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Abstract

For a fixed r, let f.(n) denote the minimum number of complete r-partite r-
graphs needed to partition the complete r-graph on n vertices. The Graham-Pollak
theorem asserts that fo(n) = m — 1. An easy construction shows that f.(n) <
1+ 0(1))(LTT/LZJ)7 and we write ¢, for the least number such that f,.(n) < ¢ (1 +
0(1))(\_7"72])'

It was known that ¢, < 1 for each even r > 4, but this was not known for any
odd value of r. In this short note, we prove that cogs < 1. Our method also shows
that ¢, — 0, answering another open problem.
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1 Introduction

The edge set of K,,, the complete graph on n vertices, can be partitioned into n—1 complete
bipartite subgraphs: this may be done in many ways, for example by taking n — 1 stars
centred at different vertices. Graham and Pollak [4, 5] proved that the number n — 1
cannot be decreased. Several other proofs of this result have been found, by Tverberg [8],
Peck [7], and Vishwanathan [9, 10], among others.

Generalising this to hypergraphs, for n > r > 1, let f.(n) be the minimum number
of complete r-partite r-graphs needed to partition the edge set of Ky(f), the complete r-
uniform hypergraph on n vertices (i.e., the collection of all r-sets from an n-set). Thus
the Graham-Pollak theorem asserts that fo(n) = n — 1. For r > 3, an easy upper
bound of ("_W 21) may be obtained by generalising the star example above. Indeed, for r

lr/2]
even, having ordered the vertices, consider the collection of r-sets whose 2nd, 4th, ..., rth
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vertices are fixed. This forms a complete r-partite r-graph, and the collection of all (";;2/ 2)

such is a partition of K. For r odd, we instead fix the 2nd, 4th, ..., (r — 1)th vertices,
yielding a partition into ("(T(iir)l/); 2) parts.
Alon [1] showed that f3(n) = n — 2. More generally, for each fixed r > 1, he showed

that
2

n n
%uwm(w) <pm<a=om( )
where the upper bound follows from the construction above. Writing ¢, for the least ¢
such that f.(n) < c¢(1+ 0(1))(“7%), the above results assert that c; = 1, ¢3 = 1, and
ﬁ < ¢, <1 for all ». How do the ¢, behave?

LT%ioabé, Kiindgen and Verstraéte [2] gave an improvement (in a lower-order term) to

Alon’s lower bound, and Cioaba and Tait [3] showed that the construction above is not
sharp in general, but Alon’s asymptotic bounds (i.e., the above bounds on ¢,) remained
unchanged. Recently, Leader, Mili¢evi¢ and Tan [6] showed that ¢, < % for each even
r > 4. However, they could not improve the bound of ¢, < 1 for any odd r — the point
being that the construction above is better for r odd than for r even (the exponent of n
is (r — 1)/2 for r odd versus r/2 for r even), and so is harder to improve.

In this note, we give a simple argument to show that co95 < 1. Our method also shows
that ¢, — 0, answering another question from [6].

It would be interesting to know what happens for smaller odd values of r: for example,
is ¢5 < 17 Determining the precise value of ¢4 (i.e., the asymptotic behaviour of f4(n))
would also be of great interest, as would determining the decay rate of the ¢,. See [6] for
several related questions and conjectures.

2 Main Result

The motivation for our proof is as follows. The key to the approach used in [6] in proving
¢ < 1 for each even r > 4 was to investigate the minimum number of products of complete
bipartite graphs, that is, sets of the form F(K,;) X E(K.q4), needed to partition the set
E(K,) x E(K,). Writing g(n) for this minimum value, it is trivial that g(n) < (n — 1),
by taking the products of the complete bipartite graphs appearing in a decomposition of
K, into n — 1 complete bipartite graphs. It was shown in [6] that

g(n) < (% + 0(1)) n?. (1)

It turned out that this upper bound on g(n) was enough (via an iterative construction)
to bound ¢, below 1 for each even r > 4.

Now, as remarked above, for » odd the construction in the Introduction is much better
than for r even. In fact, while there are many iterative ways to redo the construction
when r is even, passing from n/2 to n, these fail when r is odd: it turns out that an
extra factor is introduced at each stage. However, rather unexpectedly, we will see that
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(at least if r is large) if we partition into many pieces, instead of just two pieces, then the
gain we obtain from the 14/15 improvement in g(n) outweighs the loss arising from this
extra factor — even though this extra factor grows as the number of pieces grows.

A minimal decomposition of a complete r-partite r-graph K,Ef) is a partition of the
edge set into f.(n) complete r-partite r-graphs. A block is a product of the edge sets of
two complete bipartite graphs. Similarly, a minimal decomposition of E(K,) x E(K,) is
a partition of F(K,) x E(K,) into g(n) blocks. Finally, for a set V, we may write E(V)
to denote the edge set of the complete graph on V', that is, the set of all 2-subsets of V.

Theorem 1. Let r = 2d + 1 be fixed. Then for each k there exists €, with e, — 0 as
k — 00, such that for all n we have

£.(kn) < ((%) A <%) L ek) (1+0(1)) (’“;)

(Here the o(1) term is as n — oo, with k and d fized.)

Proof. In order to decompose the edge set of K ,i;), we start by splitting the kn vertices
into k equal parts, say V (K,g:?) =VuUVaU--- UV, where |V;| = n for each i. We
consider the r-edges based on their intersection sizes with the k vertex classes. For each
partition of r into positive integers ry +ro 4 - -+ +r; with r; < ry < - -+ < 1y and for each
collection of [ vertex classes V;,,Vi,,...,V;, the set of r-edges e with |e N V;,| = r; for
all j can be decomposed into f,, (n)f,,(n)--- f;,(n) complete r-partite r-graphs: take a

complete r;-partite rj-graph from a minimal decomposition of K,(fj ) for each j, and form
a complete r-partite r-graph by taking the product of them.

Note that if at least three values of the r; are odd, then f,, (n)f.,(n)---f,(n) =
O(n41), as fi(n) < (L572J) for any s. So the set of r-edges e with |e N V| is odd for
at least three distinct V; can be decomposed into Cn?~! complete r-partite r-graphs, for
some constant C' depending on d and k.

Let C" be the number of partitions of r into at most d—1 positive integers where exactly
one of them is odd. Then we observe that the set of r-edges e such that e intersects with
at most d — 1 vertex classes and |e N V;| is odd for exactly one V; can be decomposed into
at most C'k?'n? complete r-partite r-graphs.

We are now only left with two partitions of r: r = 14+2+4+24---+2and r = 242+ - -+
2 4 3. The first case corresponds to the set of r-edges with ry = 1,1 = -+ = rg;1 = 2.
For each of the (S) collections of d vertex classes V;,,V,,...,Vi,, we claim that the set of
r-edges {e: lenV;| =2,j =1,2,...,d} can be decomposed into g(n)*? or ng(n)=1/2
complete r-partite r-graphs, depending on whether d is even or odd. This is done by
pairing up the Vs (or all but one of the Vs if d is odd), and forming complete r-
partite r-graphs using products of blocks in a minimal decomposition of E(K,,) x E(K,).
[For example, for d = 4, we would take a decomposition of E(V;,) x E(V;,) into blocks
E, x F,,1 < z < g(n), and similarly a decomposition of FE(V;,) x E(V;,) into blocks
G, x Hy;,1 < 2 < g(n), and now the set of all 9-edges e with |e N Vj,| = 2 for all
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1 < j < 4 may be decomposed into g(n)? complete 9-partite 9-graphs by taking the
E, xF, xGyx H,x (V, UV, UV, uV,)for 1 <z,y<gn)]

Finally, the second case corresponds to the set of r-edges with r{ =ry =--- =141 =
2,rq = 3. These can be decomposed in a similar fashion. Indeed, for each collection of d
vertex classes Vi, Vi,,..., Vi, the set of r-edges {e : [eNVj,| =3 and [eNV,| = 2,j =
1,2,...,d — 1} can be decomposed into n2g(n)4=2/2 or ng(n)@=1/2 complete r-partite
r-graphs, depending on whether d is even or odd. There are d (2) such sets of r-edges.

Combining the above and the bound on g(n) given in inequality (1), we have

()am)? + d(ng(n
rldn) < {<’;>

ng(n)= +d(%)ng

d —
K\ /14 L2 B\ 714\ L%
< 1% d 1% d 11.d—1, d d
\(d) (15 n+d<d (15) n® + C'k“"n® + o(n®)
d -1
14\ L2 14\ L7 a7k
< 1% 1% d d
< (1) ra ()5 (oot
] 14\ L= kn
+d(g) —|—€k> (1+0(1))(d). O
Corollary 2. Let r > 295 be a fixed odd number. Then there exists ¢ < 1 such that

o) < o (|, ).

Proof. As above, write r = 2d+ 1. It is straightforward to check that for d > 147 we have
(14)L ) +d (14)L =) < 1. Choosing k such that

o (%)L§J+d(%>L‘TJ he -t

we have f,.(kn) < ¢(140(1)) (k;) for all n. However since the function f,.(n) is monotone
in n, and k is constant as n varies, it follows that f,(n) < ¢(1+ o(1))(5) for all n. O

B + C'k4nd + Cpdt (if d even)
n)z + Ok 1pd 4+ Ond-1 (if d odd)

+
Q

H

)
(

From Theorem 1, we have

s < G—:) 5] a <%> |42

for every d. Also, it is easy to see that coy < coq11. Indeed, by excluding a vertex in the
complete (2d + 1)-graph on n + 1 vertices, the complete (2d)-partite (2d)-graphs induced

from the complete (2d + 1)-partite (2d + 1)-graphs in a minimal decomposition of Kn%ffr 2

form a decomposition of K ), implying that foq(n) < fagr1(n +1). Hence we have the
following.
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Corollary 3. The numbers c, satisfy

ro 14\
rg_ e 1).
c 2<15) +o(1)

(Here the o(1) term is as r — 00.)

Corollary 3 implies that ¢, — 0 as r — oo, proving Conjecture 16 in [6].
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