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Université Libre de Bruxelles

Brussels, Belgium

gjoret@ulb.ac.be

Piotr Micek‡

Theoretical Computer Science Department
Jagiellonian University

Kraków, Poland
Institute of Mathematics
Freie Universität Berlin

Berlin, Germany

piotr.micek@tcs.uj.edu.pl

William T. Trotter
School of Mathematics

Georgia Institute of Technology
Atlanta, Georgia, U.S.A.

trotter@math.gatech.edu

Veit Wiechert§

Institut für Mathematik
Technische Universität Berlin

Berlin, Germany

wiechert@math.tu-berlin.de

Submitted: May 27, 2017; Accepted: Jan 27, 2018; Published: Feb 16, 2018

Abstract

A classic result of Asplund and Grünbaum states that intersection graphs of axis-
aligned rectangles in the plane are χ-bounded. This theorem can be equivalently
stated in terms of path-decompositions as follows: There exists a function f : N→ N
such that every graph that has two path-decompositions such that each bag of the
first decomposition intersects each bag of the second in at most k vertices has
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chromatic number at most f(k). Recently, Dujmović, Joret, Morin, Norin, and
Wood asked whether this remains true more generally for two tree-decompositions.
In this note we provide a negative answer: There are graphs with arbitrarily large
chromatic number for which one can find two tree-decompositions such that each bag
of the first decomposition intersects each bag of the second in at most two vertices.
Furthermore, this remains true even if one of the two decompositions is restricted to
be a path-decomposition. This is shown using a construction of triangle-free graphs
with unbounded chromatic number due to Burling, which we believe should be more
widely known.

1 Burling graphs

For each k > 1, we define the Burling graph Gk and a collection S(Gk) of stable sets of
Gk by induction on k as follows. First, let G1 be the graph consisting of a single vertex
and let S(G1) contain just the single vertex stable set of G1. Next, suppose k > 2 for
the inductive case. First, take a copy H of Gk−1, which we think of as the ‘master’ copy.
For each stable set S ∈ S(H), let HS denote a new copy of Gk−1. Furthermore, for each
stable set X ∈ S(HS), introduce a new vertex vS,X adjacent to all vertices in X but no
others. Let us denote by H ′S the graph obtained from HS resulting from these vertex
additions. The graph Gk is then defined as the union of H and H ′S over all S ∈ S(H). Its
collection S(Gk) consists of two sets for each S ∈ S(H) and X ∈ S(HS), namely: S ∪X
and S ∪ {vS,X}. Observe that S ∪X and S ∪ {vS,X} are both stable sets of Gk.

Burling defined the family {Gk} in his PhD Thesis [2] in 1965 and proved that these
graphs have unbounded chromatic number. However, this construction went mostly un-
noticed until it was rediscovered in [11]. (One exception is a set of unpublished lecture
notes of Gyárfás [8] from 2003, which has a section devoted to Burling graphs.)

Theorem 1 ([2]). For every k > 1, the Burling graph Gk is triangle free and has chromatic
number at least k.

Proof. The fact that Gk is triangle free follows directly by observing that, when creating
a vertex vS,X in the definition of Gk, its neighborhood is a stable set. To show that
χ(Gk) > k, we prove the following stronger statement by induction on k: For every
proper coloring φ of Gk, there exists a stable set S ∈ S(Gk) such that φ uses at least
k colors for vertices in S. This is obviously true for k = 1, so let us assume k > 2
and consider the inductive case. Let φ be a proper coloring of Gk. In what follows, the
notations H, HS, and H ′S refer to the graphs used in the definition of Gk. By induction,
there is a stable set S ∈ S(H) such that φ uses at least k− 1 colors on S. Similarly, there
is a stable set X ∈ S(HS) such that φ uses at least k− 1 colors on X. If φ uses at least k
colors on S ∪X, we are done since S ∪X ∈ S(Gk). If not, then φ uses exactly the same
set C of k − 1 colors on S and on X. This implies that the vertex vS,X is colored with a
color not in C, and hence φ uses k colors on the stable set S ∪ {vS,X} ∈ S(Gk).

Mycielski [10], and Erdős and Hajnal [6] each described easy constructions of triangle-
free graphs with unbounded chromatic number that are classics nowadays. We believe that

the electronic journal of combinatorics 25(1) (2018), #P1.35 2



Burling graphs should be more widely known, for their definition is simple and yet they
exhibit some unique properties. In particular, Burling graphs admit various geometric
representations that are not known to exist for any other family of triangle-free graphs
with unbounded chromatic number, which we briefly survey now.

First, recall that a class of graphs C is χ-bounded if there is a function f such that
χ(G) 6 f(ω(G)) for all G ∈ C, where ω(G) denotes the maximum size of a clique in G.

Burling [2] showed that each Gk can be obtained as the intersection graph of axis-
aligned boxes in R3. Hence, this implies that intersection graphs of axis-aligned boxes in
R3 are not χ-bounded. This is in contrast with the result of Asplund and Grünbaum [1]
that χ(G) ∈ O(ω2(G)) for intersection graphs G of axis-aligned rectangles. (We remark
that Reed and Allwright [12] (see also [9]) described another interesting construction of
axis-aligned boxes in R3 whose intersection graph has high chromatic number, with the
extra property that the interiors of the boxes are pairwise disjoint, implying that the
clique number is at most 4.)

In the 1970s, Erdős asked whether intersection graphs of line segments in the plane are
χ-bounded. A negative answer was provided by Pawlik, Kozik, Krawczyk, Lasoń, Micek,
Trotter, and Walczak [11]: The authors represented the Burling graphs as intersection
graphs of segments in the plane. This result also disproves the conjecture of Scott [13] that,
for every graph H, the class of graphs excluding every subdivision of H as an induced
subgraph is χ-bounded. Indeed, segment intersection graphs—and thus in particular
Burling graphs—do not contain any subdivision of H as an induced subgraph when H is
the 1-subdivision of a non-planar graph. Later on, Chalopin, Esperet, Li, and Ossona de
Mendez [3] showed that Burling graphs in fact even exclude all subdivisions of H as an
induced subgraph when H is the 1-subdivision of K4.

2 Application to orthogonal tree-decompositions

A tree-decomposition of a graph G is a pair (T, {Bt}t∈V (T )) where T is a tree and the sets
Bt (t ∈ V (T )) are subsets of V (G) called bags satisfying the following properties:

1. for each edge uv ∈ E(G) there is a bag containing both u and v, and

2. for each vertex v ∈ V (G), the set of vertices t ∈ V (T ) with v ∈ Bt induces a
non-empty subtree of T .

The width of the tree-decomposition is the maximum size of a bag minus 1. The tree-
width of G is the minimum width of tree-decompositions of G. Path-decompositions and
path-width are defined analogously, with the extra requirement that the tree T be a path.
We refer the reader to Diestel [4] for background on tree-decompositions.

The following generalization of tree-decompositions was recently introduced by
Stavropoulos [15, 14] and investigated by Dujmović, Joret, Morin, Norin, and Wood [5].
Suppose that (T 1, {B1

t }t∈V (T 1)), . . . , (T
k, {Bk

t }t∈V (Tk)) are k tree-decompositions of a graph
G. Let then the k-width of these decompositions be the maximum of |B1

t1
∩ · · · ∩Bk

tk
| over

all (t1, . . . , tk) ∈ V (T1) × · · · × V (Tk). The k-tree-width of G, also called k-medianwidth
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of G in [15, 14], is the minimum k-width of all k-tuples of tree-decompositions of G. Re-
placing trees with paths, we obtain the corresponding notion of k-path-width of G, also
known as k-latticewidth [14]. Intuitively, to show that the k-tree-width or k-path-width
of G is small, we want to choose a k-tuple of tree/path-decompositions of G that are
as ‘orthogonal’ as possible: For instance, to see that a grid has bounded 2-path-width,
one can take a ‘horizontal’ path-decomposition where bags are unions of two consecutive
columns, and a ‘vertical’ one where bags are unions of two consecutive rows.

The k-tree-width of G for k = 1, 2, 3, . . . forms a non-increasing sequence of numbers
that converges to the clique number ω(G) of G, and the same is true for the k-path-width
of G [15, 14]. Thus these numbers can be seen as interpolating between the tree-width /
path-width of G (plus one) and its clique number.

Some graph classes of interest already have bounded 2-tree-width. For instance, planar
graphs, and more generally graphs excluding a fixed graph H as minor [5]. In fact, for
planar graphs and some of their generalizations, one can even require one of the two
tree-decompositions to be a path-decomposition such that each vertex appears in at most
two bags, see [5] and the references therein. Note however that graphs with bounded
2-tree-width are not necessarily sparse: All bipartite graphs have 2-tree-width (and even
2-path-width) at most 2.

The k-path-width of a graph G can equivalently be defined as the minimum q such that
G is a subgraph of an intersection graph H of axis-aligned boxes in Rk with ω(H) 6 q.
(To see this, recall that axis-aligned boxes in Rk satisfy the Helly property.) In particular,
χ(G) is bounded from above by a function of the 2-path-width of G, since intersection
graphs of axis-aligned rectangles in the plane are χ-bounded [1]. This prompted the
authors of [5] to ask whether the same remains true for the 2-tree-width of G. We show
that this is not the case, even if one the two decompositions is restricted to be a path-
decomposition.

Theorem 2. For every k > 1, the Burling graph Gk has a tree-decomposition
(T, {Bt}t∈V (T )) and a path-decomposition (P, {Bp}p∈V (P )) such that |Bt ∩ Bp| 6 2 for
every t ∈ V (T ) and every p ∈ V (P ).

Proof. The proof is by induction on k. To facilitate the induction, we will prove that the
tree-decomposition and the path-decomposition can be chosen such that

1. |Bt ∩Bp| 6 2 for every t ∈ V (T ) and every p ∈ V (P );

2. for every S ∈ S(Gk), there exists t ∈ V (T ) such that Bt = S, and

3. |S ∩Bp| 6 1 for every S ∈ S(Gk) and every p ∈ V (P ).

The claim is trivially true for k = 1, so let us consider the inductive case k > 2.
As before, the notations H, HS, and H ′S refer to the graphs used in the definition of
Gk. Let (TH , {BH

t }t∈V (TH)) and (PH , {BH
p }p∈V (PH)) denote the tree-decomposition and

path-decomposition of H given by the induction hypothesis. Similarly, for each stable
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S(Gk)

TH

TH,S

S

t1S,X t2S,X

+S
+vS,X

tS,X

Figure 1: Tree-decomposition of Gk.

set S ∈ S(H), let (TH,S, {BH,S
t }t∈V (TH,S)) and (PH,S, {BH,S

p }p∈V (PH,S)) denote the tree-
decomposition and path-decomposition of HS obtained from induction. (As expected, we
assume that TH , PH , and all the TH,Ss and PH,Ss are pairwise vertex disjoint.)

Define the tree T as follows. Start with the union of TH and TH,S for all S ∈ S(H).
Then, for each S ∈ S(H), add an edge linking a vertex t ∈ V (TH) such that BH

t = S
(which exists by induction) to an arbitrary vertex in V (TH,S). Finally, for each S ∈ S(H)
and X ∈ S(HS), let tS,X denote a vertex in V (TH,S) such that BH,S

tS,X
= X. Add two leaves

t1S,X , t2S,X adjacent to tS,X .
The bags Bt (t ∈ V (T )) of the tree-decomposition of Gk are defined as follows (see

Figure 1 for an illustration) :

Bt :=



BH
t if t ∈ V (TH)

S ∪X ∪ {vS,X} if t = tS,X for some S ∈ S(H) and X ∈ S(HS)

S ∪X if t = t1S,X for some S ∈ S(H) and X ∈ S(HS)

S ∪ {vS,X} if t = t2S,X for some S ∈ S(H) and X ∈ S(HS)

S ∪BH,S
t

if t ∈ V (TH,S) for some S ∈ S(H)
and t 6= tS,X for all X ∈ S(HS)

For each vertex v ∈ V (Gk), the set of vertices t ∈ V (T ) such that v ∈ Bt clearly
induces a subtree of T . Moreover, the two endpoints of each new edge of the form vS,Xx
with S ∈ S(H), X ∈ S(HS), and x ∈ X lie in a common bag, namely Bt with t = tS,X .
It follows that (T, {Bt}t∈V (T )) is a tree-decomposition of Gk.

We show that property 2 holds. Recall that each set in S(Gk) is either of the form
S ∪X or of the form S ∪ {vS,X} for some S ∈ S(H) and X ∈ S(HS). In the former case,
S ∪ X = Bt for t = t1S,X . In the latter case, S ∪ {vS,X} = Bt for t = t2S,X . Hence, 2 is
satisfied.

Next, we define the path-decomposition of Gk. The path P indexing the decomposition
is defined simply by taking the union of the paths PH and PH,S for all S ∈ S(H), and
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PH PH,S

vS,X

Figure 2: Path-decomposition of Gk.

connecting them in a path-like way (arbitrarily). The bags Bp (p ∈ V (P )) are defined as
follows (see Figure 2 for an illustration):

Bp :=

{
BH

p if p ∈ V (PH)

BH,S
p ∪ {vS,X | X ∈ S(HS)} if p ∈ V (PH,S) for some S ∈ S(H)

Observe that (P, {Bp}p∈V (P )) is a path-decomposition of Gk. Indeed, for each vertex
v ∈ V (Gk) the set of vertices p ∈ V (P ) such that v ∈ Bp clearly induces a subpath of
P . Moreover, the two endpoints of each new edge of the form vS,Xx with S ∈ S(H),
X ∈ S(HS), and x ∈ X lie in a common bag since vS,X ∈ BH,S

p for every p ∈ V (PH,S).
Let us prove that property 3 is satisfied. Consider sets S ∈ S(H) and X ∈ S(HS),

and a vertex p ∈ V (P ). First suppose p ∈ V (PH). Then (S ∪ X) ∩ Bp = S ∩ BH
p , and

thus |(S ∪X) ∩ Bp| 6 1 holds by induction. Similarly, (S ∪ {vS,X}) ∩ Bp = S ∩ BH
p and

again |(S ∪ {vS,X})∩Bp| 6 1 follows from induction. Next assume p ∈ V (PH,S) for some
S ∈ S(H). Then (S ∪X) ∩ Bp = X ∩ BH,S

p , and thus |(S ∪X) ∩ Bp| 6 1 by induction.
Also, (S ∪ {vS,X}) ∩ BH,S

p = {vS,X} and hence |(S ∪ {vS,X}) ∩ Bp| = 1. It follows that
property 3 holds.

It remains to show that our newly defined tree and path-decompositions together
satisfy property 1. Let thus t ∈ V (T ) and p ∈ V (P ). First, suppose that t ∈ V (TH). If
p ∈ V (PH), then |Bt ∩ Bp| 6 2 holds by induction. If p ∈ V (PH,S) for some S ∈ S(H),
then Bt and Bp are disjoint.

Next, suppose that t = tS,X for some S ∈ S(H) and X ∈ S(HS). Thus, Bt = S ∪X ∪
{vS,X}. If p ∈ V (PH), then Bt∩Bp = S∩BH

p , and we know that this set has size at most

1 by induction, since H satisfies property 3. If p ∈ V (PH,S′
) for some S ′ ∈ S(H) distinct

from S, then Bt and Bp are disjoint. If p ∈ V (PH,S), then Bt∩Bp = (X ∩BH,S
p )∪{vS,X}.

Since |X∩BH,S
p | 6 1 holds by induction thanks to property 3, we deduce that |Bt∩Bp| 6 2.

The above observations also imply that |Bt ∩ Bp| 6 2 if t = t1S,X or t = t2S,X for
some S ∈ S(H) and X ∈ S(HS), since Bt ⊆ S ∪ X ∪ {vS,X} in these cases. Finally,
suppose that t ∈ V (TH,S) for some S ∈ S(H) and t 6= tS,X for all X ∈ S(HS). Then

Bt = S ∪ BH,S
t . If p ∈ V (PH), then Bt ∩ Bp = S ∩ BH

p , and (as in the above paragraph)

that set has size at most 1 by induction, since H satisfies property 3. If p ∈ V (PH,S′
)

for some S ′ ∈ S(H) distinct from S, then Bt and Bp are disjoint. If p ∈ V (PH,S), then

|Bt ∩Bp| = |BH,S
t ∩BH,S

p | 6 2 by induction.
Hence, |Bt ∩Bp| 6 2 holds in all cases, and therefore property 1 is satisfied.
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We conclude the paper with an open problem in the spirit of exploring how the
Asplund-Grünbaum result [1] could be extended. A spaghetti tree-decomposition of a
graph G is a tree-decomposition (T, {Bt}t∈V (T )) of G such that T is rooted at some vertex
r ∈ V (T ) and, orienting all edges of T away from r, the subtree Tv of T induced by
{t ∈ V (T ) : v ∈ Bt} is a directed path for each vertex v ∈ V (G).

Conjecture 3. There exists a function f : N → N such that χ(G) 6 f(k) for every
k > 1 and every graph G admitting a spaghetti tree-decomposition (T, {Bt}t∈V (T )) and
a path-decomposition (P, {Bp}p∈V (P )) such that |Bt ∩ Bp| 6 k for every t ∈ V (T ) and
p ∈ V (P ).

We remark that, for all we know, the above conjecture could even be true with two
spaghetti tree-decompositions. Let us also mention that the class of graphs G that admit
a spaghetti tree-decomposition (T, {Bt}t∈V (T )) such that uv ∈ E(G) if and only if Tu and
Tv intersect has been studied by Galvin [7] (note that this is a subclass of chordal graphs).
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