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Abstract

A {P2, P5}-factor of a graph is a spanning subgraph of the graph each of whose
components is isomorphic to either P2 or P5, where Pn denote the path of order n.
In this paper, we show that if a graph G satisfies c1(G−X)+ 2

3c3(G−X) 6 4
3 |X|+ 1

3
for all X ⊆ V (G), then G has a {P2, P5}-factor, where ci(G − X) is the number
of components C of G − X with |V (C)| = i. Moreover, it is shown that above
condition is sharp.

Keywords: path-factor; component-factor; matching.

1 Introduction

In this paper, all graphs are finite and simple. Let G be a graph. Let V (G) and E(G)
denote the vertex set and the edge set of G, respectively. The order of G is the cardinality
|V (G)| of V (G). For u ∈ V (G), the neighborhood of u, denoted by NG(u), is the set of
vertices adjacent to u, and the degree of u, denoted by dG(u), is the number of vertices
adjacent to u; thus NG(u) = {v ∈ V (G) | uv ∈ E(G)} and dG(u) = |NG(u)|. For
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U ⊆ V (G), let NG(U) = (
⋃

u∈U NG(u))−U . For disjoint sets X, Y ⊆ V (G), let EG(X, Y )
denote the set of edges of G joining a vertex in X and a vertex in Y . For X ⊆ V (G),
let G[X ] denote the subgraph of G induced by X . If G is isomorphic to a graph H , we
write G ≃ H . For two vertex-disjoint graphs H1 and H2, the join of H1 and H2, denoted
by H1 + H2, is the graph obtained from H1 and H2 by joining each vertex of H1 to all
vertices of H2. Let Pn denote the path of order n. For terms and symbols not defined
here, we refer the reader to [2].

A subgraph of a graph G is spanning if the subgraph contains all vertices of G. For a
set H of connected graphs, a spanning subgraph F of a graph is called an H-factor if each
component of F is isomorphic to a graph in H. A path-factor of a graph is a spanning
subgraph whose components are paths of order at least 2. Since every path of order at
least 4 can be partitioned into paths of orders 2 and 3, a graph has a path-factor if and
only if it has a {P2, P3}-factor. Akiyama, Avis and Era [1] gave a necessary and sufficient
condition for the existence of a path-factor (here i(G) denotes the number of isolated
vertices of a graph G).

Theorem A (Akiyama, Avis and Era [1]). A graph G has a {P2, P3}-factor if and only
if i(G−X) 6 2|X| for all X ⊆ V (G).

Now we consider a path-factor with additional conditions. For example, one may
require a path-factor to consist of components of large order. Concerning such a problem,
Kaneko [5] gave a necessary and sufficient condition for the existence of a path-factor
whose components have order at least 3. On the other hand, for k > 4, it is not known
that whether the existence problem of a path-factor whose components have order at
least k is polynomially solvable or not, though some results about such a factor have been
obtained (see, for example, Kano, Lee and Suzuki [6] and Kawarabayashi, Matsuda, Oda
and Ota [7]).

In this paper, we study a different type of path-factor problem. Specifically, we focus
on the existence of a {P2, P2k+1}-factor (k > 2).

The motivation to study such factors is related the notion of a hypomatchable graph.
A graph H is hypomatchable if H−x has a perfect matching for every x ∈ V (H). A graph
is a propeller if it is obtained from a hypomatchable graph H by adding new vertices a, b
together with edge ab, and joining a to some vertices of H . Loebal and Poljak [8] proved
the following theorem.

Theorem B (Loebal and Poljak [8]). Let H be a connected graph. If either H has a
perfect matching, or H is hypomatchable, or H is a propeller, then the existence problem
of a {P2, H}-factor is polynomially solvable. The problem is NP-complete for all other
graphs H.

In particular, for k > 2, the existence problem of a {P2, P2k+1}-factor is NP-complete.
Because of this fact, existence problems concerning {P2, P2k+1}-factors seem to have un-
justly been ignored. However, in general, the fact that a problem isNP-complete in terms
of algorithm may mean that one cannot obtain a necessary and sufficient condition, but
it might be possible to obtain sufficient conditions. From this viewpoint, in this paper,
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we prove a theorem on the existence of a {P2, P5}-factor which, we hope, will serve as an
initial attempt to develop the theory of {P2, P2k+1}-factors.

In order to state our theorem, we need some more definitions. For a graph H , let
C(H) be the set of components of H , and for i > 1, let Ci(H) = {C ∈ C(H) | |V (C)| = i}
and ci(H) = |Ci(H)|. Note that c1(H) is the number of isolated vertices of H (i.e.,
c1(H) = i(H)). If a graph G has a {P2, P5}-factor, then c1(G−X) + 1

2
c3(G−X) 6 3

2
|X|

for all X ⊆ V (G) (see Section 2). Thus if a condition concerning c1(G−X) and c3(G−X)
for X ⊆ V (G) assures us the existence of a {P2, P5}-factor, then it will make a useful
sufficient condition.

The main purpose of this paper is to prove the following theorem.

Theorem 1.1. Let G be a graph. If c1(G−X)+ 2
3
c3(G−X) 6 4

3
|X|+ 1

3
for all X ⊆ V (G),

then G has a {P2, P5}-factor.

We prove Theorem 1.1 in Sections 3 and 4. In Subsection 5.1, we show that the bound
4
3
|X|+ 1

3
in Theorem 1.1 is best possible.

In our proof of Theorem 1.1, we make use of the following fact.

Fact 1.1. A graph G has a {P2, P5}-factor if and only if G has a path-factor F with
C3(F ) = ∅.

We conclude this section with a conjecture concerning {P2, P2k+1}-factors with k >

3. If k > 3 and k ≡ 0 (mod 3), then there exist infinitely many graphs G having no
{P2, P2k+1}-factor such that

∑

06i6k−1 c2i+1(G − X) 6 4k+6
8k+3

|X| + 2k+3
8k+3

for all X ⊆ V (G)
(see Subsection 5.2). Thus we pose the following conjecture.1

Conjecture 1. Let k > 3, and let G be a graph. If
∑

06i6k−1 c2i+1(G−X) 6 4k+6
8k+3

|X| for
all X ⊆ V (G), then G has a {P2, P2k+1}-factor.

2 A necessary condition for a {P2, P5}-factor

In this section, we give a necessary condition for the existence of a {P2, P5}-factor in terms
of invariants c1 and c3. We show the following proposition.

Proposition 2.1. If a graph G has a {P2, P5}-factor, then c1(G−X)+ 1
2
c3(G−X) 6 3

2
|X|

for all X ⊆ V (G).

Proof. Let F be a {P2, P5}-factor of G, and let X ⊆ V (G). It can be verified that

c1(P −X) +
1

2
c3(P −X) 6

3

2
|V (P ) ∩X| for every P ∈ C(F ). (2.1)

Since every component C of G−X with |V (C)| = 1 belongs to C1(F −X), we have

|C1(G−X)| = |C1(F −X)| − |C1(F −X)− C1(G−X)|. (2.2)

1Recently the conjecture for the case where k ∈ {3, 4} was affirmatively settled in [3]. On the other
hand, counterexamples to the conjecture for the case where k > 36 were constructed in [4] (see Section 6).
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Furthermore,

|C3(G−X)| 6 |C3(F −X)|+ |C3(G−X)− C3(F −X)|. (2.3)

Let C be a component of G−X with |V (C)| = 3 which does not belong to C3(F −X).
Then C intersects with at least two components of F −X . Since |V (C)| = 3, C contains
a component of F −X of order 1. Since C is arbitrary, this implies that

|C3(G−X)− C3(F −X)| 6 |C1(F −X)− C1(G−X)|. (2.4)

By (2.1)–(2.4),

c1(G−X) +
1

2
c3(G−X)

6 (|C1(F −X)| − |C1(F −X)− C1(G−X)|)

+
1

2
(|C3(F −X)|+ |C3(G−X)− C3(F −X)|)

6 (|C1(F −X)| − |C1(F −X)− C1(G−X)|)

+
1

2
(|C3(F −X)|+ |C1(F −X)− C1(G−X)|)

6 |C1(F −X)|+
1

2
|C3(F −X)|

=
∑

P∈C(F )

(

c1(P −X) +
1

2
c3(P −X)

)

6
3

2

∑

P∈C(F )

|V (P ) ∩X|

=
3

2
|X|.

Thus we get the desired conclusion.

3 A path-factor in bipartite graph

Let G be a bipartite graph with bipartition (S, T ). A subgraph F of G is S-central if
S ⊆ V (F ) and |V (A) ∩ T | > |V (A) ∩ S| for every A ∈ C(F ).

In this section, we focus on the existence of a special path-factor in bipartite graphs,
and show the following theorem, which will be used in our proof of Theorem 1.1.

Theorem 3.1. Let S, T1 and T2 be disjoint sets with 1 6 |S| 6 |T1|+|T2| and |T1|+
2
3
|T2| 6

4
3
|S|+ 1

3
, and set T = T1∪T2. Let G be a bipartite graph with bipartition (S, T ) satisfying

the property that for every X ⊆ S, we have either |NG(X) ∩ T1|+
2
3
|NG(X) ∩ T2| >

4
3
|X|

or NG(X) = T . Then G has an S-central path-factor F such that V (A)∩T2 6= ∅ for every
A ∈ C3(F ).
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Our proof of Theorem 3.1 is rather technical, and thus readers not interested in tech-
nical details are advised to skip the rest of Section 3 and proceed to Section 4. Before
proving the theorem, we prove a lemma.

Lemma 3.2. Let S, T1, T2, T and G be as in Theorem 3.1. Then G has an S-central
path-factor.

Proof. LetX ⊆ S. If |NG(X)∩T1|+
2
3
|NG(X)∩T2| >

4
3
|X|, then |NG(X)| > |NG(X)∩T1|+

2
3
|NG(X)∩T2| >

4
3
|X| > |X|; if NG(X) = T1∪T2, then |NG(X)| = |T1|+ |T2| > |S| > |X|.

In either case, we have |NG(X)| > |X|. Since X is arbitrary, G has a matching covering
S by Hall’s marriage theorem. In particular, G has an S-central subgraph F such that
every component of F is a path of order at least 2. Choose F so that |V (F )| is as large
as possible.

Suppose that V (G) − V (F ) 6= ∅. Note that V (G) − V (F ) ⊆ T . Now we define the
set A of components of F as follows: Let A1 be the set of components A of F with
EG(V (A) ∩ S, V (G)− V (F )) 6= ∅. For each i > 2, let Ai be the set of components A of
F with A 6∈

⋃

16j6i−1Aj and EG(V (A) ∩ S,
⋃

A′∈Ai−1
(V (A′) ∩ T )) 6= ∅. Let A =

⋃

i>1Ai.

Claim 3.1. Every path belonging to A is isomorphic to P3.

Proof. Suppose that A contains a path which is not isomorphic to P3. Let i be the
minimum integer such that Ai contains a path Ai = v

(i)
1 · · · v

(i)
l with Ai 6≃ P3. By the

minimality of i, every path belonging to
⋃

16j6i−1Aj is isomorphic to P3. Hence by the

definition of Aj, there exists a vertex v
(0)
1 ∈ V (G) − V (F ) and there exist paths Aj =

v
(j)
1 v

(j)
2 v

(j)
3 ∈ Aj (1 6 j 6 i− 1) such that EG(V (A1) ∩ S, {v(0)1 }) 6= ∅ and EG(V (Aj+1) ∩

S, V (Aj) ∩ T ) 6= ∅ for every j (1 6 j 6 i − 1). For each j (1 6 j 6 i − 1), by

renumbering the veritices v
(j)
1 , v

(j)
2 , v

(j)
3 of Aj backward (i.e., by tracing the path v

(j)
1 v

(j)
2 v

(j)
3

backward and numbering the vertices accordingly) if necessary, we may assume that

EG(V (Aj+1) ∩ S, {v
(j)
1 }) 6= ∅. Let m be an index such that v

(i)
m v

(i−1)
1 ∈ E(G). Note that

l > 2 and l 6= 3. Thus by renumbering the vertices v
(i)
1 , . . . , v

(i)
l of Ai backward if necessary,

we may assume thatm 6= 2 if l is odd, andm is odd if l is even. Let Bj = v
(j−1)
1 v

(j)
2 v

(j)
3 (1 6

j 6 i − 1), Bi = v
(i−1)
1 v

(i)
m v

(i)
m+1 · · · v

(i)
l and Bi+1 = v

(i)
1 · · · v

(i)
m−1 (see Figure 1). Note that

Bi+1 = ∅ if and only if l is even and m = 1. Then |V (Bj) ∩ T | > |V (Bj) ∩ S| for every
j (1 6 j 6 i + 1). Therefore F ′ = (F − (

⋃

16j6i V (Aj))) ∪ (
⋃

16j6i+1Bj) is an S-central

subgraph of G such that V (F ′) = V (F ) ∪ {v
(0)
1 } and every component of F ′ is a path of

order at least 2, which contradicts the maximality of F .
We continue with the proof of the lemma. Let X0 = (

⋃

A∈A
V (A)) ∩ S and Y0 =

((
⋃

A∈A
V (A)) ∩ T ) ∪ (V (G) − V (F )). Since V (G) − V (F ) 6= ∅ and A ⊆ C3(F ) by

Claim 3.1, we have

|Y0 ∩ T1|+
2

3
|Y0 ∩ T2| >

2

3
|Y0| >

2

3
(2|X0|+ 1). (3.1)

By the definition of A, NG(S −X0) ∩ Y0 = ∅. In particular, NG(S −X0) 6= T , and hence
|NG(S −X0) ∩ T1| +

2
3
|NG(S −X0) ∩ T2| >

4
3
|S − X0|. This together with (3.1) implies
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Ai Ai−1 Ai−2 A1

Bi+1

Bi Bi−1 Bi−2 B1

Figure 1: Construction of Bj

that

|T1|+
2

3
|T2| > (|Y0 ∩ T1|+ |NG(S −X0) ∩ T1|) +

2

3
(|Y0 ∩ T2|+ |NG(S −X0) ∩ T2|)

>
2

3
(2|X0|+ 1) +

4

3
|S −X0|

=
4

3
|S|+

2

3
,

which contradicts the assumption that |T1| +
2
3
|T2| 6

4
3
|S| + 1

3
, completing the proof of

the lemma.
We here outline the proof of Theorem 3.1. We choose an S-central path-factor F0 so

that F0 will satisfy certain minimality conditions (see the paragraph following the proof
of Claim 3.3). We then introduce operations which turn F0 into a new path-factor (see
the paragraphs following Claim 3.5 and Claim 3.6), and show that the new path-factor
contradicts our choice of F0.

Proof of Theorem 3.1. We start with some definitions. Let F be an S-central path-
factor of G. For each integer i > 2, let C

(1)
i (F ) = {A ∈ Ci(F ) | V (A) ∩ T2 = ∅}

and C
(2)
i (F ) = Ci(F ) − C

(1)
i (F ). If there is no fear of confusion, we simply write Ci and

C
(h)
i (h ∈ {1, 2}) instead of Ci(F ) and C

(h)
i (F ), respectively.

Let DF be the digraph defined by V (DF ) = C(F ) and E(D) = {AB | EG(V (A) ∩
S, V (B) ∩ T ) 6= ∅}. For each edge AB ∈ E(DF ), we fix an edge ϕF (AB) in EG(V (A) ∩
S, V (B) ∩ T ), and let σF (AB) ∈ V (G) be the vertex of A incident with ϕF (AB) and
τF (AB) ∈ V (G) be the vertex of B incident with ϕF (AB) (see Figure 2).

For a path A = x1x2 · · ·x7 ∈ C7, the vertex x4 is called the center of A. A directed path
P = A1A2 · · ·Al (l > 2) of DF is admissible if A1 ∈ C(F )− (C3 ∪C

(1)
5 ) and Ai ∈ C

(2)
3 ∪C

(1)
5

for every i (2 6 i 6 l−1). An admissible path P = A1A2 · · ·Al of DF is weakly admissible
if either
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A B

σF (AB)

τF (AB)ϕF (AB)

Figure 2: Edge ϕF (AB) and vertices σF (AB) and τF (AB)

(W1) A1 ∈ C
(2)
5 and |V (A1) ∩ T2| = 1, or

(W2) A1 ∈ C
(1)
7 and σF (A1A2) is the center of A1.

An admissible path P of DF is strongly admissible if P is not weakly admissible.
A path system with respect to F is a sequence (P1, . . . ,Pm) (m > 0) of admissible

paths such that

(P1) for each i (1 6 i 6 m), when we write Pi = A1A2 · · ·Al, {Aj | 1 6 j 6 l − 1} ∩

(
⋃

16j6i−1 V (Pj)) = ∅ and Al ∈ C
(1)
3 ∪ (

⋃

16j6i−1 V (Pj)), and

(P2) for each i (1 6 i 6 m− 1), Pi is weakly admissible.

A path system (P1, . . . ,Pm) with respect to F is complete if m > 1 and Pm is strongly
admissible.

By straightforward calculations, we get the following claim (and we omit its proof).

Claim 3.2. Let F be an S-central path-factor of G. Then the following hold.

(i) For A ∈ C(1)
3 (F ), |V (A) ∩ T1|+

2
3
|V (A) ∩ T2| = 2 = 4

3
|V (A) ∩ S|+ 2

3
.

(ii) For A ∈ C
(2)
3 (F ), |V (A) ∩ T1|+

2
3
|V (A) ∩ T2| >

4
3
|V (A) ∩ S|.

(iii) For A ∈ C
(1)
5 (F ), |V (A) ∩ T1|+

2
3
|V (A) ∩ T2| >

4
3
|V (A) ∩ S|.

(iv) For A ∈ C
(2)
5 (F ) with |V (A) ∩ T2| = 1, |V (A) ∩ T1|+

2
3
|V (A) ∩ T2| =

4
3
|V (A) ∩ S|.

(v) For A ∈ C
(1)
7 (F ), |V (A) ∩ T1|+

2
3
|V (A) ∩ T2| =

4
3
|V (A) ∩ S|.

The following claim plays a key role in the proof of the theorem.

Claim 3.3. Let F be an S-central path-factor of G with C
(1)
3 (F ) 6= ∅, and let (P1, . . . ,Pm)

be a path system with respect to F (m > 0). Then the system can be extend to a complete
path system (P1, . . . ,Pm,Pm+1, . . . ,Pm′) with respect to F .
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Proof. We take a maximal path system (P1, . . . ,Pm,Pm+1, . . . ,Pm′) with respect to F .
We show that (P1, . . . ,Pm′) is a complete path system. Suppose that (P1, . . . ,Pm′) is not
a complete path system. Then Pi is weakly admissible for each i with 1 6 i 6 m′ (this
includes the case where m′ = 0).

Set A1 =
⋃

16i6m′ V (Pi) (note that A1 = ∅ if and only if m′ = 0). Let X =
(
⋃

A∈A1
V (A)) ∩ S and Yh = (

⋃

A∈A1
V (A)) ∩ Th (h ∈ {1, 2}). Then by the definition

of a weakly admissible path (and the definition of a path system), A1 ⊆ C3∪C5∪C
(1)
7 , and

if A ∈ A1 ∩ C
(2)
5 , then |V (A) ∩ T1| = 1. Furthermore, by condition (P1) in the definition

of a path system, A1 6= ∅ if and only if A1 ∩ C
(1)
3 6= ∅. Hence by Claim 3.2,

|Y1|+
2

3
|Y2| >

4

3
|X| (3.2)

and

|Y1|+
2

3
|Y2| >

4

3
|X|+

2

3
if A1 6= ∅. (3.3)

Let A2 = C
(1)
3 −A1, X

∗ = (
⋃

A∈A2
V (A))∩S and Y ∗

h = (
⋃

A∈A2
V (A))∩Th (h ∈ {1, 2}).

By Claim 3.2(i),

|Y ∗

1 |+
2

3
|Y ∗

2 | >
4

3
|X∗| (3.4)

and

|Y ∗

1 |+
2

3
|Y ∗

2 | =
4

3
|X∗|+

2

3
if A2 6= ∅, (3.5)

Let (B1, . . . , Bl) (l > 0) be a sequence such that for each i (1 6 i 6 l), Bi ∈ (C(2)
3 ∪

C(1)
5 )− (A1 ∪ {Bj | 1 6 j 6 i− 1}) and there exists an edge of DF from Bi to an element

in A1∪A2∪{Bj | 1 6 j 6 i− 1}. We choose (B1, . . . , Bl) so that l is as large as possible.
Let A3 = {Bi | 1 6 i 6 l}, X∗∗ = (

⋃

A∈A3
V (A)) ∩ S and Y ∗∗

h = (
⋃

A∈A3
V (A)) ∩ Th (h ∈

{1, 2}). By Claim 3.2(ii)(iii),

|Y ∗∗

1 |+
2

3
|Y ∗∗

2 | >
4

3
|X∗∗|. (3.6)

Let X0 = X ∪X∗ ∪X∗∗ and Y 0
h = Yh ∪Y ∗

h ∪ Y ∗∗
h (h ∈ {1, 2}). If m′ > 1, then A1 6= ∅;

if m′ = 0 (i.e., A1 = ∅), then A2 6= ∅ because C
(1)
3 6= ∅. Thus by (3.3) and (3.5), either

|Y1|+
2
3
|Y2| >

4
3
|X|+ 2

3
or |Y ∗

1 |+
2
3
|Y ∗

2 | =
4
3
|X∗|+ 2

3
. This together with (3.2), (3.4) and

(3.6) leads to

|Y 0
1 |+

2

3
|Y 0

2 | >
4

3
|X0|+

2

3
. (3.7)

Since |T1|+
2
3
|T2| 6

4
3
|S|+ 1

3
, this implies X0 6= S and hence C(F )− (A1 ∪A2 ∪A3) 6= ∅.
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Let Ã = C(F ) − (A1 ∪ A2 ∪ A3), X̃ = (
⋃

A∈Ã
V (A)) ∩ S and Ỹh = (

⋃

A∈Ã
V (A)) ∩

Th (h ∈ {1, 2}). Note that S is the disjoint union of X0 and X̃ and, for h ∈ {1, 2}, Th

is the disjoint union of Y 0
h and Ỹh. If |Ỹ1| +

2
3
|Ỹ2| >

4
3
|X̃|, then by (3.7), |T1| +

2
3
|T2| =

(|Y 0
1 |+ |Ỹ1|)+

2
3
(|Y 0

2 |+ |Ỹ2|) >
4
3
|X0|+ 2

3
+ 4

3
|X̃| = 4

3
|S|+ 2

3
, which is a contradiction. Thus

|Ỹ1| +
2
3
|Ỹ2| <

4
3
|X̃|. On the other hand, since A1 ∪ A2 6= ∅, we have Y 0

1 ∪ Y 0
2 6= ∅, and

hence Ỹ1 ∪ Ỹ2 6= T . Consequently NG(X̃) 6⊆ Ỹ1 ∪ Ỹ2 by the assumption of the theorem,
which implies that there exists a vertex x ∈ X̃ with NG(x) ∩ (Y 0

1 ∪ Y 0
2 ) 6= ∅. Let Ã ∈ Ã

be the path containing x. By the definition of A2 and Ã, Ã 6∈ C
(1)
3 . By the maximality

of (B1, . . . , Bl), Ã 6∈ C
(2)
3 ∪ C

(1)
5 . Thus Ã ∈ C(F ) − (C3 ∪ C

(1)
5 ). By the definition of

(B1, . . . , Bl) and x, there exists a directed path P ′ = Ã1 · · · Ãp of DF such that Ã1 = Ã,
Ãi ∈ A3 (2 6 i 6 p − 1) and Ãp ∈ A1 ∪ A2. Then P ′ is an admissible path of DF . Now
the sequence (P1, . . . ,Pm′ ,P ′) is a path system with respect to F , which contradicts the
maximality of (P1, . . . ,Pm′). This contradiction completes the proof of the claim.

We turn to the proof of Theorem 3.1. By way of contradiction, suppose that C
(1)
3 (F ) 6=

∅ for every S-central path-factor F of G. By Lemma 3.2, G has an S-central path-factor
F0. Note that an empty sequence is a path system with respect to F0. Hence by Claim 3.3,
there exists a complete path system (P1, . . . ,Pm) with respect to F0. Choose F0 and
(P1, . . . ,Pm) so that

(F1) |C(1)
3 (F0)| is as small as possible, and

(F2) subject to (F1), (|V (P1)|, . . . , |V (Pm)|) is lexicographically as small as possible.

For each i (1 6 i 6 m), write Pi = A
(i)
1 · · ·A

(i)
li
. Then

⋃

16i6mPi contains a directed

path B1B2 · · ·Bp of DF0
with B1 = A

(m)
1 and Bp ∈ C

(1)
3 (F0). For each i (1 6 i 6 p), write

Bi = vi,1vi,2 · · · vi,qi. For i (1 6 i 6 p − 1), let si be the integer with vi,si = σF (BiBi+1),
and for i (2 6 i 6 p), let ti be the integer with vi,ti = τF0

(Bi−1Bi). As in the proof of
Claim 3.1, by renumbering the vertices of some of the Bi backward if necessary, we may
assume that

(B1) s1 >
q1+1
2

if q1 is odd,

(B2) {v1,1, v1,3} ∩ T2 6= ∅ if B1 ∈ C
(2)
7 (F0) and s1 = 4,

(B3) s1 is odd if q1 is even,

(B4) ti < si for each i (2 6 i 6 p− 1), and

(B5) tp = qp (= 3).

Note that (B3) means that when q1 is even, the vertices of B1 are numbered so that
v1,q1 ∈ T . Thus vi,qi ∈ T for each i (1 6 i 6 p). We can divide the type of B1 into three
possibilities as follows:

Claim 3.4. One of the following holds:
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(1) |V (B1)| is even and s1 is odd;

(2) B1 ∈ C
(2)
5 (F0) ∪ C

(2)
7 (F0), s1 = 4 and {v1,1, v1,3} ∩ T2 6= ∅; or

(3) |V (B1)| > 7 and s1 > 6.

Proof. If |V (B1)| is even, then (1) holds by (B3). Thus we may assume |V (B1)| is odd.

Then by the definition of a strongly admissible path, B1 ∈ C
(2)
5 (F0) and |V (B1)∩ T2| > 2,

or B1 ∈ C
(1)
7 (F0) and s1 6= 4, or B1 ∈ C

(2)
7 (F0), or |V (B1)| > 9. If B1 ∈ C

(2)
5 (F0) and

|V (B1)∩ T2| > 2, then (2) holds by (B1). If B1 ∈ C
(1)
7 (F0)∪ C

(2)
7 (F0) and s1 6= 4, then (3)

holds by (B1). If B1 ∈ C
(2)
7 (F0) and s1 = 4, then (2) holds by (B2). If |V (B1)| > 9, then

(3) holds by (B1).
As for Bi with 2 6 i 6 p − 1, the following claim follows immediately from the

definition of a weakly admissible path.

Claim 3.5. Let 2 6 i 6 p− 1. Then one of the following holds:

(1) Bi ∈ C
(2)
3 (F0) and si = 2;

(2) Bi ∈ C5(F0) and si = 2 or 4; or

(3) Bi ∈ C
(1)
7 (F0) and si = 4.

Let i0 be the minimum integer i (> 2) satisfying one of the following two conditions:

(I1) i = p; or

(I2) 2 6 i 6 p− 1 and ti = 1.

Set B′
1 = v1,1v1,2 · · · v1,s1−1 and, for each i (2 6 i 6 i0), set

B′

i = vi−1,qi−1
vi−1,qi−1−1 · · · vi−1,si−1

vi,tivi,ti−1 · · · vi,1

(see Figure 3). Let 2 6 i 6 i0 − 1. By the definition of i0, ti > 3. On the other hand,
si 6 4 by Claim 3.5. Hence it follows from (B4) that ti = si − 1. Since i (2 6 i 6 i0 − 1)
is arbitrary, it follows that

B′
1, . . . , B

′
i0
are vertex-disjoint paths of G (3.8)

and

⋃

16i6i0

V (B′
i) =

⋃

16i6i0

V (Bi)− {vi0,j | ti0 + 1 6 j 6 qi0}. (3.9)

Furthermore,

|V (B′

i) ∩ T | > |V (B′

i) ∩ S| for each i (2 6 i 6 i0) (3.10)
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B1 B2 Bi0−1 Bi0

B′
2

B′
1

B′
3 B′

i0−1 B′
i0

Figure 3: Construction of B′
i

because vi−1,qi−1
∈ T . If B′

1 6= ∅, then v1,s1−1 ∈ T , and hence

|V (B′

1) ∩ T | > |V (B′

1) ∩ S| (3.11)

(if B′
1 = ∅, then (3.11) trivially holds). Also

|V (B′

i) ∩ V (Bi−1)| is even and |V (B′

i) ∩ V (Bi−1)| > 2 for each i (2 6 i 6 i0) (3.12)

because vi−1,si−1
∈ S and vi−1,qi−1

∈ T . It follows from (3.12) that

|V (B′

i)| > 5 for each i (2 6 i 6 i0 − 1) (3.13)

because |V (B′
i) ∩ V (Bi)| = ti > 3. Since |V (B′

1)| = s1 − 1, we see from Claim 3.4 that

|V (B′

1)| is even or |V (B′

1)| > 3, (3.14)

and

V (B′
1) ∩ T2 6= ∅ if |V (B′

1)| = 3. (3.15)

Combining (3.10) through (3.15), we get the following claim.

Claim 3.6. (i) For each i with 1 6 i 6 i0, we have |V (B′
i) ∩ T | > |V (B′

i) ∩ S|.

(ii) For each i with 1 6 i 6 i0 − 1,

(a) |V (B′
i)| is even or |V (B′

i)| > 3, and

(b) V (B′
i) ∩ T2 6= ∅ if B′

i ≃ P3.

Suppose that i0 = p. Then

|V (B′

p)| > 5 (3.16)
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B1 B2 Bi0−1 Bi0

B′
2

B′
1

B′
3 B′

i0−1 B′′
i0

Figure 4: Construction of B′′
i0

by (3.12) and (B5). Let F1 = (F0 − (
⋃

16i6p V (Bi))) ∪ (
⋃

16i6pB
′
i). Then by Claim 3.6,

(3.16), (3.8), (3.9) and (B5), F1 is an S-central path-factor of G, and B′
i 6∈ C

(1)
3 (F1) for

each i (1 6 i 6 p). Since B1 ∈ C
(1)
3 (F0), we have |C

(1)
3 (F1)| < |C

(1)
3 (F0)|, which contradicts

the minimality of |C
(1)
3 (F )|. Thus 2 6 i0 6 p − 1. Then by the definition of i0, ti0 = 1.

Hence B′′
i0

= Bi0 ∪ B′
i0

is a path of G with |V (B′′
i0
) ∩ T | > |V (B′′

i0
) ∩ S| (see Figure 4).

Set F2 = (F0 − (
⋃

16i6i0
V (Bi))) ∪ (

⋃

16i6i0−1B
′
i) ∪ B′′

i0
. Then by Claim 3.6, (3.8) and

(3.9), F2 is an S-central path-factor of G, and B′
i 6∈ C

(1)
3 (F1) for each i (1 6 i 6 i0 − 1).

Furthermore,

|V (B′′

i0
)| = |V (Bi0)|+ |V (B′

i0
) ∩ V (Bi0−1)|. (3.17)

Since |V (B′
i0
)∩V (Bi0−1)| > 2 by (3.12), this implies |V (B′′

i0
)| > 5, and hence we also have

B′′
i0
6∈ C

(1)
3 (F1). Thus |C

(1)
3 (F2)| = |C

(1)
3 (F0)|.

Set k0 = min{k | Bi0 ∈ V (Pk)}, and write Bi0 = A
(k0)
j0

. If Bp ∈ V (Pk0), then the fact
that Bi0 6= Bp implies that j0 6 lk0 − 1; if Bp 6∈ V (Pk0), then the minimality of k0 implies
that j0 6 lk0 − 1. In either case, we have j0 6 lk0 − 1.

Case 1: j0 = 1.
Since Bi0 = A

(k0)
1 and i0 > 2, B1 ∈

⋃

k0+16i6m V (Pi). In particular, k0 6

m − 1 and Pk0 is weakly admissible. Hence Bi0 ∈ C
(2)
5 (F0) ∪ C

(1)
7 (F0). This to-

gether with (3.17) and (3.12) implies that B′′
i0

∈ C
(2)
7 (F2) or |V (B′′

i0
)| > 9. Thus

the directed path P ′
k0

= B′′
i0
A

(k0)
2 · · ·A

(k0)
lk0

of DF2
is strongly admissible. Consequently

(P1, . . . ,Pk0−1,P
′
k0
) is a complete path system with respect to F2. Since k0 6 m− 1 and

|V (Pk0)| = |V (P ′
k0
)|, we see that (|V (P1)|, . . . , |V (Pk0−1)|, |V (P ′

k0
)|) is lexicographically

less than (|V (P1)|, . . . , |V (Pk0−1)|, |V (Pk0)|, . . . , |V (Pm)|), which contradicts the minimal-
ity of (|V (P1)|, . . . , |V (Pm)|).

Case 2: 2 6 j0 6 lk0 − 1.
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Since Bi0 = A
(k0)
j0

, Bi0 ∈ C
(2)
3 (F0) ∪ C

(1)
5 (F0). This together with (3.17) and (3.12)

implies that B′′
i0
∈ C

(2)
5 (F2) or |V (B′′

i0
)| > 7. Thus the directed path

P ′
k0

= B′′
i0
A

(k0)
j0+1A

(k0)
j0+2 · · ·A

(k0)
lk0

of DF2
is admissible. Consequently (P1, . . . ,Pk0−1,P

′
k0
) is a path system with respect to

F2. By Claim 3.3, the system can be extend to a complete path system

(P1, . . . ,Pk0−1,P
′

k0
,Q1, . . . ,Qα)

with respect to F2 (it is possible that α = 0). Since j0 > 2, |V (P ′
k0
)| = lk0 − j0 + 1 <

lk0 = |V (Pk0)|, and hence (|V (P1)|, . . . , |V (Pk0−1)|, |V (P ′
k0
)|, |V (Q1)|, . . . , |V (Qα)|) is lexi-

cographically less than (|V (P1)|, . . . , |V (Pk0−1)|, |V (Pk0)|, . . . , |V (Pm)|), which contradicts
the minimality of (|V (P1)|, . . . , |V (Pm)|).

This completes the proof of Theorem 3.1.

4 Proof of Theorem 1.1

Let G be as in Theorem 1.1. By assumption, we have c1(G) + 2
3
c3(G) 6

4
3
|∅| + 1

3
= 1

3
.

Hence c1(G) = c3(G) = 0.
We now proceed by induction on |V (G)| + |E(G)|. We may assume V (G) 6= ∅. Note

that if E(G) = ∅, then c1(G) = |V (G)| > 1, which is a contradiction. This means that
the theorem holds for graphs G with E(G) = ∅ in the sense that the assumption is not
satisfied. We henceforth assume that E(G) 6= ∅ and the theorem holds for graphs G′ with
|V (G′)|+ |E(G′)| < |V (G)|+ |E(G)|.

Let S = {X ⊆ V (G) | c1(G − X) + c3(G − X) > 1}. Since c1(G − NG(x)) > 1 for
x ∈ V (G), S 6= ∅. Set

β = min
X∈S

{

4

3
|X|+

1

3
− c1(G−X)−

2

3
c3(G−X)

}

.

Claim 4.1. If β > 2, then G has a {P2, P5}-factor.

Proof. Let e ∈ E(G), and suppose that C1(G − e) ∪ C3(G − e) 6= ∅. Take C ∈ C1(G −
e) ∪ C3(G − e). Since c1(G) = c3(G) = 0, e joins a vertex in V (C) and a vertex y in
V (G)− V (C). This implies C ∈ C1(G− y) ∪ C3(G− y), and hence 4

3
|{y}|+ 1

3
− (c1(G−

y) + 2
3
c3(G − y)) 6 4

3
+ 1

3
− 2

3
= 1, which contradicts the assumption that β > 2. Thus

c1(G − e) = c3(G − e) = 0 for all e ∈ E(G). From the fact that c1(G − e) = ∅ for all
e ∈ E(G), it follows that dG(x) > 2 for all x ∈ V (G). Assume for the moment that
dG(x) = 2 for all x ∈ V (G). Then each component of G is a cycle. Since c3(G) = 0,
this implies that G has a path-factor F with C3(F ) = ∅. Hence by Fact 1.1, G has a
{P2, P5}-factor. Thus we may assume that there exists x0 ∈ V (G) such that dG(x0) > 3.

Fix an edge e∗ = x0y0 ∈ E(G) incident with x0, and let G′ = G−e∗. By an assertion in
the first paragraph of the proof the claim, c1(G

′) = c3(G
′) = 0. Let X ⊆ V (G′). We show
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that 4
3
|X|+ 1

3
−c1(G

′−X)− 2
3
c3(G

′−X) > 0. We have 4
3
|∅|+ 1

3
−c1(G

′)−c3(G
′) = 1

3
> 0.

Thus we may assumeX 6= ∅. Note that c1(G
′−X)+c3(G

′−X) 6 c1(G−X)+c3(G−X)+2,
and hence

c1(G
′ −X) +

2

3
c3(G

′ −X) 6 c1(G−X) +
2

3
c3(G−X) + 2. (4.1)

Furthermore, if equality holds in (4.1), then x0, y0 6∈ X and {x0}, {y0} ∈ C1(G
′ − X). If

c1(G−X)+c3(G−X) > 1, then by the definition of β, 4
3
|X|+ 1

3
−c1(G−X)− 2

3
c3(G−X) >

β > 2 which, together with (4.1), leads to 4
3
|X|+ 1

3
−(c1(G

′−X)+ 2
3
c3(G

′−X)) > 4
3
|X|+ 1

3
−

(c1(G−X)+2
3
c3(G−X)+2) > β−2 > 0. Thus we may assume that c1(G−X)+c3(G−X) =

0. By (4.1), c1(G
′ − X) + c3(G

′ − X) 6 c1(G − X) + c3(G − X) + 2 = 2. By way of
contradiction, suppose that 4

3
|X|+ 1

3
−(c1(G

′−X)+ 2
3
c3(G

′−X)) < 0. Then 4
3
|X|+ 1

3
−2 <

0. Since X 6= ∅, this forces |X| = 1 and c1(G
′ −X) + 2

3
c3(G

′ − X) = 2. Hence equality
in (4.1), which implies {x0} ∈ C1(G

′ −X). Consequently dG(x0) 6 |X ∪ {y0}| = 2, which
contradicts the fact that dG(x0) > 3. Thus we have 4

3
|X|+ 1

3
−c1(G

′−X)− 2
3
c3(G

′−X) > 0
for all X ⊆ V (G′). By the induction assumption, G′ has a {P2, P5}-factor. Therefore G

also has a {P2, P5}-factor.
By Claim 4.1, we may assume that β 6

5
3
.

Let S ∈ S be a maximum set with 4
3
|S| − c1(G− S)− 2

3
c3(G− S) + 1

3
= β.

Claim 4.2. Let C be a component of G− S.

(i) If |V (C)| 6∈ {1, 3}, then C has a {P2, P5}-factor.

(ii) If |V (C)| = 3, then C is complete.

Proof. (i) Suppose that C has no {P2, P5}-factor. Then by the induction assumption,
there exists a set S ′ ⊆ V (C) with 4

3
|S ′|+ 1

3
− c1(C−S ′)− 2

3
c3(C−S ′) < 0. Set S0 =

S∪S ′. Since C1(G−S0) = C1(G−S)∪C1(C−S ′), C3(G−S0) = C3(G−S)∪C3(C−S ′)
and C1(C−S ′)∪C3(C−S ′) 6= ∅, we have S0 ∈ S. We also get 4

3
|S0|+

1
3
−c1(G−S0)−

2
3
c3(G−S0) = (4

3
|S|+1

3
−c1(G−S)−2

3
c3(G−S))+(4

3
|S ′|−c1(C−S ′)−2

3
c3(C−S ′)) < β.

This contradicts the definition of β.

(ii) Suppose that |V (C)| = 3 and C is not complete (i.e., C is a path of order three).
Let x ∈ C be the vertex with dC(x) = 2. Then c1(C−x) = 2 and c3(C−x) = 0. Set
S1 = S∪{x}. Since C1(G−S1) = C1(G−S)∪C1(C−x), C3(G−S1) = C3(G−S)−{C}
and C1(C−x) 6= ∅, we have S1 ∈ S. We also get 4

3
|S1|+

1
3
−c1(G−S1)−

2
3
c3(G−S1) =

(4
3
|S|+ 4

3
)+ 1

3
−(c1(G−S)+2)− 2

3
(c3(G−S)−1) = β. This contradicts the maximality

of S.
Set T1 = C1(G − S), T2 = C3(G − S) and T = T1 ∪ T2. Now we construct a bipartite

graph H with bipartition (S, T ) by letting uC ∈ E(H) (u ∈ S, C ∈ T ) if and only if
NG(u) ∩ V (C) 6= ∅.

Claim 4.3. The following hold.

(i) |T1|+
2
3
|T2| 6

4
3
|S|+ 1

3
.
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(ii) 1 6 |S| 6 |T1|+ |T2|.

(iii) For every X ⊆ S0, either |NH(X) ∩ T1|+
2
3
|NH(X) ∩ T2| >

4
3
|X| or NH(X) = T .

Proof. (i) By the assumption of the theorem, |T1|+
2
3
|T2| = c1(G− S) + 2

3
c3(G− S) 6

4
3
|S|+ 1

3
.

(ii) Since c1(G) + c3(G) = 0 and c1(G − S) + c3(G − S) > 1, S 6= ∅ (i.e., |S| > 1).
Since 4

3
|S|+ 1

3
− |T1| −

2
3
|T2| =

4
3
|S|+ 1

3
− c1(G− S)− 2

3
c3(G− S) = β 6

5
3
, we get

|S| 6 3
4
|T1|+

2
4
|T2|+ 1 6

3
4
|T |+ 1 < |T |+ 1, and hence |S| 6 |T | = |T1|+ |T2|.

(iii) Suppose that there exists a setX ⊆ S such that |NH(X)∩T1|+
2
3
|NH(X)∩T2| <

4
3
|X|

and NH(X) 6= T . Since T −NH(X) ⊆ C1(G− (S −X)) ∪ C3(G− (S −X)) by the
definition ofH , we have S−X ∈ S. We also get c1(G−(S−X))+ 2

3
c3(G−(S−X)) >

(|T1|−|NH(X)∩T1|)+
2
3
(|T2|−|NH(X)∩T2|) = (c1(G−S)+ 2

3
c3(G−S))−(|NH(X)∩

T1|+
2
3
|NH(X)∩T2|). Consequently

4
3
|S−X|+ 1

3
−c1(G−(S−X))− 2

3
c3(G−(S−X)) 6

(4
3
|S|+ 1

3
− c1(G−S)− 2

3
c3(G−S))− (4

3
|X| − |NH(X)∩ T1| −

2
3
|NH(X)∩ T2|) < β,

which contradicts the definition of β.
By Claim 4.3 and Theorem 3.1,H has an S-central path-factor F such that V (A)∩T2 6=

∅ for every A ∈ C3(F ). For A ∈ C(F ), let UA = V (A)∩ S, LA,h = V (A)∩ Th (h ∈ {1, 2}),
and LA = LA,1 ∪ LA,2. Let GA be the graph obtained from G[UA ∪ (

⋃

C∈LA
V (C))] by

deleting all edges of G[UA].

Claim 4.4. For each A ∈ C(F ), GA has a {P2, P5}-factor.

Proof. Since A is a path of H , there exists a path QA of GA such that UA ⊆ V (QA)
and V (QA) ∩ V (C) 6= ∅ for every C ∈ LA. Choose QA so that |V (QA)| is as large as
possible. Then for each C ∈ LA,2 (i.e., C ∈ LA with |V (C)| = 3), since C is complete by
Claim 4.2(ii), it follows that

either V (C) ⊆ V (QA) or |V (C) ∩ V (QA)| = 1,

and

if C ∈ LA is an endvertex of the path A of H , then V (C) ⊆ V (QA).

Recall that LA,2 6= ∅ if |V (A)| = 3. Consequently |V (QA)| > |V (A)| and, in the case where
|V (A)| > 3, we have |V (QA)| = 5 or 7. Since |V (A)| > 2, this means that |V (QA)| > 2
and |V (QA)| 6= 3. Furthermore, for each C ∈ LA, C −V (QA) is either empty or a path of
order two. Therefore if we set FA = QA ∪ (

⋃

C∈LA
(C − V (QA))), then FA is a path-factor

of GA with C3(FA) = ∅. By Fact 1.1, GA has a {P2, P5}-factor.
By Claims 4.2(i) and 4.4, G has a {P2, P5}-factor.
This completes the proof of Theorem 1.1.

5 Examples

In this section, we construct graphs having no {P2, P2k+1}-factor.
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Q2 Qn

b2

Figure 5: Graph Hn

5.1 Graphs without {P2, P5}-factor

Let n > 1 be an integer. Let Q0 be a path of order 3, and let a be an endvertex of Q0.
Let Q1, . . . , Qn be disjoint paths of order 7, and for each i (1 6 i 6 n), let bi be the
center of Qi. Let Hn denote the graph obtained from

⋃

06i6nQi by joining a to bi for
every i (1 6 i 6 n) (see Figure 5).

Suppose that Hn has a {P2, P5}-factor F . Since Q0 does not have a {P2, P5}-factor,
F contains abi for some i (1 6 i 6 n). Since dF (bi) 6 2, this requires that at least one
of the components of Qi − bi should have a {P2, P5}-factor, which is impossible because
each component of Qi − bi is a path of order 3. Thus Hn has no {P2, P5}-factor.

Lemma 5.1. For all X ⊆ V (Hn), c1(Hn −X) + 2
3
c3(Hn −X) 6 4

3
|X|+ 2

3
.

Proof. Let X ⊆ V (Hn). Then we can verify that

c1(Q0 −X) +
2

3
c3(Q0 −X) 6

4

3
|V (Q0) ∩X|+

2

3
(5.1)

and

c1(Qi −X) +
2

3
c3(Qi −X) 6

4

3
|V (Qi) ∩X| for every i (1 6 i 6 n) (5.2)

Since every component C of Hn −X with |V (C)| = 1 belongs to
⋃

06i6n C1(Qi −X), we
have

|C1(Hn −X)| =
∑

06i6n

|C1(Qi −X)| −

∣

∣

∣

∣

∣

(

⋃

06i6n

C1(Qi −X)

)

− C1(Hn −X)

∣

∣

∣

∣

∣

. (5.3)

Furthermore,

|C3(Hn −X)| 6
∑

06i6n

|C3(Qi −X)|+

∣

∣

∣

∣

∣

C3(Hn −X)−

(

⋃

06i6n

C3(Qi −X)

)
∣

∣

∣

∣

∣

. (5.4)

Let C be a component of Hn − X with |V (C)| = 3 which does not belong to
⋃

06i6n C3(Qi − X). Then C intersects with at least two of the Qi (0 6 i 6 n). Since

the electronic journal of combinatorics 25(1) (2018), #P1.40 16



|V (C)| = 3, C contains a component of Qi −X of order 1 for some i (0 6 i 6 n). Since
C is arbitrary, this implies that
∣

∣

∣

∣

∣

C3(Hn −X)−

(

⋃

06i6n

C3(Qi −X)

)∣

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

(

⋃

06i6n

C1(Qi −X)

)

− C1(Hn −X)

∣

∣

∣

∣

∣

. (5.5)

By (5.1)–(5.5),

c1(Hn −X) +
2

3
c3(Hn −X)

6

(

∑

06i6n

|C1(Qi −X)| −

∣

∣

∣

∣

∣

(

⋃

06i6n

C1(Qi −X)

)

− C1(Hn −X)

∣

∣

∣

∣

∣

)

+
2

3

(

∑

06i6n

|C3(Qi −X)|+

∣

∣

∣

∣

∣

C3(Hn −X)−

(

⋃

06i6n

C3(Qi −X)

)
∣

∣

∣

∣

∣

)

6

(

∑

06i6n

|C1(Qi −X)| −

∣

∣

∣

∣

∣

(

⋃

06i6n

C1(Qi −X)

)

− C1(Hn −X)

∣

∣

∣

∣

∣

)

+
2

3

(

∑

06i6n

|C3(Qi −X)|+

∣

∣

∣

∣

∣

(

⋃

06i6n

C1(Qi −X)

)

− C1(Hn −X)

∣

∣

∣

∣

∣

)

6
∑

06i6n

|C1(Qi −X)|+
2

3

∑

06i6n

|C3(Qi −X)|

=
∑

06i6n

(

c1(Qi −X) +
2

3
c3(Qi −X)

)

6
4

3

∑

06i6n

|V (Qi) ∩X|+
2

3

=
4

3
|X|+

2

3
.

Thus we get the desired conclusion.
From Lemma 5.1, we get the following proposition, which implies that Theorem 1.1 is

best possible.

Proposition 5.2. There exist infinitely many graphs G having no {P2, P5}-factor such
that c1(G−X) + 2

3
c3(G−X) 6 4

3
|X|+ 2

3
for all X ⊆ V (G).

5.2 Graphs without {P2, P2k+1}-factor for k > 3

Let k > 3 be an integer with k ≡ 0 (mod 3), and write k = 3m. Let n > 1 be an
integer. Let R0 be a complete graph of order n. For each i (1 6 i 6 2n + 1), let Ki be a
complete graph of order 2m−1, and let Ri denote the graph obtained from Ki by joining
each vertex of the union of 2m + 1 disjoint paths of order 2 to all vertices of Ki. Let
H ′

n = R0 + (
⋃

16i62n+1Ri) (see Figure 6).
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+ +

R2n+1R1

R0

K1 K2n+1

+ +

Figure 6: Graph H ′
n

Since |V (Ri)| = 2k + 1 and Ri does not contain a path of order 2k + 1, Ri has no
{P2, P2k+1}-factor. Suppose that H ′

n has a {P2, P2k+1}-factor F . Then for each i (1 6

i 6 2n+ 1), F contains an edge joining V (Ri) and V (R0). Since 2n + 1 > 2|V (R0)|, this
implies that there exists x ∈ V (R0) such that dF (x) > 3, which is a contradiction. Thus
H ′

n has no {P2, P2k+1}-factor.

Lemma 5.3. For all X ⊆ V (H ′
n),
∑

06j6k−1 c2j+1(H
′
n −X) 6 4k+6

8k+3
|X|+ 2k+3

8k+3
.

Proof. Let X ⊆ V (H ′
n).

Claim 5.1. For each i (1 6 i 6 2n+1),
∑

06j6k−1 c2j+1(Ri−X) 6 4k+6
8k+3

|V (Ri)∩X|+ 2k+3
8k+3

.

Proof. We first assume that V (Ki) 6⊆ X . Then Ri − X is connected. Clearly we may
assume that

∑

06j6k−1 c2j+1(Ri−X) = 1. Then |V (Ri)∩X| > 2 because |V (Ri)| = 2k+1.

Hence
∑

06j6k−1 c2j+1(Ri − X) = 1 < 4k+6
8k+3

· 2 < 4k+6
8k+3

|V (Ri) ∩ X| + 2k+3
8k+3

. Thus we may
assume that V (Ki) ⊆ X .

Let α be the number of components of Ri − V (Ki) intersecting with X . Since α 6

2m+ 1, we have (8m+ 1)α 6 (4m+ 2)(2m− 1 + α) + 2m+ 1, and hence

α 6
4m+ 2

8m+ 1
(2m− 1 + α) +

2m+ 1

8m+ 1
=

4k + 6

8k + 3
(2m− 1 + α) +

2k + 3

8k + 3
.

Furthermore,
∑

06j6k−1 c2j+1(Ri − X) = c1(Ri − X) 6 α and |V (Ri) ∩ X| = |V (Ki)| +
|(V (Ri) − V (Ki)) ∩ X| > 2m − 1 + α. Consequently we get

∑

06j6k−1 c2j+1(Ri − X) 6
4k+6
8k+3

|V (Ri) ∩X|+ 2k+3
8k+3

.
Assume for the moment that V (R0) 6⊆ X . Then H ′

n − X is connected. Clearly we
may assume that

∑

06j6k−1 c2j+1(H
′
n −X) = 1. Then |X| > 2 because |V (H ′

n)| > 2k + 1.

Hence
∑

06j6k−1 c2j+1(H
′
n − X) = 1 < 4k+6

8k+3
· 2 < 4k+6

8k+3
|X| + 2k+3

8k+3
. Thus we may assume

that V (R0) ⊆ X . Then clearly

|C2j+1(H
′

n −X)| =
∑

16i62n+1

|C2j+1(Ri −X)|. (5.6)
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By Claim 5.1 and (5.6),

∑

06j6k−1

c2j+1(H
′
n −X) =

∑

06j6k−1

(

∑

16i62n+1

c2j+1(Ri −X)

)

6
∑

16i62n+1

(

4k + 6

8k + 3
|V (Ri) ∩X|+

2k + 3

8k + 3

)

=
4k + 6

8k + 3
(|X| − |V (R0)|) +

2k + 3

8k + 3
(2n+ 1)

=
4k + 6

8k + 3
(|X| − n) +

2k + 3

8k + 3
(2n+ 1)

=
4k + 6

8k + 3
|X|+

2k + 3

8k + 3
.

Thus we get the desired conclusion.
From Lemma 5.3, we get the following proposition, which implies that if Conjecture 1

is true, then the coefficient of |X| in the conjecture is best possible.

Proposition 5.4. For an integer k > 3 with k ≡ 0 (mod 3), there exist infinitely many
graphs G having no {P2, P2k+1}-factor such that

∑

06i6k−1 c2i+1(G−X) 6 4k+6
8k+3

|X|+ 2k+3
8k+3

for all X ⊆ V (G).

6 Concluding remarks

In this paper, we prove that if a graph G satisfies c1(G−X)+ 2
3
c3(G−X) 6 4

3
|X|+ 1

3
for

all X ⊆ V (G), then G has a {P2, P5}-factor. The result naturally suggests the following
problem: For an integer k > 3, is there a number εk > 0 such that if a graph G satisfies
∑

06j6k−1 c2j+1(G − X) 6 εk|X| for all X ⊆ V (G), then G has a {P2, P2k+1}-factor?
Recently, Egawa, Furuya and Ozeki [4] gave an affirmative solution to the problem with
εk =

5
6k2

.
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