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Abstract

Let P be a partially ordered set. If the Boolean lattice (2["], C) can be partitioned
into copies of P for some positive integer n, then P must satisfy the following two
trivial conditions:

(1) the size of P is a power of 2,
(2) P has a unique maximal and minimal element.

Resolving a conjecture of Lonc, it was shown by Gruslys, Leader and Tomon that
these conditions are sufficient as well.

In this paper, we show that if P only satisfies condition (2), we can still almost
partition 2[" into copies of P. We prove that if P has a unique maximal and minimal
element, then there exists a constant ¢ = ¢(P) such that all but at most ¢ elements
of 2l can be covered by disjoint copies of P.

Keywords: tiling; Boolean lattice; poset

1 Introduction

The Boolean lattice (2", C) is the power set of [n] = {1, ...,n} ordered by inclusion. If P
and @ are partially ordered sets (posets), a subset P’ C @ is a copy of P if the subposet
of @) induced on P’ is isomorphic to P. A chain is a copy of a totally ordered set, and an
antichain is a copy of a totally unordered set.

*Research partially supported by Swiss National Science Foundation grants no. 200020-162884 and
200021-175977.
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It is an easy exercise to show that every poset P has a copy in 2" for n sufficiently
large. Moreover, if P has a unique maximal and minimal element, then every element of
27 is contained in some copy of P. Therefore, it is natural to ask whether it is possible
to partition 2" into copies of P.

The case when P is a chain of size 2¥ was conjectured by Sands [5]. A slightly more
general conjecture was proposed by Griggs [1]: if h is a positive integer and n is sufficiently
large, then 2" can be partitioned into chains such that at most one of these chains have
size different from h. This conjecture was confirmed by Lonc [4]. The author of this paper
6] also established the order of the minimal n for which such a partition exists.

Theorem 1. (/6]) Let h be a positive integer. If n = Q(h?), the Boolean lattice 2" can
be partitioned into chains C4, ..., C, such that 2h > |Cy| = h and |Cs| = ... = |C,| = h.

We note that Theorem 1 is stated in [6] as Theorem 5.2 without the additional condi-
tion that |Cy| > h. However, the proof of Theorem 5.2 presented in [6] actually gives this
insignificantly stronger result, which we shall exploit in this paper.

Lonc [4] also proposed two conjectures concerning the cases when P is not necessarily
a chain. First, he conjectured that if P has a unique maximal and minimal element and
size 2%, then 2" can be partitioned into copies of P for n sufficiently large. It is easy to
see that these conditions on P are necessary, and it was proved by Gruslys, Leader and
the author of this paper [3] that these conditions are sufficient as well.

Theorem 2. ([3]) Let P a poset with a unique mazimal and minimal element and |P| =
2% ke N. Ifn is sufficiently large, the Boolean lattice 2" can be partitioned into copies
of P.

The second conjecture of Lonc targets posets which might not satisfy the conditions
stated in Theorem 2. In this case, it seems likely that we can still cover almost every
element of 2" with disjoint copies of P.

Conjecture 3. ([4]) Let P be a poset. If n is sufficiently large and |P| divides 2™ — 2,
then 21"\ {@,[n]} can be partitioned into copies of P.

In [3], a slightly weaker conjecture is proposed.

Conjecture 4. ([3]) Let P be a poset. There exists a constant ¢ = c¢(P) such that for
every positive integer n, there exists S C 2" such that 2"\ S can be partitioned into
copies of P and |S| < c.

In other words, Conjecture 4 asks if we can cover all but a constant number of the
elements of 2" with disjoint copies of P. Note that Conjecture 3 implies Conjecture 4 in
the case | P| is not divisible by 4.

The main result of this manuscript is a proof of Conjecture 4 in the case P has a
unique maximal and minimal element. We believe that the method of proof presented
here might lead to the proof of this conjecture in its full generality. We prove the following
theorem.
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Theorem A. Let P be a poset with a uniqge maximal and minimal element. There exists
a constant ¢ = ¢(P) such that the following holds. Let n be a positive integer, then there
exists S C 2" such that 20"\ S can be partitioned into copies of P, and |S| < c.

This paper is organized as follows. In Section 2, we introduce the main definitions and
notation used throughout the paper, and outline the proof of Theorem A. In Section 3,
we prove a modification of Theorem 2, where 2" is replaced with an appropriately sized
grid. In Section 4, we show that Conjecture 4 holds when P is a grid. In Section 5, we
prove Theorem A and conclude with some discussion.

2 Preliminaries

2.1 Cartesian product of posets

The proof of Theorem A relies heavily on the product structure of 20", Let us define
the cartesian product of posets. If Py, ..., P, are posets with partial orderings <1, ..., <}
respectively, the cartesian product P; X ... X Py is also a poset with partial ordering =<
such that (py,...,pr) = (P, ..., p}) if ps Xy plhfor i =1,... k. Also, P = P x ... x P is the
k-th cartesian power of P, where the cartesian product contains k terms.

For every positive integer m, we shall view [m] as a poset with the natural total
ordering. For positive integers ay, ..., aq, the cartesian product [a;] X ... X [a4] is called a d-
dimensional grid; 2-dimensional grids may be referred to as rectangles. That is, if < is the
partial ordering on [a1] X ... X [a4], then < is defined such that if (x1, ..., 24), (Y1, ..., ya) €
la1] X ... X [aq], then (z1,...,24) < (y1,...,yq) iff 2; < y; for i = 1,...,d. Note that the
Boolean lattice 2 is isomorphic to the n-dimensional grid [2]” and we might occasionally
switch between the two notation without further comments.

2.2  OQOutline of the proof

The framework used in [3] for the proof of Theorem 2 can be easily modified to show that
if P has a unique maximal and minimal element, then Theorem 2 holds if 2" is replaced
with some appropriately sized grid. We prove the following theorem in Section 3.

Theorem 5. Let P be a poset with a unique mazimal and minimal element. If d is
sufficiently large, then [2|P|]? can be partitioned into copies of P.

Now our task is reduced to showing that Theorem A holds when P is a grid. The new
ingredient in our paper is the following result, which shall be proved in Section 4.

Theorem 6. Let P be a d-dimensional grid. If n = Q(d|P[*), then there exists S C 2"
such that 2"\ S can be partitioned into copies of P and |S| < (24| P|?)?.

These two theorems combined immediately yield our main result, see Section 5.
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3 Partitioning the grid

In this section, we prove Theorem 5. The proof of this theorem follows the same ideas
as the proof of Theorem 2 in [3], with slight modifications. We shall reuse some of the
results of [3] in order to shorten and simplify this manuscript.

3.1 Weak partitions

Let S be a finite set and let F be a family of subsets of S. We call a function w : F — N
a weight function. If x € S, the weight of x is the total weight of the sets in F containing
x.

Let t be a positive integer. The family F contains a t-partition, if there exists a weight
function on F such that the weight of each x € S is ¢t. Similarly, F contains a (1 mod t)-
partition, if there exists a weight function on F such that the weight of each x € S equals
to 1 mod t.

If F contains a 1-partition, then the family of sets having weight 1 in F is a partition
of S in the usual sense. Also, if F has a 1-partition, it trivially has a t-partition and a
(1 mod t)-partition as well for every positive integer t.

A remarkable result of Gruslys, Leader and Tan [2] is that the existence of a t-partition
and a (1 mod ¢)-partition also implies the existence of a 1-partition of S™, for some suffi-
ciently large n, into sets that "look like” elements of F. Let us define this precisely.

For a positive integer n, define F(n) to be the family of all subsets of S™ of the form

{s1} x ... x{sis1} x F x{siz1} X ... X {sn},

where @ € [n], s1,..., Si—1, Sit1,...,Sn € S and F € F. The following result played a key
role in both [2, 3], and shall play an important role in this paper as well. It was stated
explicitly in [3] as Theorem 5.

Theorem 7. ([3]) Let S be a finite set, F be a family of subsets of S and t € N. Suppose
that F contains a t-partition and a (1 mod t)-partition. Then for n sufficiently large, S™
can be partitioned into elements of F(n).

Let us say a few remarks about this theorem. Note that if S is endowed with a partial
ordering and F is the family of all copies of some poset P, then F(n) is also a family
of copies of P in S™. (However, it is not true that every copy of P in S™ is an element
of F(n).) Also, at first glance it might not be clear why is it easier to find a ¢-partition
or a (1 mod t)-partition than a 1l-partition, but as we shall see in the next section, this
problem is substantially simpler.

3.2 t and (1 mod t)-partitions

In order to prove Theorem 5, we only need to show that the family of copies of P in
[2| P|]™ contains a t-partition and a (1 mod t)-partition for some m, ¢ positive integers.
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Theorem 8. Let P be a poset with a unique mazximal and minimal element. Then there
exist positive integers m and t such that the family of copies of P in [2|P|]™ contains a
t-partition.

Proof. In [3], Lemma 3 states that there exist m and ¢ such that the family of copies of
P in [2]™ contains a t-partition. However, [2|P||™ can be trivially partitioned into copies
of [2]™: for (iy,...,1m) € [|P|]™, let

Biy i = {201+ €1 —2,..., 200, + €, — 2) : (€1, ..., 6m) € [2]"}.

Then B, .. ;,, is isomorphic to [2]™ and the family of these sets form a partition of [2|P|]™.
[

Theorem 9. Let P be a poset with a unique mazimal and minimal element and let t be
a positive integer. Then there exists a positive integer m such that the family of copies of
P in [2|P|]™ contains a (1 mod t)-partition.

Proof. 1f |P| = 1, the proof is trivial, so we can suppose that |P| > 2.

Let d be a positive integer such that 2% contains a copy of P. We show that m = 2d—1
suffices. For simplicity, write @ = [2|P|]™ and let < be the partial ordering on Q.

Let F be the family of copies of P in Q. Also, for a subset A C @, let I, : Q — N be
the indicator function of A.

Say that a function f : Q) — Z is realizable if there exists a weight function w : F — N

such that
flz) = Zw(F) mod ¢

FeF
zeF

for all z € (). Note that if f and g are realizable, then both f+ ¢ and f — g are realizable,
as f—g=f+(t—1)gmodt.

Our task is to show that I is realizable.

Let a be the element of () whose every coordinate is 2.

Claim 10. For every x € @), the function Ijxy — Itay is realizable.

Proof. Consider two cases according to the number of 1 coordinates of x.
Case 1: The number of coordinates of x equal to 1 is at most d — 1. Let J be a set of
d indices j € [m] such that x(j) > 2. Let

R=A{(ay,...,an) € 2]":a; =1,if j & J}.

Then R is isomorphic to 2l so it contains a copy of P. Let such a copy be A C R. If b
is the maximal element of A, then b < x and b < a. Hence, A; = (A\ {b}) U {x} and
Ay = (A\ {b})U{a} are both copies of P, which implies that the function

La, — 14, = [{X} - I{a}

is realizable.
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Case 2: The number of coordinates of x equal to 1 is at least d. In a similar way as
in the previous case, we show that Iy — I{a is realizable. Let J be a set of d indices
J € [m] such that x(j) = 1. Let

R = {(a1,..am) € {2|P| — 1,2|P|}"™ : a; = 2|P|, if j & J}.

Then R is isomorphic to 214, so it contains a copy of P. Let such a copy be A C R. If
c is the minimal element of A, then x < c and a < ¢. Hence, 4; = (A\ {c}) U {x} and
Ay = (A\ {c})U{a} are both copies of P, which implies that the function
Tay = 1ay = Iixy — Liay
is realizable. O
The previous claim immediately yields the following claim.

Claim 11. Let f : QQ — 7Z be a function such that
Zf(x) = 0 mod ¢.
x€Q

Then f is realizable.

Proof. Define the function g : ) — Z such that

9= f&x)Upg — Iay)-

XEQ

Clearly, g is realizable as every term in the sum is realizable by Claim 10. Also, f(x) =
g(x) for all x # a. But g satisfies the equality > ., g(x) = 0 mod ¢ as well, so we must
have f(a) = g(a) mod ¢t. Hence, f = g mod ¢, which gives that f is realizable. O

Now let A C @ be a copy of P and s = t|Q|/|P|. Note that s is an integer. The
function sl, is realizable and f = Ig — sl satisfies the equality >, o f(x) = 0 mod ¢,
so [ is also realizable by Claim 11. But then Ig = f + sl4 is realizable as well. m

Let us remark that if the family of copies of P in [2|P|]™° contains a t-partition or a
(1 mod t)-partition, then the family of copies of P in [2|P|]"™ also contains a t-partition
or (1 mod t)-partition, respectively, for m > myg, as [2|P|]™ can be trivially partitioned
into copies of [2|P|]™©.

3.3 Proof of Theorem 5

Now everything is set to prove that if P has a unique maximal and minimal element, then
[2| P|]? can be partitioned into copies of P for d sufficiently large.
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Proof of Theorem 5. By Theorem 8, there exist positive integers ¢ and m; such that the
family of copies of P in [2|P|]"™ contains a t-partition. Also, by Theorem 9, there exists
a positive integer my such that the family of copies of P in [2]|P||™* contains a (1 mod t)-
partition. Let m = max{m;, ms}, then the family of copies of P in [2|P|]™ contains both
a t and a (1 mod t)-partition. Hence, by Theorem 7, there exists a positive integer n
such that ([2|P]]™)™ can be partitioned into copies of P. But then d > mn suffices as
(2P = I[P .

4 Almost partitioning into grids

In this section, we prove Theorem 6. Let us briefly outline our strategy for the proof
of this theorem. Let P be a d-dimensional grid. First, we use Theorem 1 to partition
2(m (for sufficiently large m) into chains C1, ..., C, such that all these chains are large
(but still constant sized) and at most one of them, C might have size not divisible by
|P|. This chain partition induces a partition of 2l ~ (2[m)? into the family of grids
Dy, iy = Ciy X ... x C;,, where (i1, ...,14) € [r]%. We conclude by showing that unless
14 = ... = iq = 1, the grid D;, ,, can be partitioned into copies of P, so the subset of
elements which are uncovered by disjoint copies of P is D 1, a set of constant size.
Now let us first show that as long as one side of a d-dimensional grid G is divisible by

2|P|, and all the sides of G are large, we can partition G into copies of P.

Lemma 12. Let P be a d-dimensional grid and let cq, ..., cq_1 be positive integers satisfying
c; = 12|P|? fori € [d — 1]. Then the d-dimensional grid [2|P|] X [c1] X ... X [cq_1] can be
partitioned into copies of P.

Proof. Let us first prove our theorem for d = 2, the general statement follows by induction
on d.

Claim 13. Let a,b,c be positive integers such that ¢ > a?b + 2a and a is even. Then
[ab] X [c] can be partitioned into copies of [a] x [b].

Proof. Write ¢ = ad + r, where d, r are positive integers and 0 < r < a. If r = 0, we can
trivially partition [ab] x [c] into copies of [a] x [b]. So let us assume that » > 1, and let

1 ifr=1
€ =
2 ifr>2.
By the condition ¢ > a?b + 2a, we have d > br + 2. Let R = [a] x [b] and denote by <
the partial ordering on [ab] x [c].
Consider the following two collections of copies of R in [ab] x [c]. For (4, ) € [a/2] x [d],

let
A ={bGi—1)+z,r+a(j—1)+y: (x,y) €[b] x[a]}

and
Bij={(ab/2+b(i —1)+z,a(j —1)+y: (z,y) € [b] x [a]},
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see Figure 1. Clearly, the sets A; ; and B, ; are copies of R and pairwise disjoint. Also, their
union covers all elements of [ab] x [¢], except for the elements of the sets S = [ab/2] x [r]
and T = [ab/2 + 1,ab] X [ad + 1, c|.

Now we shall modify some of the sets A; ; by switching their maximal elements with
an element of 7', and we shall switch the minimal elements of some of the sets B, ; with
an element of S. We shall execute these switches in a way that the freed up elements of
[ab] X [c] can be easily partitioned into copies of R.

For (i,7) € [a/2] x [br], let z; ; = (bi,r + aj), which is the maximal element of A, ;,
and let y; ; = (ab/24+b(1 —1)+1,a(j+€—1)+1), which is the minimal element of B; ;...
We remark that we used the inequality j +2 < br + 2 < d to guarantee that A;; and
B; j+c exist. Let ¢ be any bijection between [a/2] X [br] and T, and let ¢ be a bijection
between [a/2] x [br] and S.

For (i,7) € [a/2] x [br], let

Ay = (Aij \{zi}) U{o(,5)},
Bjjie = (Bijre \ {wis}) U {eli, )}
Also, for (4, j) € [a/2] x[br+1,d], let A} ; = A;;, and for (i, ) € [a/2] x ([]U[br+e+1,d]),
let B;; = B; ;. For (i,j) € [a/2] x [br], the set A;; is contained in [ab/2] x [abr +1]. As
abr +1r < ad + 1, we have that every element of 7" is <-larger than every element of A, ;.
Hence, Aj; is also a copy of R, remembering that w;; is the maximal element of A ;.
Similarly, B; ;.. is also a copy of R, as Bj;, . is equal to B;; with its minimal element
replaced with a =<-smaller element. For (i,j) € [a/2] x [d], the sets A, and B;; are
disjoint copies of R and their union covers all elements of [ab] x [c], except for the set

X =Awiy:(6,9) € la/2 x [br]} Uty : (i,5) € [a/2] x [br]}.

But X can be easily partitioned into copies of R. For k € [r], let

Cr = {@ipe-1)+5 + (4,9) € [a/2] X [b]} U{yiptr—1)+5 © (1,7) € [a/2] x [b]}.
Clearly, the sets C} for k = 1, ..,r partition X, so the only thing left is to show that C}
is a copy of R.

We show that the function 7 : Cp — R defined by 7(2;p-1)1+;) = (4,7) and
T(Yipi-1)+j) = (i +a/2,b) is an isomorphism. As 7 defines an isomorphism between
{@ipk-1)4; : (4,7) € [a/2] x [b]} and [a/2] x [b], and it defines an isomorphism be-
tween {Y;pe-1)+5 © (4,7) € [a/2] x [b]} and [a/2 + 1] x [b], it is enough to show that
Tip(k—1)+j = Yirpk—1)+; if and only if j < j'. But we have

Tip(h—1)+5 = (b3, 7+ a(b(k — 1) + 7))

and

Yir b1y = (ab/2 +b(i" = 1) + 1L a(b(k — 1) + 5 +e—1) + 1),
SO Tip(k—1)+5 = Yit p(k—1)4; holds if and only if r +aj < a(j’ +€— 1) + 1. By the choice of
€, this inequality is equivalent to j < j’, finishing our proof. O
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Figure 1: Partitioning [ab] x [¢| into copies of R

First, we show that if P = [a;]x...x[ag], a1 is even, a = |P| = ay...aq, ¢1, ..., cqa_1 > 32,
then the grid G = [a] X [¢1] X ... X [cq_1] can be partitioned into copies of P.

Let us proceed by induction on d. If d = 1, the statement is trivial. Let us assume
that d > 2 and the statement holds for all grids of dimension d — 1. Let a} = ajay and
a; = a;+1 for i € [2,d — 1]. Define the (d — 1)-dimensional grid P’ = [a}] x ... x [a],_,].
We have that @} is even, a = d]...a, ; and ¢y, ...,c4_o > 3a* Hence, by our induction
hypothesis, the grid G’ = [a] X [¢1] X ... X [c4—2] can be partitioned into copies of P’. But
this gives a partition of G = G’ X [c4_1] into copies of P’ X [cy_1]. Hence, it is enough to
show that P’ X [c4_1] can be partitioned into copies of P.

As ay is even and c¢g_; > 3a? > a3ay+2a;, an immediate application of Claim 13 shows
that the rectangle R = [ajas] X [c4—1] can be partitioned into copies of R’ = [a;] X [az]. But
then P'x[cq—1] = RX[as]x...x[aq4] can be partitioned into copies of P = R'x [as] X .... X [a4]
as well.

To finish our proof, let us assume that P = [a;] X ... X [a4], where a; is not necessarily
even, and cy, ...,cq_1 = 12|PJ?. Let P’ = [2a,] X ... X [ag]. We have |P'| = 2|P|, so by the
previous argument, we have that [|P’|] X [¢1] X ... X [cq—1] can be partitioned into copies
of P’. But P’ can be trivially further partitioned into two copies of P. n

We shall use the following immediate corollary of the previous theorem.

Corollary 14. Let P be a d-dimensional grid and let cy, ...,cq be positive integers satis-
fying c¢; = 12| P|? for i € [d], and suppose that at least one of cy, ..., cq is divisible by 2|P].
Then the d-dimensional grid [c;] X ... X [cq] can be partitioned into copies of P.

Proof. Without loss of generality, suppose that ¢y is divisible by 2|P|. Then we can
trivially partition [c1] X ... X [¢q] into copies of [2|P|] X [¢1] X ... X [cq—1]. But [2|P|] x [¢1] X
.. X [c4—1] can be partitioned into copies of P by Lemma 12. O

Now we are ready to prove that we can almost partition 2" into copies of a grid.

Proof of Theorem 6. Let h = 12| P|*>. By Theorem 1, there exists a constant ¢ such that
if m > ch?, then 2™ can be partitioned into chains C1, ..., C, such that h < |Cy] < 2h
and |Cy| = ... = |C,| = h. Suppose that n > cdh?, then we can find positive integers
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my, ..., mg such that n = my +... +mgy and m; > ch? for i € [d]. Then 2™ has a partition
into chains Cj 1, ..., C;,, such that h < |C;;1| < 2h and |Cjo| = ... = |Ci | = h.

The sets Oy j, X ... x Cq, for (ji, ..., ja) € [r1] X ... x [rg] partition 2™l x ... x 2lmdl,
Hence, as 20" =2 2lmil »  x 2lmal the Boolean lattice 2/ also has a partition into sets
B, for (ji,...,Ja) € [r1] X ... X [rq], where Bj;, _;, is isomorphic to C4 j, X ... X Cy,.
But then Bj, _j, is a d-dimensional grid isomorphic to [|Cy ] X ... X [|Caj,|], where
|Cij,| = 12|P|? for (i,1) € [d] x [d]. If (j1,...,Ja) # (1,...,1), then we also have that at
least one of |C},|, ..., |C},| is divisible by 2|P|. Thus, applying Corollary 14, B;, _;, can
be partitioned into copies of P unless (ji,...,Ja) # (1,...,1). Setting S = B;__1, we get
that 2" \ S can be partitioned into copies of P. As

|S’ — ‘0171‘...|Cd’1’ < thd - (24|P|2)d,

our proof is finished. O

5 Conclusion

In this section, we finish the proof of our main theorem and conclude with some discussion.
Let us remind the reader of the statement of our main theorem. We shall prove that if
the poset P has a unique maximal and minimal element, then all but a constant number
of elements of 2" can be covered by disjoint copies of P.

Proof of Theorem A. By Theorem 5, there exists a positive integer d such that [2|P|]¢ can
be partitioned into copies of P. Also, by Theorem 6, there exists ny = Q(d(2|P|)*?) such
that for n > ng, all but at most 244(2|P|)?* elements of 2" can be covered by disjoint
copies of [2| P|]%.

Setting ¢(P) = max{2",24%(2|P|)>*}, we get that all but at most ¢(P) elements of
2"l can be covered by disjoint copies of P for all positive integer n. O]

Say that a poset () is connected if its comparability graph is connected. The following
generalization of Theorem A can be easily proved following the same line of ideas. Let us
only sketch its proof.

Theorem B. Let P,(Q) be posets such that P has a unique mazimal and minimal element,
and @ is connected. For every positive integer n, there exists a constant ¢ = ¢(P, Q) such
that all but at most ¢ elements of Q" can be covered by copies of P.

Also, if every prime divisor of |P| also divides |Q|, then Q™ can be partitioned into
copies of P for n sufficiently large.

Sketch proof. We are done if we prove the following generalization of Theorem 6.

Theorem 6T. Let P be a grid and let Q be a connected poset. Then there exists ¢ =
c(P,Q) such that the following holds. For every positive integer m, there exists S C Q"
such that Q" \ S can be partitioned into copies of P and |S| < c.

Also, if every prime divisor of |P| also divides |Q|, then Q™ can be partitioned into
copies of P for n sufficiently large.
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The proof of this theorem easily follows from the combination of Corollary 14 and
from the following generalization of Theorem 1, which appeared as Theorem 5.1 in [6].

Theorem 17. ([6]) Let Q be a connected poset and let ¢ be a positive integer. If n is
sufficiently large, then Q™ can be partitioned into chains C, ..., C, such that ¢ < |Ch| < 2¢
and |Cs| = ... = |C,] = c.

Again, this theorem is stated in [6] without the additional condition that ¢ < |C4| < 2c,
but the proof appearing in [6] yields this slightly stronger result. [

Conjecture 4 is still open in the case P does not have a unique maximal or minimal
element. However, we believe that a similar approach as the one presented in this paper
may lead to its proof in its full generality. Let us propose such an approach.

Let Soi. denote the poset on 2k elements with partial ordering <, whose elements can
be partitioned into two k element sets Ag, A; such that Ag and A; are antichains, and
every element of Ag is <-smaller than every element of Aj.

1. Show that for fixed k, if n is sufficiently large, then 2" can be partitioned into
copies of Sy and a chain of size at least k.

2. Show that if P is a poset, then there exist positive integers m and t such that the
family of copies of P in Sy, has a ¢-partition and a (1 mod ¢)-partition. This would
imply that S§| p| can be partitioned into copies of P for n sufficiently large.

3. Show that for positive integers k£ and [, if the positive integers a and b are sufficiently
large, then Sy X [a] X [b] can be partitioned into copies of Sor X Sy. This would
imply a statement similar to Lemma 12, saying that the cartesian product Syay, 1, X
[a1] X .. X [agq4—2] can be partitioned into copies of Sax, X ... X Say,, if ay, ..., azq—o are
sufficiently large.

These three steps, if proven, imply Conjecture 4 in a similar fashion as the combination
of Theorem 1, 5, 6 imply Theorem A. The advantage of this approach is that after proving
step 2, which seems to be the most straightforward of the three steps, we can forget about
the poset P and we can work with the family of posets {So }r—1.2. . instead.
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