclockwise direction, say) for every cell c incident with
c0 (see Figure 10).

As in Section 4, there is a unique cell c1 6= c0 that is invariant under ϕ. Again, we call
c0 the north pole and c1 the south pole of T . Consider a shortest path P in T from c0 to
c1. Denote its first and last vertex by v0 and w0, respectively, and write vi := ϕi(v0) and
wi := ϕi(w0) for every i ∈ N.
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c0

cϕ(c)

ϕ2(c) ϕ3(c)

Figure 10: The images of a cell c incident with c0 under a rotation ϕ of order 4.

Lemma 24. The paths P, ϕ(P ), . . . , ϕm−1(P ) do not share any internal vertices. If c0 is
an edge or a face, the first vertices v0, . . . , vm−1 of the paths are distinct. The same is
true for c1 and the last vertices w0, . . . , wm−1.

Proof. First note that the paths P, ϕ(P ), . . . , ϕm−1(P ) are distinct, because ϕi(P ) =
ϕj(P ) for i 6= j would imply that ϕi(c) = ϕj(c) for some cell c incident with c0, which
would contradict the fact that ϕ is a rotation. The same argument shows that two paths
can only share an end vertex if it is c0 or c1.

Suppose two paths, without loss of generality P and ϕi(P ) with i 6= 0, share an
internal vertex. Its distance from the first vertex has to be the same in both paths, since
otherwise the union of the two paths would contain a path from c0 to c1 shorter than P ,
a contradiction to the choice of P . But then ϕi(c) = c for some internal vertex c of P ,
meaning that c would be a third fixed cell of the rotation ϕi, a contradiction.

Our proof of Lemma 24 is inspired by Tutte’s proof [32, Statement 5.6] of the special
case when m is prime. In said proof, the uniqueness of c0, c1 as cells invariant under
rotation is not applied; instead, m being prime is used in order to prove that no two
paths can share an internal vertex.

Lemma 24 implies that the paths P, ϕ(P ), . . . , ϕm−1(P ) together with c0 and c1 divide
the triangulation into m parts. The union of these paths and cells might thus serve as a
building frame in our constructive decomposition.

Definition 25. Let S be the union of the poles c0, c1, their boundaries, and paths
P, ϕ(P ), . . . , ϕm−1(P ) satisfying the statement of Lemma 24 (see Figure 11). We call S
a spindle of T with respect to the group H ⊆ Aut(c0, T ). A face of a spindle which is
neither c0 nor c1 is called a segment of the spindle. For every i ∈ N, denote by vi and ei
the first vertex and edge of ϕi(P ), respectively.

Similarly to reflections, we immediately get the following result.

Lemma 26. A spindle S has the following properties.
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c0

P

ϕ(P )

ϕ2(P )

ϕ3(P )

c1

Figure 11: A triangulation and a spindle (coloured vertices and edges) with respect to the
group H = {id, ϕ, ϕ2, ϕ3} of automorphisms, in which the poles c0 and c1 (purple) both
are vertices.

(i) S has exactly m segments f1, . . . , fm with each fi being bounded by a cycle containing
ϕi−1(P ) and ϕi(P );

(ii) for each i ∈ {1, . . . ,m}, T induces a near-triangulation Ni on fi, rooted at vi and
ei; and

(iii) for every i, ϕ is an isomorphism from Ni to Ni+1.

By Lemma 26, we can obtain all triangulations with rotative symmetry by first con-
structing all possible spindles and then inserting the same near-triangulation in each
segment. However, unlike the girdle, a spindle is not unique since there might be dif-
ferent choices for the path P . Some triangulations, e.g. the one shown in Figure 12,
have a unique spindle. In contrast, Figure 13 shows two different spindles of the same
triangulation. Since the near-triangulation inserted in the segments in the first case is
not isomorphic to the one used in the second case, there are at least two non-equivalent
ways to construct this triangulation by taking a spindle and inserting the same near-
triangulation in each segment. Thus, decomposing triangulations with rotative symmetry
into their spindle and segments is not a constructive decomposition.

In order to find a constructive decomposition, let us refine the definition of a spindle
so that it will be a unique substructure of T . To this end, we first aim to find a nested
sequence F0, . . . , Fk of disjoint subgraphs of T that are invariant under ϕ. Each graph
Fi will be outerplanar, i.e. it is embedded on the sphere such that all its vertices on the
boundary of a common face, the outer face.

Definition 27. A graph is called a cactus if it is connected and every two cycles in it
have at most one vertex in common. Every block of a cactus—a maximal subgraph that
cannot be disconnected by deleting a single vertex—is a cycle or an edge. If a cactus
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c0

c1

Figure 12: A triangulation with a unique spindle (green).

c0

c1

c0

c1

Figure 13: Two spindles (bold) of the same triangulation.

G has a root vertex, this induces a natural order on its set of blocks, similar to a tree
order: consider the block graph of G—the graph whose vertices are the blocks of G and
the vertices separating G and in which a block is adjacent to all separating vertices it
contains (see Figure 14). This block graph is always a tree and if we choose its root to be

• the root of G if it is a separating vertex, or otherwise

• the unique block of G containing the root,

then this induces a tree order on the block graph and hence in particular a partial order
on the set of blocks of G. In this order the blocks that contain the root are the minimal
elements.

u

v

w

x

B1

B2

B3

B4

B5

B6

B7

u

v

w

x

B1

B2

B3

B4

B5

B6

B7

Figure 14: A cactus and its block graph.
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Let G be an outerplanar subgraph of T for which the north pole c0 lies in its outer face.
We call G a plane H-invariant cactus if it is a cactus and invariant under all elements of
the group H ⊆ Aut(c0, T ). Every cell of G that is invariant under ϕ contains a fixed-point
by Brouwer’s fixed-point theorem. Thus, only the outer face of G (because it contains c0)
and the cell that contains the south pole c1 of T are invariant. If c1 is a cell of G, then
we call G antarctic (see Figure 15). If G is antarctic, we define the centre of G to be c1
(if c1 is a vertex), c1 plus its end vertices (if c1 is an edge), or the boundary of c1 (if c1 is
a face).

c1c1
c1

Figure 15: The three types of antarctic plane H-invariant cacti.

If G is not antarctic, we define the centre of G as follows. Choose a vertex v of G and
an index i ∈ {1, . . . ,m − 1} so that the distance d between v and ϕi(v) is minimal. Let
P be a shortest path from v to ϕi(v) in G. The paths P, ϕ(P ), . . . , ϕm−1(P ) do not share
internal vertices; for otherwise there would be an internal vertex w of P and an index j
such that the distance between w and ϕj(w) is smaller than d, contradicting the choice
of v and i. Thus, the union P ∪ ϕ(P ) ∪ · · · ∪ ϕm−1(P ) is a cycle and invariant under ϕ.
This cycle is called the centre of the non-antarctic H-invariant cactus G.

If G is any H-invariant cactus (antarctic or not), then the maximal connected sub-
graphs of G that share precisely one vertex with the centre are called branches of G (see
Figure 16); the vertex of a branch B that lies in the centre of G is called the base of B.
Observe that if G is antarctic and c1 is a vertex, then the only branch of G is G itself.

C B1

B2B3

B4

B5 B6

Figure 16: A plane H-invariant cactus for |H| = 3 with centre C and branches B1, . . . , B6.

If G is not antarctic and in addition the boundary of the south pole c1 of T meets
the boundary of the centre of G, then the south pole has to be a face or an edge and
by symmetry all vertices on its boundary lie in the centre of G. In this case, we call G
pseudo-antarctic (see Figure 17).
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c1
c1

Figure 17: The two possibilities for a pseudo-antarctic plane H-invariant cactus.

Note that the above definition allows the case that the branches of a plane H-invariant
cactus are just the vertices of its centre, in particular every invariant cycle is a plane H-
invariant cactus. Furthermore, a plane H-invariant cactus is also a plane H ′-invariant
cactus for every subgroup H ′ of H.

The following lemma shows that plane H-invariant cacti appear in a natural way when
we move from the north pole towards the south pole of the triangulation.

Lemma 28. Let C be a cycle in T that is invariant under ϕ (and thus a plane H-invariant
cactus). Suppose that C is neither antarctic nor pseudo-antarctic and let f be the face of
C that contains the south pole. Denote by F the set of all faces of T that are contained
in f and whose boundaries meet C. Let F be the subgraph of T consisting of all vertices
and edges that lie on the boundary of a face f ′ ∈ F but do neither lie in C nor have an
incident vertex in C. Then F has a unique component that is a plane H-invariant cactus.

Proof. By construction, F is outerplanar and all its edges lie on the boundary of its outer
face. Thus, no two of its cycles can meet in more than one vertex, showing that all
components of F are cacti. The south pole c1 is not contained in the outer face of F by
construction, therefore there is a unique component F1 of F such that either

• c1 is contained in F1 or

• c1 is contained in a face of F1 that is not its outer face.

In either case, F1 is invariant under ϕ (and hence under all elements of H) and thus a
plane H-invariant cactus.

Repeated application of Lemma 28 gives rise to a finite sequence F0, . . . , Fk of plane
H-invariant cacti in T as follows. We start by letting F0 be the invariant cycle closest to
c0 like in Figure 18: if c0 is a face, let F0 be its boundary. If c0 is an edge, let F0 consist
of all vertices and edges, apart from c0 itself, that lie on the boundary of a face incident
with c0. Finally, if c0 is a vertex, let F0 consist of all vertices adjacent to c0 and all edges
that lie opposite to c0 at some face incident with c0. Note that in either case, F0 is a cycle
whose length is a multiple of m = |H|.

If F0 is antarctic or pseudo-antarctic, then the sequence ends with k = 0; otherwise,
by applying Lemma 28 with C = F0, we obtain a plane H-invariant cactus F1. If F1 is
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c0
c0

c0

Figure 18: Finding an invariant cycle.

antarctic or pseudo-antarctic, we stop; otherwise, we apply Lemma 28 with C being the
centre of F1 to obtain another plane H-invariant cactus F2. We continue this way until we
obtain an antarctic or pseudo-antarctic plane H-invariant cactus Fk. We call the graphs
F0, . . . , Fk the levels of T (see Figure 19) and denote their centres by C0, . . . , Ck.

c0

c1

F0

F1

F2

(i)

c0 c1
F0

F1

(ii)

Figure 19: Two triangulations and their levels.

(i) A triangulation with levels F0 (red), F1 (green), and F2 (blue), each of which a plane
H-invariant cactus for |H| = 3. The last level F2 is antarctic.

(ii) A triangulation with levels F0 (red) and F1 (green), both plane H-invariant cacti
for |H| = 2. The last level F1 is pseudo-antarctic.

The idea behind our refined version of a spindle is as follows. For a constructive
decomposition, we shall need a unique substructure of T ; something that the spindle was
not able to provide, since the path P was chosen arbitrarily. Instead of connecting the
north pole and the south pole by paths, we will base our construction on the levels of T
and connect them by edges. Those edges have to be chosen in a unique way, which we will
guarantee by always picking the ‘leftmost’ edge from a given vertex to the next level—a
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construction that will be made precise shortly. Moreover, it will not always be enough to
have m edges from each level to the next. Indeed, if the north pole c0 is a vertex, then
its degree might be a multiple of m and there is no criterion which of the deg(c0) edges
we should choose. We thus have to start with all these edges.

The starting point of our construction will be vertices u0, . . . , uam−1 on F0 = C0

(precise construction follows in Construction 29). We would then like to choose an edge
from each uj to the level F1. However, not every vertex uj necessarily has a neighbour in
F1. We will thus walk along the centre C0 in clockwise direction from each uj until we
find a vertex vj that has a neighbour in F1. In order to decide which edge from vj to F1

we will pick, let e be one of the two edges of C0 at vj and let ej = vjwj be the first edge
in clockwise direction around vj, starting at e, with wj ∈ F1. Note that this definition
does not depend on which edge of C0 we choose as e. We call ej the leftmost edge from
vj to F1 and wj the leftmost neighbour of vj in F1. We then continue the construction in
F1 by first going to the base of the branch that contains wj, then walk along the cycle
C1 until we find a vertex that has a neighbour in F2 and so on. We will now make this
construction precise.

Construction 29 (liaison edges, sources, targets). We begin our construction by choosing
vertices u0, . . . , uam−1 on F0 = C0 as follows (see also Figure 20): if c0 is a vertex, let
a := deg(c0)/m and let u0, . . . , uam−1 be all vertices of F0, where the enumeration is in
counterclockwise direction around the north pole. If c0 is an edge, let a := 1 and let u0
and u1 be the vertices of F0 that are not end vertices of c0. Finally, if c0 is a face, let
a := 1 and let u0, u1, u2 be the vertices on its boundary in counterclockwise order. Note
that by the choice of u0, . . . , uam−1, we have ϕ(uj) = uj+a (mod am) for every j. With a
slight abuse of notation, we will omit the modulo term in the index and simply write
ui instead of ui (mod am). We will use this notation also for all other cyclic sequences of
vertices throughout this section.

c0

u0u1

u2 u3

u0

u1
(i)

c0

u0

u1
(ii)

c0

u0

u1 u2

u0

u1

(iii)

Figure 20: The vertices u0, . . . , uam−1 for the north pole c0 being (i) a vertex, (ii) an edge,
(iii) a face. Note that in Case (i), we can either have m = 4, a = 1 or m = a = 2.

For each j = 0, . . . , am − 1, we define the vertices u0j := uj, u
1
j , . . . , u

k
j , v

0
j , . . . , v

k−1
j ,

and w1
j , . . . , w

k
j as follows (see Figure 21): recursively for 0 6 i 6 k − 1
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(i) let vij be the first vertex starting from uij along the centre Ci in clockwise direction
around the north pole that has an edge to Fi+1;

(ii) let wi+1
j be the leftmost neighbour of vij in Fi+1; and

(iii) let ui+1
j be the base of the branch of Fi+1 that contains wi+1

j .

The vertices u0j , . . . , u
k
j , v

0
j , . . . , v

k−1
j , and w1

j , . . . , w
k
j are uniquely defined by (i)-(iii). We

have ϕ(uij) = uij+a, ϕ(vij) = vij+a, and ϕ(wij) = wij+a for all i, j by the symmetry of T
and the fact that ϕ(u0j) = u0j+a. Note that in (i), we encounter vij before we reach uij−a.
Indeed, if the subpath of Ci from uij to uij−a contains no vertex that has a neighbour
in Fi+1, then by the fact that ϕ(uij−a) = uij, no vertex of Ci has a neighbour in Fi+1, a
contradiction to the definition of Fi+1.

Fi

Fi+1

uij uij−a
vij

wi+1
j

ui+1
j

x

Figure 21: Constructing the sources vij, targets wi+1
j , and bases uij. Note that if x is a

base, say x = uij′ , then the construction yields vij = vij′ .

The edges vijw
i+1
j are called liaison edges. For every liaison edge, we call vij its source

and wi+1
j its target. Note that sources, targets, and bases do not have to be distinct.

Clearly, two targets that lie in the same branch will always result in the same base, but also
two bases will result in the same source if there is no eligible choice for a source between
them on the cycle, and two sources may result in the same target if their leftmost edges
lead to the same vertex. It is important to note that the sources vij, v

i
j+a, . . . , v

i
j+a(m−1) are

always distinct, since they form an orbit under ϕ by the symmetry of the construction.
The same holds for targets and bases up to the (k − 1)-st level.

With the levels F0, . . . , Fk and the liaison edges vijw
i+1
j , we are now able to define our

refined spindles, called fyke nets.

Definition 30 (Fyke net). Let F̃ be the union of

• the levels F0, . . . , Fk of T ;
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• all liaison edges vijw
i+1
j ;

• the north pole c0 of T ;

• all edges from c0 to F0 if c0 is a vertex; and

• the south pole c1 and its boundary if the last level Fk is pseudo-antarctic.

The fyke net of T with respect to the group H ⊆ Aut(c0, T ) is the maximal 2-connected
subgraph F of F̃ that contains both poles c0, c1 (respectively their boundaries, if the poles
are faces).

c0

c1

Figure 22: A triangulation and its fyke net (coloured vertices and edges) with respect to
the group H = Aut(c0, T ), in which the north pole c0 (purple) is a vertex and the south
pole c1 (purple) is a face. The liaison edges are drawn in blue; the sources, targets, and
bases are drawn in red.

The intersection of the fyke net with the level Fi is called its ith layer and denoted by
Li. Note that every layer is a plane H-invariant cactus of order m by the symmetry of
the construction. The fyke net has up to five different types of faces:

(i) faces at the north pole c0 (either c0 itself if it is a face, or all faces of T that are
incident with c0);

(ii) faces that are bounded by cycles in a branch of a layer; we call such faces ears ;

(iii) faces bounded by two consecutive liaison edges and two subpaths of the two layers
connecting their sources and their targets; we call such faces segments ;

(iv) if the last layer Lk is pseudo-antarctic, m faces that are bounded by a subpath of
the centre of Lk and the south pole c1 if it is an edge, or one of its incident edges if
it is a face; we call such faces pseudo-antarctic;

(v) the south pole c1 if it is a face.
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The following properties of the fyke net are easy to show, using the 2-connectedness
of the fyke net and the structure of the levels of T .

Proposition 31. Let F be the fyke net of a triangulation T . Then every segment of F
is bounded by a cycle. An edge e of T lies in F if and only if

(i) e is the north pole c0 or an edge from c0 to F0,

(ii) e is the south pole c1,

(iii) e is a liaison edge,

(iv) e lies in the centre of a level Fi, or

(v) e and a target wij are contained in the same branch B of a level Fi and e lies on
a path from wij to uij in B. Equivalently, the block B(e) of B containing e and the
smallest block (in the tree order on the block graph induced by choosing the base uij
of B as its root) B(wij) containing wij satisfy B(wij) > B(e) (in said tree order).

Proof. The fyke net is 2-connected by definition and thus every face of F is bounded by
a cycle. Denote by F̂ the subgraph of F̃ consisting of all edges (and their end vertices)
listed in (i)–(v). We first show that F̂ is 2-connected and thus a subgraph of F . By (iv),
F̂ contains all centres of levels. The edges listed in (iii) and (v) all lie on paths between
the centres of consecutive levels. For any 1 6 i 6 k, the targets wi0, w

i
a, . . . , w

i
(m−1)a form

an orbit under ϕ and therefore lie in distinct branches of Fi (unless i = k and the centre
of Fk is just the vertex c1). Thus, there are at least m disjoint paths between the centres
of Fi−1 and Fi. Moreover, if c0 is a vertex, then F̂ contains am > 2 edges from c0 to the
centre of F0. This proves that F̂ is 2-connected.

In order to prove that F = F̂ , let e be an edge in F̃ \ F̂ . Then e lies in a branch B of
some level Fi. Let B(e) be the block of B that contains e and let v be the unique vertex
of B(e) that separates B(e) from the base of B. Then v also separates B(e) from the
centre of Fi and all targets wij, because otherwise e would lie in F̂ by (v). Thus, e /∈ F ,

which shows F = F̂ , as desired.

Note that the orbits of ϕ partition the set of faces of the fyke net F into sets of size
m. In particular, the near-triangulations that T induces at two faces of F are isomorphic
if these faces lie in the same orbit.

Unlike spindles, the fyke net is unique and thus, we can obtain all triangulations with
rotative symmetry by first choosing a fyke net and then the near-triangulations that are
to be inserted into the ears, segments, and (possibly) pseudo-antarctic faces.

As in the cases of reflective symmetries or both symmetries, we have to be more specific
on which near-triangulations we are allowed to insert into segments.

Lemma 32. Let f be a segment of the fyke net of T . Then there exist unique indices i, j
satisfying the following properties (see Figure 23).
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(i) The boundary C of f consists of two liaison edges vijw
i+1
j , vij+1w

i+1
j+1 and paths Pi,

Pi+1, where Pi is a path in the centre of the layer Li from vij to vij+1 and Pi+1 is a

path in the layer Li+1 from wi+1
j to wi+1

j+1, both in counterclockwise direction around
c0.

(ii) The path Pi has at least one edge.

(iii) The base uij is a vertex on Pi \ {vij+1}.

Proof. Property (i) is part of the definition of a segment and (ii) is immediate by the
definition of the sources and targets. Property (iii) is clear by the way the source vij has
been chosen.

vij+1 vij

wi+1
j+1 wi+1

j

x uijPi

Pi+1

Figure 23: The structure of the near-triangulation in a segment of the fyke net.

Definition 33. Given a segment f , let i, j be the indices from Lemma 32. We write
f ij = f (observe that no pair (i, j) can occur for more than one segment, because no
two segments have the same boundary) and denote by N i

j the near-triangulation that T

induces on f ij (see Definition 2), rooted at the vertex vij and the edge vijw
i+1
j .

Lemma 34. The near-triangulations N i
j have the following properties.

(i) The edge vijw
i+1
j is part of the boundary of a non-root face of N i

j whose third vertex
x lies in the subpath of Pi from vij+1 to the predecessor of uij.

(ii) Every edge of Pi+1 is part of the boundary of a non-root face of N i
j whose third vertex

is in Pi.

(iii) If m = 2 and ϕ(vij) = vij+1, then there is no edge in N i
j from vij to vij+1.

Proof. Property (i) follows from the existence of a non-root face having the edge vijw
i+1
j

on its boundary and the fact that its third vertex x cannot be
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• a vertex in Pi+1, since this would contradict the choice of wi+1
j as the leftmost

neighbour of vij;

• an internal vertex of N i
j , since then x would have been in the (i + 1)-st level of T ,

again contradicting the choice of wi+1
j ;

• a vertex on the subpath of Pi from uij to vij, since by the choice of vij no vertex on
this path has a neighbour in the (i+ 1)-st level of T .

In order to prove (ii), let e be an edge of Pi+1. It is part of the boundary of a unique
non-root face of N i

j and by the definition of Fi+1 it is also part of the boundary of a face
of T whose third vertex is in Fi. We will show that this latter face is also a face of N i

j ,
thus showing (ii).

We will prove this for the edges in Pi+1 one by one, starting from the edge at wi+1
j+1. Let

x1 be the last neighbour of wi+1
j+1 on Pi (starting from vij+1). Together with the root face

of N i
j , the edge x1w

i+1
j+1 divides N i

j into two parts, let N1 be the part which contains all of

Pi+1. The edge x1w
i+1
j+1 is part of the boundary of a unique non-root face of N1, denote the

third vertex of this face by y1 (see Figure 24). If y1 is the neighbour of wi+1
j+1 on Pi+1, then

we have found the desired face. Otherwise, it cannot be a vertex of Pi+1 since the edge
wi+1
j+1y1 is in Fi+1 and would thus also have been in Li+1. Since x1 was the last neighbour

of wi+1
j+1 on Pi, y1 has to be an internal vertex of N i

j . Now repeat the construction with

y1 instead of wi+1
j+1 to obtain a vertex x2 on Pi (possibly x2 = x1), a near-triangulation

N2 ⊆ N1 and a vertex y2. As before, y2 cannot lie on Pi by the definition of x2 and not in
Pi+1 \{wi+1

j+1} by the definition of Li+1. It also cannot be wi+1
j+1, since then the edge x2w

i+1
j+1

would either contradict the choice of x1 as the last neighbour of wi+1
j+1 on Pi (if x1 6= x2) or

it would yield a double edge (if x1 = x2), also a contradiction. We can thus continue the
construction and will always obtain internal vertices y1, y2, . . . of N i

j . Since these vertices
are distinct and N i

j is finite, this is a contradiction, implying that y1 must have been the

neighbour of wi+1
j+1 on Pi+1.

The same construction for every later edge of Pi+1 proves (ii). Finally, note that (iii)
is immediate since otherwise there would be a double edge in T between vij and vij+1.

Observe that 34(ii) immediately implies that no two vertices in Pi+1 are connected by
a chord in N i

j .
The near-triangulations inserted into ears or pseudo-antarctic faces, however, do not

have any restrictions. Indeed, chords do neither contradict the construction of the layers
by Lemma 28 nor can they result in double edges.

5.2 Constructive decomposition

By the results of Section 5.1, a triangulation with rotative symmetry can thus be con-
structed by first choosing a fyke net, then choosing, for every isomorphism class of ears
or pseudo-antarctic faces, any near-triangulation to be inserted into each of these ears,
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vij+1 vij

wi+1
j+1 wi+1

j

x1 x2 = x3

y1 y2 y3

Pi

Pi+1

Figure 24: The construction proving Lemma 34(ii). Note that the vertices x1, x2, . . . are
not necessarily distinct. The vertices y1, y2, . . . , however, are mutually distinct.

and finally, for every isomorphism class of segments, choosing a near-triangulation that
satisfies Lemma 34.

The construction of a map F that can serve as a fyke net requires several steps.
Suppose that the desired order m of the automorphism group is already given, as well as
the dimensions of the poles and the number k + 1 of layers L0, . . . , Lk. We construct the
fyke net F in the following steps.

• Choose the layer L0 to be a cycle depending on the dimension of the north pole
c0 like in Figure 18. If c0 is a vertex, let am be the length of L0, otherwise we set
a = 1.

• For i = 1, . . . , k− 1, let Ci be a cycle whose length is a multiple of m. These cycles
will serve as the centres of the layers. The choice of Ck depends on the dimension of
the south pole c1: if c1 is a vertex, then Ck only consists of c1 and the layer Lk will
be antarctic. If c1 is an edge, Ck can either be a cycle of even length, in which case
Lk will be pseudo-antarctic, or the edge c1 itself, in which case Lk will be antarctic.
Finally, if c1 is a face, then Ck has to be a cycle whose length is divisible by 3. In
that case, Lk will be antarctic if Lk is a triangle and pseudo-antarctic otherwise.

• Choose the bases u00, . . . , u
0
am−1 in L0 in a counterclockwise order like in Definition 30:

if c0 is an edge, then choose two opposite vertices as u00, u
0
1 (the other two will then

be the end vertices of c0), otherwise choose all vertices of L0.

• Choose the sources v00, . . . , v
0
am−1 as follows: For j = 0, . . . , a − 1, choose v0j to be

a vertex on the path starting at u0j and running along C0 in clockwise direction
around the north pole to the predecessor of u0j−a so that v01, . . . , v

0
a appear in coun-

terclockwise order on C0, but are not necessarily distinct. The remaining sources
v0a, . . . , v

0
am−1 are obtained by recursively applying the rotation ϕ. The set of sources

in C0 is denoted by S0.
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• Recursively for i = 1, . . . , k, choose the bases ui0, . . . , u
i
am−1 and sources vi0, . . . , v

i
am−1

on Ci as follows: if Ci has length aim, pick a subpath consisting of ai vertices and
choose ui0, . . . , u

i
a−1 from this subpath so that they appear in counterclockwise order

on Ci. Again, the bases do not have to be distinct. Furthermore, if the sources vi−1l

and vi−1l+1 were identical, the corresponding bases uil and uil+1 should also be identical.
The other bases follow again by applying symmetry. After choosing the bases, we
can pick the sources like in the previous step (but note that we do not need any
sources for i = k). We denote the sets of bases and sources in Ci by Bi and Si,
respectively.

• Having fixed the bases and sources for every i, we can now extend the Ci to layers
Li. To that end, we need to add a suitable plane cactus at every base in Ci. For
every i, denote by πi : Si−1 → Bi the function that maps v to u if there is a j with
v = vi−1j and u = uij. For every base u in Ci, we now attach a plane cactus at u
that has at most as many blocks that are maximal in its natural order as u has
preimages under πi. Again, it is sufficient to choose the cacti for the first a bases,
the others are isomorphic by symmetry.

• Finally, we choose the targets and the liaison edges. For every u ∈ Bi and every
vi−1j ∈ (πi)

−1(u), we choose a vertex in the cactus at u to be the target wij for the

liaison edge vi−1j wij according to the following rules:

– The targets are arranged in counterclockwise order for increasing index j and

– every block that is maximal in the natural order of its branch has at least one
vertex that does not belong to any other block and is chosen as a target.

The near-triangulations induced at a segment of the fyke net are characterised by
Lemma 34. The following definition formalises this characterisation.

Definition 35. Let C be a cycle that consists of a path Pv from v1 to v2, a path Pw
from w1 to w2, and two edges v1w1, v2w2. Denote the length of C by ` and let u be a
vertex on Pv. We choose v1 as the root vertex of C and v1w1 as the root edge. If N is
a near-triangulation with ` outer edges, root vertex vN , and root edge eN , let us denote
by α the isomorphism from C to the boundary of the outer face of N that respects the
rooting. We say that N is 2-layered with respect to v1, v2, w1, w2, and u if it satisfies
Lemma 34 with vij := α(v1), v

i
j+1 := α(v2), w

i+1
j := α(w1), w

i+1
j+1 := α(w2), and uij := α(u).

If T is a triangulation with rotative symmetry and f is a segment of its fyke net F ,
then by Lemma 32 and Definition 33 we have f = f ij for some i, j and N i

j is 2-layered

with respect to vij, v
i
j+1, w

i+1
j , wi+1

j+1, and uij. Here the boundary of f ij is rooted at vij and

vijw
i+1
j . For every ear f of the fyke net we choose the root vertex vf of its boundary to be

its vertex closest to the base of the branch it is contained in. As root edge ef we choose
the left of the two edges at vf on this boundary. Finally, if F has pseudo-antarctic faces,
we choose for each such face f the root edge ef to be either the south pole c1 (if it is an
edge) or the unique edge incident to both f and c1 (if c1 is a face). As the root vertex vf
we choose the end vertex of ef that lies in clockwise direction from ef around f .
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Theorem 36. The triangulations T with rotative symmetries in Aut(c0, T ) are precisely
the ones that can be constructed by choosing

• a fyke net F ;

• for every isomorphism class [f ] (under rotation) of ears of F a near-triangulation
whose boundary is isomorphic to the boundaries of those ears with respect to the
rooting;

• for every isomorphism class [f ] of pseudo-antarctic faces of F a near-triangulation
whose boundary is isomorphic to the boundaries of those faces with respect to the
rooting; and

• for every isomorphism class {f ij , f ij+a, . . . , f ij+(m−1)a} of segments of F a 2-layered

near-triangulation with respect to vij, v
i
j+1, wi+1

j , wi+1
j+1, and uij

and inserting a copy of each near-triangulation into the corresponding faces of F at their
root vertices and edges. This construction is a one-to-one correspondence.

6 Discussion

The constructive decomposition presented in Sections 3 to 5 decomposes triangulations
into ‘building frames’ and ‘flagstones’. The building frames are girdles (see Definition 5)
of triangulations with reflective symmetry, fyke nets (Definition 30) of triangulations with
rotative symmetry, and skeletons (Definition 15) in the case of both types of symmetries.
Into the faces of the building frames, we insert near-triangulations, or ‘flagstones’, in order
to construct a triangulation with the desired symmetries.

This constructive decomposition is the key to enumerate triangulations with spe-
cific symmetries and to sample them uniformly at random, e.g. based on a recursive
method [7, 14] or on Boltzmann sampler [6, 12]. To this end, it will be necessary to trans-
late the decomposition into functional equations for the cycle index sums [27, 34, 35, 36]
that enumerate these triangulations and the basic structures (i.e. building frames and
flagstones) arising in their decomposition. To this end, the cycle index sums will have
to distinguish between different types of vertices, e.g. between central vertices and outer
vertices (see Definition 5) of a girdle G, because these vertices determine which chords are
allowed in the near-triangulation that is to be inserted into the hemispheres of G. The
structure of these near-triangulations has to be encoded in a functional equation for their
cycle index sum.

Deriving functional equations for cycle index sums that enumerate triangulations with
specific symmetries will path the way to an enumeration of unlabelled planar cubic graphs.
Chapuy, Fusy, Kang, and Shoilekova [11] developed a general decomposition strategy
for a wide variety of graph classes that can in particular be used to relate unlabelled
cubic planar graphs to unlabelled 3-connected cubic planar graphs in terms of functional
equations for the respective cycle index sums. The base classes of this decomposition
include unlabelled 3-connected cubic planar graphs with a distinguished vertex or edge.
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By Whitney’s theorem [37], we can relate these graphs to cubic maps rooted at a single cell,
which in turn are the duals of triangulations rooted at a single cell. As Whitney’s theorem
provides uniqueness of the embedding only up to orientation of the sphere, it follows that
this relation between graphs and triangulations can be a one-to-two correspondence or a
one-to-one correspondence, depending on the symmetries of the respective triangulation.
Thus, encoding the symmetries of triangulations rooted at a single cell in their cycle index
sums provides the fundament for enumerating unlabelled cubic planar graphs.
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[6] M. Bodirsky, É. Fusy, M. Kang, and S. Vigerske. Boltzmann samplers, Pólya theory
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A Additional proofs

Proof of Lemma 4

Let I be the set of cells that are invariant under ϕ. Define an auxiliary graph F with
vertex set I by joining two elements of I by an edge whenever they are incident. Note that
ϕ, although chosen as an element of Aut(c0, T ), is also an element of Aut(c, T ) for every
c ∈ I. Since ϕ is a reflection, every vertex in F has degree 2 and thus, every component
is a cycle. Let C be the cycle of F that contains c0. The vertices of C—arranged in the
order they appear on C—form the desired cyclic sequence. Indeed, (i) and (iii) hold by
the definition of F and the fact that C is a component of F , while (ii) is an immediate
consequence of the fact that ϕ is a reflection.

Proof of Lemma 6

By Lemma 4, two central cells of G are incident if and only if they are consecutive in the
cyclic sequence. We claim that every outer cell is contained in a unique diamond, which
implies that the subspace of the sphere consisting of G and the faces in its diamonds
is contractible to a Jordan curve, which in turn implies Lemma 6 by the Jordan curve
theorem. Indeed, every outer cell of G is a vertex or an edge that is contained in a
diamond. If two diamonds share an outer edge, they also share an outer vertex v. Now
ϕ maps v to the other outer vertex of each of the two diamonds, hence they also share
their second outer vertex. But then the central edges of the two diamonds are distinct
and have the same end vertices, contradicting the fact that T has no double edges.

Proof of Lemma 8

First observe that (ii) follows directly from (i) and the fact that all central cells of G are
invariant under ϕ by Lemma 4 and Definition 5. In order to prove (i), let c be any cell
of T that is incident with c0, but is not a central cell of G. Then c is contained in one of
the hemispheres of G or lies on the boundary of precisely one hemisphere. The reflection
ϕ maps c to a cell that is contained in (or lies on the boundary of) the other hemisphere
of G, which yields (i).
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