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Abstract

The Cayley Isomorphism property for combinatorial objects was introduced by
L. Babai in 1977. Since then it has been intensively studied for binary relational
structures: graphs, digraphs, colored graphs etc. In this paper we study this prop-
erty for oriented Cayley maps. A Cayley map is a Cayley graph provided by a cyclic
rotation of its connection set. If the underlying graph is connected, then the map
is an embedding of a Cayley graph into an oriented surface with the same cyclic
rotation around every vertex.

Two Cayley maps are called Cayley isomorphic if there exists a map isomorphism
between them which is a group isomorphism too. We say that a finite group H is a
CIM-group1 if any two Cayley maps over H are isomorphic if and only if they are
Cayley isomorphic.

The paper contains two main results regarding CIM-groups. The first one pro-
vides necessary conditons for being a CIM-group. It shows that a CIM-group should
be one of the following

Zm × Zr2, Zm × Z4, Zm × Z8, Zm ×Q8, Zm o Z2e , e = 1, 2, 3,

where m is an odd square-free number and r a non-negative integer2. Our second
main result shows that the groups Zm × Zr2, Zm × Z4, Zm × Q8 contained in the
above list are indeed CIM-groups.

1 Introduction

The history of the Isomorphism problem for Cayley graphs started in 1967 when the
famous Ádám’s conjecture was posed [1]. In 1977, L. Babai generalized this problem to

∗Supported by the Israeli Ministry of Absorption
1CIM stands for Cayley Isomorphism property for Maps
2The cases of m = 1 and r = 0 are allowed.
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any class of combinatorial structures via concrete categories [3]. He introduced Cayley
Isomorphism property (CI-property, for short) for arbitrary combinatorial structures and
developed group-theoretic approach to the isomorphism problem of Cayley structures (see
[18, 20] for the recent developments in this area). Although the basic tools and techniques
developed by Babai are applicable to any class of combinatorial objects, the mainstream of
the research in the area was focused on Cayley graphs and other binary relational Cayley
structures. Only recently the study of isomorphism problem for non-graphical Cayley
structures (ternary relational structures [7, 8, 9], linear codes [22], balanced configurations
[17]) was started.

In this paper we start the investigation of the isomorphism problem for a quite natural
class of Cayley structures which was not studied before, namely: the class of Cayley maps.
Although this class of structures is being actively studied during recent two decades, the
isomorphism problem for Cayley maps was not considered at all. This paper aims to fill
this lacuna. In order to formulate our main results we need to introduce basic definitions.

Let H be a finite group and S a subset of H \ {1}. A Cayley (di)graph Cay(H,S)
is defined by having the vertex set H and g is adjacent to h if and only if g−1h ∈
S. The set S is called the connection set of the Cayley graph Cay(H,S). A Cayley
graph Cay(H,S) is undirected if and only if S = S−1, where S−1 = { s−1 ∈ H | s ∈ S }.
Every left multiplication by an element of H is an automorphism of Cay(H,S), so the
automorphism group of every Cayley graph over H contains a regular subgroup isomorphic
to H. Moreover, this property characterises the Cayley graphs of H. The permutation
group consisting of the left multiplications will be denoted by Ĥ and the left multiplication
by h ∈ H by ĥ (that is ĥ(x) = hx).

A group H is called a CI-group with respect to graphs if two Cayley graphs of H are
isomorphic if and only if they are isomorphic by a group automorphism as well. For an
old but excellent survey about CI-groups, see [18] and further results can be found in [20].

An (oriented) Cayley map CM(H,S, ρ) is built on an undirected Cayley graph
Cay(H,S), which is endowed with a cyclic ordering ρ ∈ Sym(S) of the connection set.
We say that a map CM(H,S, ρ) is connected if the underlying Cayley graph is connected,
that is 〈S〉 = H. Every connected Cayley map determines a 2-cell embedding of a Cayley
graph into oriented surface with the same cyclic rotation around each vertex. For precise
definiton of embedding of graphs into orientable surfaces, see [16].

Note that our definition of a Cayley map is a bit different from the standard one
where the underlying Cayley graph is required to be connected. The main reason for
this change is that traditionally the analisys of the isomorphism problem for Cayley
combinatorial objects was not split into “connected” and “non-connected” parts. It is
pretty clear that if a group has CI-proprety for all Cayley maps then it also has the same
property for connected ones. The converse is not true. Theorems 1.1 and 1.2 below show
that connectedness does matter for Cayley maps. This is quite different from the situation
with Cayley graphs where we have no difference between the connected and disconnected
CI-properties. The reason for that is that a complement of disconnected Cayley graph is
always a connected one, while for a Cayley map there is no natural choice for the cyclic
rotation of the connection set on the complement graph. In general, the analysis (of the
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CI property) of connected Cayley maps seems to be more complicated than the one of
ordinary Cayley maps.

Several different subclasses of Cayley maps have been investigated. The notion of a
Cayley map first appeared in the paper of Biggs [5] who investigated balanced Cayley
maps. A Cayley map CM(H,S, ρ) is called balanced if ρ(s−1) = ρ(s)−1 and it is called
antibalanced if ρ(s−1) = ρ−1(s)−1.

Given two Cayley maps M1 = CM(H1, S1, ρ1) and M2 = CM(H2, S2, ρ2), a bijection
φ : H1 → H2 is a map isomorphism from M1 to M2 if φ is an isomorphism of the underlying
Cayley graphs and for all h ∈ H1, s ∈ S1 it holds that φ(h)−1φ(hρ1(s)) = ρ2(φ(h)−1φ(hs)).
Although the standard definition of map isomorphism is based on a bijection between the
dart sets (see [12]), our definition is equivalent to the standard one in the case of Cayley
maps. We refer the reader to Section 2 where all necessary definitions and proofs related
to map isomorphism are given.

In what follows we say that M1 and M2 are Cayley isomorphic if there exists a group
isomorphism φ : H1 → H2 which is simulteneously a map isomorphism, that is φ(S1) = S2

and φ(ρ1(s)) = ρ2(φ(s)) hold for each s ∈ S1.
The automorphism group of a Cayley map M = CM(H,S, ρ) is the set of all map

isomorphisms from M to M and it will be denoted by Aut(M). Thus Aut(CM(H,S, ρ))

contains the regular subgroup Ĥ. Every group automorphism σ ∈ Aut(H) induces Cayley
isomorphism between the maps CM(H,S, ρ) and CM(H, σ(S), σ′−1ρσ′) where σ′ = σ|S is
the restriction of σ on S. Thus a group automorphism σ is an automorphism of the map
CM(H,S, ρ) if and only if σ(S) = S and σ|Sρ = ρσ|S. Since ρ is a full cycle, the latter
condition is equivalent to σ|S = ρk for some integer k. A Cayley map M is called regular
if its automorphism group is transitive on the arcs as well. It follows from the definition of
the automorphism group of a Cayley map that this is the largest possible automorphism
group of a connected Cayley map. Following Jajcay and Širáň [14], we say that for a
group H a permutation φ ∈ Sym(H) is a skew-morphism if it fixes the identity and there
exists a mapping π : H 7→ N such that φ(gh) = φ(g)φπ(g)(h) for every g, h ∈ G.

Similarly to the original definition of the CI property, we say that a Cayley map
M = CM(H,S, ρ) is a CI-map of H if every Cayley map M ′ over H isomorphic to M
is also Cayley isomorphic to M . We call a group H a CIM-group if every Cayley map
CM(H,S, ρ) is a CI-map.

A Cayley map M = CM(H,S, ρ) can also be considered as a ternary relational struc-
ture on the vertices of the underlying graph. Three vertices (x, y, z) are in the relation R
if and only if x−1y, x−1z ∈ S and ρ(x−1y) = x−1z. The automorphism group Aut(M) con-
sists of all those permutations of the vertices which preserve the relation R. In particular,
it is a 3-closed permutation group. This observation allows us to apply the group-theoretic
technique developed by Babai [3] for arbitrary Cayley combinatorial structures to a par-
ticular case of Cayley maps.

Moreover, a theorem of Pálfy [24] shows that the groups which are CI-groups for every
m-ary relational structure are the cyclic groups of order n, where (n, φ(n)) = 1 and the
Klein group. Pálfy also proved that if a group is not a CI-group with respect to some
m-ary relation, then it is not a CI-group with respect to 4-ary relational structures.
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CI-groups with respect to ternary relations (CI(3)-groups, for short) were investigated
by Dobson [7],[8] and later by Dobson and Spiga [9]. Although the class of CI(3)-groups
is rather narrow, its full classification is not finished yet. The latest results can be found
in [8] and [9]. Since every map automorphism group is 3-closed, each CI(3)-group is a
CIM-group. The converse is not true. For example, every elementary abelian 2-group of
rank at least 6 is a CIM-group (see Theorem 1.2) but not a CI(3)-group [23].

As it was also pointed out by Dobson and Spiga [9] every CI(3)-group is also a CI(2)-
group, that is a group which has a the CI-property with respect to binary relational
structures. However, we will prove that there are CIM-groups which are not CI(2)-groups.
The Venn diagram below reflects the relationships between the three classes of CI-groups.

CI(3)

CI(2)

CIM

Our first result formulates necessary conditions for being a CIM-group.

Theorem 1.1. Let H be a CIM-group. Then H is isomorphic to one of the following
groups

(a) Zm × Zr2, Zm × Z4, Zm × Z8, Zm ×Q8;

(b) Zm o Z2e , e = 1, 2, 3,

where m is an odd square-free number.

The second main result provides several infinite series of CIM-groups.

Theorem 1.2. The following groups are CI-groups with respect to Cayley maps.

Zm × Zr2, Zm × Z4, Zm ×Q8

where m is an odd square-free number.

As an immediate corollary of the above theorems we obtain the following criterion.
Further we obtain similar result for abelian groups.

Theorem 1.3. Let H be an abelian group of odd order. Then H is a connected CIM-group
if and only if |H| is square-free.

Notice that obtained results do not provide a complete classification of cyclic CIM-
group. This is because we do not know which of the groups Zm × Z8, m is odd and
square-free, are CIM-groups. Proposition 6.7 shows that Z8 is a CIM-group. We believe
that all groups of the above structure have the CIM-property.

The last main Theorem of the paper provides a useful source of connected CIM-groups
which are not CIM-group in general.
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Theorem 1.4. Let H be a simple group. Then H is a connected CIM-group provided that
H 6∼= A5.

Notice that the group A5 is not a connected CIM-group because of the following reason.
There exists a regular Cayley map over A5 the automorphism group of which is PSL2(11)
([19], Example 3.9). According to [2] PSL2(11) has two conjugacy classes of maximal
subgroups isomorphic to A5.

Our paper is organised as follows. In Section 3 we collect a few general results about
the CIM-property which will be used later. In Section 4 we characterize Sylow subgroups
of CIM-groups. Section 5 is devoted to the proof of Theorem 1.1. The last section provides
proofs of Theorems 1.2 and 1.3.

Most of the group-theoretical notation used in the paper are standard and can be
found in [26].

2 Cayley maps and ternary relational structures

First we repeat some basic definitions related to Cayley maps. The set of darts D(M)
of a Cayley map M = CM(H,S, ρ) consists of all directed arcs of the underlying graph,
i.e. D(M) := {(x, y) ∈ H ×H |x−1y ∈ S} ⊆ H ×H. There are two permutations of the
dart set D(M), namely: the dart reversing involution S and the dart rotation R. Their
action is defined by the following formulae:

S((x, y)) = (y, x), R(x, y) = (x, xρ(x−1y)).

Notice that S is an involution while R is a semi-regular permutation of order |S|. The
orbits of 〈R〉 on D are in one-to-one correspondence with the elements of H. More
precisely, two darts (x, y), (u, v) ∈ D belong to the same 〈R〉-orbit if and only if x = u.

In addition, we define a ternary relation T (M) on H associated to the map M:

T (M) := {(x, y, z) ∈ H ×H ×H |x−1y, x−1z ∈ S and ρ(x−1y) = x−1z}.

Notice that |T (M)| = |H||S|.
Given two maps M = CM(H,S, ρ) and M′ = CM(H ′, S ′, ρ′), a (map) isomorphism is

a bijection Φ : D → D′ which satisfies ΦS = S ′Φ and ΦR = R′Φ [12]. The automorphism
group Aut(M) of a mapM consists of all permutations Φ of the dart set which commute
with R and S. In other words Aut(M) is the centralizer of the elements S,R in the
symmetric group Sym(D(M)).

Theorem 2.1. Let M = CM(H,S, ρ) and M′ = CM(H ′, S ′, ρ′) be two Cayley maps. A
bijection Φ : D(M)→ D(M′) is a map isomorphism if and only if there exists a bijection
φ : H → H ′ such that Φ((x, y)) = (φ(x), φ(y)) and φ(T (M)) = T (M′).

Proof. Let R,S and R′,S ′ denote the dart rotation and dart reversing involution of the
maps M and M′ respectively. We also abbreviate T := T (M), T ′ := T (M′), D :=
D(M), D′ := D(M′).
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Let Φ : D → D′ be a map isomorphism. Then ΦR = R′Φ implies ΦRΦ−1 = R′.
Therefore Φ induces a bijection between the orbits of 〈R〉 and 〈R′〉. Since the orbits of
〈R〉 (resp. 〈R′〉) are in one-to-one correspondence with the elements of H (resp. H ′), there
exists a bijection φ : H → H ′ such that Φ((x, y)) = (φ(x),Ψ(x, y)) for some Ψ : D → H ′.

Now it follows from S ′Φ = ΦS that Ψ(x, y) = φ(y). Thus Φ((x, y)) = (φ(x), φ(y))
implying φ(D) = D′.

Pick an arbitrary triple (x, y, z) ∈ T . Then (x, y), (x, z) ∈ D and z = ρ(x−1y). It
follows from φ(D) = D′, that (φ(x), φ(y)), (φ(x), φ(z)) ∈ D′.

Now Φ(R((x, y))) = R′(Φ((x, y))) implies

(φ(x), φ(z)) = (φ(x), φ(x)ρ′(φ(x)−1φ(y)))

so we have φ(z) = φ(x)ρ′(φ(x)−1φ(y)). We have already seen (φ(x), φ(z)) ∈ D′ thus
(φ(x), φ(y), φ(z)) ∈ T ′. Hence φ(T ) ⊆ T ′. Comparing the cardinalities we conclude
φ(T ) = T ′.

Assume now that φ : H → H ′ is a bijection which satisfy φ(T ) = T ′. Since the
projection of T (resp. T ′) onto the first two coordinates is D (resp. D′), we conclude that
φ(D) = D′. Therefore the mapping Φ((x, y)) := (φ(x), φ(y)) is a bijection between the
dart sets of M and M′.

It remains to show that Φ is a map isomorphism, i.e. ΦS = S ′Φ and ΦR = R′Φ.
The first equality is immediate. To prove the second one we notice that if (x, y, z) ∈ T ,
then R((x, y)) = (x, z). Therefore Φ(R((x, y)) = (φ(x), φ(z)). It follows from φ(T ) = T ′

that (φ(x), φ(y), φ(z)) ∈ T ′. Therefore R′((φ(x), φ(y)) = (φ(x), φ(z)). Finally we get
R′(Φ((x, y))) = Φ(R((x, y))), finishing the proof of Theorem 2.1. �

It follows from the above Theorem that regarding map isomorphism of Cayley maps
we can replace dart bijection by a bijection between the point sets. Thus in what fol-
lows a map isomorphism or automorphism will always mean a bijection or a permuta-
tion between the point sets. In particular, the automorphism group Aut(CM(H,S, ρ)) =
Aut(T (CM(H,S, ρ)) will be considered as a subgroup of the symmetric group Sym(H).

Proposition 2.2. A bijection φ : H → H ′ is an isomorphism between the maps M =
CM(H,S, ρ) and M′ = CM(H ′, S ′, ρ′) if and only if for any h ∈ H the “differential” map
∆hφ : H → H ′ defined via ∆hφ(x) := φ(h)−1φ(hx) satisfies the conditions

(a) ∆hφ(S) = {∆hφ(S) | s ∈ S} = S ′;

(b) ∆hφ(ρ(s)) = ρ′(∆hφ(s)) holds for each s ∈ S.

Proof. By Theorem 2.1 φ is a map isomorphism if and only if φ(T (M)) = T (M′).
Assume first that φ satisfies the assumptions (a) and (b). Pick and arbitrary triple

(x, y, z) ∈ T (M). Then y = xs and z = xρ(s) for some s ∈ S. It follows from (a) that
∆xφ(s) = s′ ∈ S ′. Therefore φ(x)−1φ(xs) = s′ implying φ(y) = φ(x)s′. Now (b) implies
φ(x)−1φ(z) = φ(x)−1φ(xρ(s)) = ρ′(φ(x)−1φ(xs)) = ρ′(s′). Therefore φ(y) = φ(x)s′ =
φ(x)ρ′(s′) implying (φ(x), φ(y), φ(z)) ∈ T (M′). Thus φ(T (M)) ⊆ M′. Combining this
with |T (M)| = |H||S| = |H ′||S ′| = |T (M′)| we obtain that φ(T (M)) = T (M′).
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Let now φ : H → H ′ be a bijection which maps T (M) onto T (M′). Then φ(D(M)) =
D(M′) because the dart set is a projection of the set of triples onto the first two coordi-
nates. Therefore x−1y ∈ S ⇐⇒ φ(x)−1φ(y) ∈ S ′ holds for all x, y ∈ H. This yields us
(a).

Pick an arbtitrary pair x ∈ H, s ∈ S. Then (x, xs, xρ(s)) ∈ T (M) implying
(φ(x), φ(xs), φ(xρ(s))) ∈ T (M′). By definition of T (M′) we obtain that
φ(xs) = φ(x)s′, φ(ρ(xs)) = φ(x)ρ′(s′) for some s′ ∈ S. Now the claim follows. �

As a consequence we obtain the following result the second part of which was proved in
[12]. To make the text self-contained we provide here a complete proof of the statement.

Theorem 2.3. Let G be the full automorphism group of a Cayley mapM = CM(H,S, ρ).
Then the following two statements hold.

(a) If M is disconnected (that is 〈S〉 6= H), then G is permutation equivalent to the
wreath product G0 o Sm in an imprimitive action where G0 := Aut(CM(〈S〉, S, ρ))
and m := [H : 〈S〉];

(b) If M is connected, then the point stabilizer Ge is cyclic and it acts faithfully on S
with (Ge)|S ∈ 〈ρ〉. In particular Ge acts semiregularly on S.

Proof. We abbreviate T := T (M).

Proof of part (a). Let H = h1F ∪ . . . ∪ hmF , where h1 = e be a decomposition of
H into a disjoint union of left cosets of the subgroup F := 〈S〉. Then T (M) is a point
disjoint union of the relations

Ti := T ∩ ((hiF )× (hiF )× (hiF )) , i = 1, . . . ,m.

Since the relations Ti are pairwise isomorphic, we obtain that G = Aut(T ) = Aut(T1) oSm,
as required.

Proof of part (b). It follows from the definition of T that Ĥ 6 G. Since Ĥ acts

regularly on the point set H, the group G admits a decomposition G = GeĤ. Pick
an arbitrary φ ∈ Ge. Then φ(e) = e so ∆eφ = φ and, by part (b) of Proposition 2.2,
the restriction φ|S commutes with ρ. Therefore (Ge)|S centralizes ρ, and, consequently,
(Ge)|S 6 〈ρ〉. It remains to show that Ge acts faithfully on S.

The group Ge acts on S semiregularly. Therefore for each s ∈ S the subgroup Ge,s acts
trivially on S. Since S is a neighbourhood of e in the Cayley graph Γ := Cay(H,S) and
G 6 Aut(Γ), the group G has the following property: for any arc x, y of Γ the subgroup
Gx,y acts trivially on the neighbourhood Γ(x) = xS of x. Now one can easily show that
the subgroup Ge,s is trivial. Indeed, if not, then there exists a non-identical permutation
g ∈ Ge,s. Among all the points moved by g we choose one, say x, which has minimal
distance, denoted by d, from e in Γ. Since Ge,s acts trivially on S and Γ is connected, we
obtain 2 6 d <∞. Let x0 = e, x1 = s, . . . , xd = x be the shortest path in Γ connecting e
and x. By the choice of g and x, the permutation g fixes the points x0, . . . , xd−1. Therefore
g ∈ Gxd−2xd−1

implying that g fixes all points of Γ(xd−1). But the point x = xd ∈ Γ(xd−1)
is moved by g, a contradiction. �
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3 General observations

The original CI property for graphs is inherited by subgroups which gives us a strong
tool to determine the list of possible CI-groups. Similar, but weaker, property holds for
CIM-groups as well. Let us call a group H a connected CIM-group if it is a CI-group with
respect to connected maps.

Lemma 3.1. Every subgroup of a CIM-group is a connected CIM-group.

Proof. Let G be a CIM-group and H 6 G. Let us assume that CM(H,S, ρ) and
CM(H,S ′, ρ′) are isomorphic connected Cayley maps of H. Let φ be a map isomorphism
from CM(H,S, ρ) to CM(H,S ′, ρ′). Then ĝ2φĝ1

−1 is an isomorphism between the con-
nected component of CM(G,S, ρ) on g1H and the one of CM(G,S ′, ρ′) on g2H. This shows
that the connected components of CM(G,S, ρ) and CM(G,S ′, ρ′) are isomorphic. There-
fore CM(G,S, ρ) and CM(G,S ′, ρ′) are isomorphic Cayley maps. Since G is a CIM-group
there exists α ∈ Aut(G), which induces an isomorphism from CM(G,S, ρ) to CM(G,S ′, ρ′).
Since the Cayley map CM(H,S, ρ) is a connected component of CM(G,S, ρ), its image
CM(α(H), α(S), α|Sρ(α|S)−1) is a connected component of CM(G,S ′, ρ′). Therefore α(H)
is a left coset of H implying α(H) = H. Hence α|H is a Cayley isomorphism between the
above maps. �

This result suggests that it is worth investigating p-groups which arise as the Sylow
p-subgroups of finite groups.

Another important observation is that if CM(H,S, ρ) is a Cayley map with |S| 6 2,
then the Cayley graph Cay(H,S,) has to be a CI-graph since there exists only one cyclic
ordering on one or two elements. This shows that the automorphism group of a CIM-
group H has only one orbit on the elements of order 2 and for every g, h ∈ H with the
same order there exists α ∈ Aut(H) with α(g) = h or α(g) = h−1. Groups having this
property were investigated by Li and Praeger [21].

The following lemma is due to Babai [3] and applies to every Cayley relational struc-
ture3.

Lemma 3.2 (Babai). Let Cay(H,R) be a Cayley relational structure. Then Cay(H,R)
has the CI-property if and only if for every regular subgroup H̊ ∼= H of Aut(Cay(G,R))

there exists α ∈ Aut(Cay(G,R)) with α(H̊) = Ĥ.

In what follows we refer to a regular permutation subgroup isomorphic to H as H-
regular subgroup.

The statement below describes the structure of the Cayley map automorphism group.
Although it was proved by Jajcay [12] we prefer to provide its proof here to make the
paper self-contained.

3 Recall that a Cayley relational structure over a group H is any set of relations over H which is
Ĥ-invariant.
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Lemma 3.3. Let M := CM(H,S, ρ) be a connected Cayley map and G := Aut(M) its
automorphism group. Then Ge acts faithfully on S and its restriction (Ge)|S is contained
in 〈ρ〉. In particular, Ge is cyclic.

Proof. Pick an arbitrary φ ∈ Ge. Then ∆eφ = φ|S implying ρφ|S = φ|Sρ. Since ρ is a full
cycle on S, any permutation commuting with it belongs to 〈ρ〉. Therefore (Ge)|S 6 〈ρ〉.
This inclusion also implies that for each s ∈ S the two-point stabilizer Ge,s acts trivially
on S. Therefore Gh,hs acts trivially on hS for any h ∈ H and s ∈ S. Thus if φ fixes e
and s ∈ S, then it fixes pointwise the sets S, S2, S3 etc. Since Cay(H,S) is connected, we
conclude that Ge,s is trivial, i.e. Ge acts faithfully on S. �

4 Sylow subgroups of CIM-groups

Similarly to the classical case of CI-groups, it follows from Lemma 3.1 that it is important
to investigate p-groups. Babai and Frankl [4] proved that if a group H is a CI(2)-group
of prime power order, then H is either elementary abelian p-group, the quaternion group
of order 8 or a cyclic group of small order. In this section we investigate the possible
Sylow p-subgroups of of a CIM-group and we give necessary condition for the structure
of abelian groups of odd order which are connected CIM-groups.

4.1 Groups of odd order

The statement below describes odd order Sylow subgroups of a CIM -group.

Lemma 4.1. A Sylow p-subgroup of a CIM-group H corresponding to an odd prime
divisor p of |H| has order p.

Proof. It follows from Lemma 3.1 that it is sufficient to show that any subgroup of order
p2 is not a connected CIM-subgroup.

Let K be a group of order p2. Then either K ∼= Z2
p or K ∼= Zp2 . In both cases there

exists an automorphism β ∈ Aut(K) of order p (the concrete examples of β are given
below). A direct check shows that the bijection α ∈ Sym(K) defined via α(x) = −β(x) is
an automorphism of K of order 2p. It follows from αp = −1 that each non-zero α-orbits
is symmetric, and, therefore, has even cardinality. This implies that at least one orbit
of α contains 2p elements. Let us denote this orbit by S. Clearly 〈S〉 = K. Consider
a Cayley map M = Cay(K,S, α|S). The group G := Aut(M) contains the semidirect

product K̂ o 〈α〉 6 Sym(K). Combining this with |Aut(M)| 6 |K||S| = |K||〈α〉| we

conclude that G = K̂ o 〈α〉. Thus M is a balanced map, which is regular by αp = −1.
We claim that M is not a CI-map.

According to Lemma 3.2 it is enough to find two K-regular subgroups of G which are
not conjugate in G. It can be seen from the description of the automorphism group of M
that K̂ is a normal subgroup of G but it is also clear from the fact that M is a connected
balanced Cayley map [25]. Since K̂ is normal in G, it is sufficient to find a K-regular

subgroup of G distinct from K̂. To point out such a subgroup we consider the cases of
K ∼= Zp2 and K ∼= Z2

p separately.
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Case of K ∼= Zp2 .
In this case we choose β ∈ Aut(K) defined via β(x) = (1 + p)x. The permutation
γ(x) := β(x) + 1 = (1 + p)x + 1 belongs to the group G because γ = 1̂β. A direct check
shows that γp(x) = x + p implying o(γp) = p, and, consequently, o(γ) = p2. Therefore

〈γ〉 is a regular cyclic subgroup of G different from K̂.

Case of K ∼= Z2
p.

In this case we choose β ∈ Aut(Z2
p) defined via β((x, y)) = (x + y, y). Then the group G

contains the subgroup Ẑ2
p o 〈β〉 which consists of all permutations of the form (x, y) 7→

(x + ay + u, y + v) where a, u, v ∈ Zp. A direct check shows that the permutations
τa,b : (x, y) 7→ (x+ ay+ b, y+ a), a, b ∈ Zp form a subgroup, say T , of G isomorphic to Z2

p.
It is easy to check that T acts regularly on Z2

p. �

In order to classify connected abelian CIM-groups we generalize the previous lemma.

Lemma 4.2. Let p be an odd prime. Then Zpk is not a connected CIM-group if k > 2.

Proof. As in the previous case we prove that γ(x) = (1+p)x+1 is a permutation of order
pk. First we verify that β(x) = (1 + p)x is of order pk−1. The group of units of the ring
Zpk is of order pk−1 so we only have to verify that βp

k−2 6= id.

(1 + p)p
k−2

= 1 +

(
pk−2

1

)
p+

(
pk−2

2

)
p2 + . . .+ pp

k−2

.

One can verify that if 1 6 l = psi 6 pj, where i is prime to p, then
(
pj

l

)
= pj−sm, where

m is prime to p. Therefore all but the first two terms are not divisible by pk so β is of
order pk−1. Now

γl(x) = (1 + p)lx+
l−1∑
i=0

(1 + p)i = (1 + p)lx+
(1 + p)l − 1

p
.

If γl = id, then l is divisible by pk−1 since the order of β is pk−1. Further (1+p)l−1
p

is

divisible by pk, which means that pk+1 divides (1 + p)l − 1. As we have already seen for
β this means that l is multiple of pk.

Repeating the same construction as in the previous lemma we obtain a connected bal-
anced Cayley map the automorphism group of which contains two H-regular subgroups.
One of them is a normal subgroup, so they are not conjugate. �

Proposition 4.3. Let A be an abelian group of non square-free odd order. Then A is not
a connected CIM-group.

Proof. Let p be a prime the square of which divides |A|. Then A admits a decomposition
A = K × H where K ∼= Zpk , k > 2 or K ∼= Z2

p. In both cases K admits a connected
balanced regular Cayley map M = CM(K,S, ρ) over K which is not CI (see the proofs of
Lemmas 4.1 and 4.2). In particular S is symmetric and hence |S| is even. Since the map
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is balanced and connected, there exists a unique α ∈ Aut(K) with α|S = ρ. We extend α
to an automorphism of A by ᾱ = (α,−1). It follows from the construction of α (see the
proofs of Lemmas 4.1 and 4.2) that α|S|/2 inverts the elements of K. Since |S|/2 is odd,
the automorphism ᾱ|S|/2 coincides with −1A.

Now we pick a symmetric generating set of H of the form T = {1, g1, g
−1
1 , . . . , gi, g

−1
i }.

The set S×T is a symmetric ᾱ-invariant generating set ofG. Therefore S×T is the disjoint
union of 〈ᾱ〉-orbits, all having length |S|. Therefore, there exists a cyclic permutation π

of the set S×T such that π|T | = ᾱ|S×T . It follows from ᾱ|S|/2 = −1A that π
|T ||S|

2 = −1S×T .
Therefore π(x)−1 = π(x−1) for every x ∈ S × T . Thus we get a balanced Cayley map
M1 = CM(G,S × T, π).

It was proved in Lemma 4.1 and Lemma 4.2 that the map M is not a CI-map over
K. Therefore Aut(M) contains two K-regular subgroups K1 and K2. Then K1 × Ĥ and
K2 × Ĥ are A-regular subgroups of Aut(M1). One of them is K̂ × Ĥ which is a normal
subgroup in Aut(M1) since M1 is balanced again, hence these subgroups are not conjugate
in Aut(M1). �

Combining this result with Theorem 1.2 (which will be proved in Section 6) we get
Theorem 1.3.

4.2 Sylow 2-subgroups of CIM-groups

Proposition 4.4. For every n > 4 the cyclic group Z2n is not a connected CIM-group.

Proof. The element a = 1 + 2n−1 ∈ Z2n has multiplicative order 2. Therefore the au-
tomorphism α ∈ Aut(Z2n) defined via α(x) = ax has order two as well. We construct
an antibalanced Cayley map the automorphism group of which contains the subgroup
Ẑ2n o 〈α〉. Let S = {1,−1, 3,−3a, a,−a, 3a,−3} be a set of 8 different elements, and let
ρ = (1,−1, 3,−3a, a,−a, 3a,−3) be an 8-cycle. The group automorphism α is an auto-
morphism of the map M := CM(Z2n , S, ρ), because α(S) = S and α|S = ρ4. Thus the full

automorphism group G := Aut(M) contains the subgroup A := Ẑ2n o 〈α〉.
Straightforward calculation shows that (1̂α)2(x) = x+ a+ 1 = x+ 2n−1 + 2 implying

that (1̂α)2 has order 2n−1. Hence the order of 1̂α is 2n. Therefore the subgroup A of
G contains at least two regular subgroups isomorphic to Z2n , both of index two. These
subgroups are not conjugate in A, since they are normal in A. Thus it is enough to prove
that A = G. The latter is equivalent to showing that the point stabilizer G0 has order
two. Assume, towards a contradiction, that |G0| > 2. The group G0 is cyclic and acts
on S faithfully and semi-regularly. Therefore there exists an element σ ∈ G0 such that
σ2 = α. In particular, σ has order 4. Since σ|S commutes with ρ, we conclude that
σ|S = ρ2 = (1, 3, a, 3a)(−1,−3a,−a,−3) or σ|S = (1, 3a, a, 3)(−1,−3,−a,−3a).

Assume first that σ|S = (1, 3, a, 3a)(−1,−3a,−a,−3). Consider the subset T := {x ∈
Z2n | |S ∩ (S + x)| = 6}4. Since σ is an automorphism of Cay(Z2n , S) stabilizing 0, it

4These are elements at distance two from 0 in Cay(Z2n , S), each of them is connected to 0 by six paths
of length two.
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satisfies the equation σ(x + S) = σ(x) + S for every x ∈ Z2n . Thus T is σ-invariant. A
direct calculation yields us T = {2,−2, 2 + 2n−1,−2 + 2n−1}.

Consider the set σ(S \ (S + 2)) = σ({−3,−3a}) = σ({−3,−3 + 2n−1}). Since σ is an
automorphism of the graph Cay(Z2n , S), we can write σ(S + 2) = S + σ(2). Therefore
σ(S \ (S + 2)) = σ({−3,−3 + 2n−1}), thus S \ (S + σ(2))) = {−1,−1 + 2n−1}. Since T is
σ-invariant σ(2) ∈ T , none of the elements t ∈ T satisfies S \ (S + t)) = {−1,−1 + 2n−1},
a contradiction.

Similar calculation gives the result if σ|S = (1, 3a, a, 3)(−1,−3,−a,−3a). �

Proposition 4.5. Let P 6 H be a Sylow 2-subgroup of a CIM-group H. Then P is either
elementary abelian or cyclic C2n, where n 6 3 or Q8.

Proof. Assume that exp(P ) > 2. Then P contains a cyclic subgroup C4 = 〈c〉 of order
4. We claim that P doesn’t contain the Klein subgroup K4

∼= Z2
2, Indeed, if K4 =

{1, u, v, w} 6 P is the Klein subgroup, then the Cayley map CM(K4, {u, v}, (u, v)) is
isomorphic, as a map, to the Cayley map CM(C4, {c, c−1}, (c, c−1)). Hence there should
exists an automorphism α ∈ Aut(H) which maps the first map onto the second one. Since
both maps are connected, this would imply α(C4) = K4, a contradiction.

Thus P does not contain K4. By Burnside’s Theorem [6], P is either cyclic or gener-
alized quaternion. If P is cyclic, then by Proposition 4.4 its order is bounded by 8.

Assume now that P is a generalized quaternion group distinct from Q8. Then P con-
tains a characteristic cyclic subgroup C = 〈c〉 of index 2. Then it follows from Lemma 3.1
and Proposition 4.4 that |C| 6 8. Together with P 6∼= Q8 we obtain that |C| = 8, and,
consequently |P | = 16.

Let a ∈ P denote an element of order 4 outside of C. Then 〈a, c2〉 ∼= Q8. Let α
be an automorphism of 〈a, c2〉 whose action on the generating set is described by the
formulas α(a) = c2 and α(c2) = a−1. Its orbit {a, c2, a−1, c−2} is symmetric and generates
〈a, c2〉. Therefore M = CM(〈a, c2〉, {a, c2, a−1, c−2}, α) is a regular balanced Cayley map
with Aut(M) = 〈a, c2〉 o α. The element âα ∈ 〈a, c2〉 o α has order 8 and acts regularly
on the point set 〈a, c2〉 of the map M . Therefore there exists a regular Cayley map M ′

over the cyclic group of order 8 isomorphic to M . Thus M ∼= M ′ = CM(C, S, ρ) for some
S ⊆ C and an appropriate rotation ρ.

Therefore if H = Q16 is a CIM-group, there exists β ∈ Aut(H) which maps M on M ′.
But in this case 〈a, c2〉 ∼= C, a contradiction. �

5 Proof of Theorem 1.1

We start with the following lemma which deals with Cayley maps over semi-direct product
of special type. Note, that maps appearing in the lemma are examples of half-regular
Cayley maps introduced in [13].

Lemma 5.1. Let H be a group which admits a decomposition H = CK such that K∩C =
{1} and K /H and C = 〈c〉 is cyclic of odd order m. Assume that a there exists a faithful
C-orbit O = {k, kc, . . . , kcm−1} such that 〈O(−1)O〉 = K. Then H is not a connected
CIM-group.

the electronic journal of combinatorics 25(1) (2018), #P1.42 12



Proof. It is sufficient to provide an example of a connected non-CI map over H. Take
S := cO = {ck0, ck1, . . . , ckm−1} where ki := kc

i
, i = 0, . . . ,m − 1. Then S(−1) ∩ S = ∅

because the images of S and S(−1) in H/K ∼= C are c and c−1, respectively.
Take a Cayley map M = CM(H,S ∪ S(−1), ρ) where

ρ = (ck0, (ck`)
−1, ck1, (ck`+1)−1, . . . , ckm−1, (ck`+m−1)−1)

and ` = m+1
2

and the indices are taken modulo m. Notice that the condition 〈OO(−1)〉 = K
implies that the map is connected.

It follows from the construction that ρ2 = σ|S∪S(−1) , where σ is the inner automorphism

of H mapping x to xc. Therefore σ ∈ Aut(M) and G := Ĥ o 〈σ〉 6 Aut(M).

In order to build a regular subgroup of Aut(M) different from Ĥ we notice first,
that G is isomorphic to a direct product H × C, where the isomorphism is defined via
ψ : ĥσi 7→ (cih, c−i). Under this isomorphism the point stabilizer G1 = 〈σ〉 is mapped
onto the subgroup ψ(G1) = {(d−1, d) | d ∈ C}.

Let π : H → C be a projection homomorphism defined via π(xk) := x for x ∈ C and
k ∈ K. Then F := {(h, π(h)) |h ∈ H} is a subgroup of H × C which intersects ψ(G1)
trivially. Indeed,

(h, π(h)) ∈ ψ(G1) ⇐⇒ π(h) = h−1 =⇒ h ∈ C =⇒ π(h) = h =⇒ h = h−1.

By assumption C is of odd order. Therefore h = 1.
It follows from F ∩ψ(G1) = 1 and from the fact that F is a normal subgroup of H×C

that ψ−1(F ) has trivial intersection with all stabilizers. Therefore F is a regular subgroup

of G. Thus G contains two H-regular subgroups, which are Ĥ and ψ−1(F ). Since Ĥ / G,
it is not conjugate to ψ−1(F ) inside G.

Since G1 has two orbits on the connection set S∪S−1, either Aut(M) = G or [Aut(M) :
G] = 2. In the first case we already have two H-regular subgroups of G which are non-
conjugate in G. In the second case it follows from ρ(x−1) = ρ(x)−1 that M is a regular

balanced map over H. It was proved in [25] that Ĥ E Aut(M). Since G contains a

H-regular subgroup distinct from Ĥ, it is not conjugate to Ĥ inside Aut(M). �

Remark. The condition 〈OO(−1)〉 = K is always fulfilled if K does not contain a
proper non-trivial C-normalized subgroups. For example, if K is of prime order, then
〈OO(−1)〉 = K holds for any orbit O with |O| > 1.

Now we are ready to prove Theorem 1.1.

Proof. Let T denote a Sylow 2-subgroup of H. Our proof is divided into few steps.

Step 1. Any normal subgroup N of H of odd order is cyclic.
Since all Sylow subgroups of N have prime order5, it is sufficient to prove that any Sylow
subgroup of N is normal in H. This would follow if we prove that each Sylow subgroup
of N has a normal complement. To show that let us fix a Sylow p-subgroup P of order p,

5Note that the assumptions of Theorem 1.1 imply that the order od N is square-free
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where p is prime. By Burnside’s Theorem the existence of a normal complement follows
from NN(P ) = CN(P ). Assume towards a contradiction that there exists g ∈ NN(P )
which does not centralize P . Since every element of a group can be written as the product
of elements of prime power order we may assume that o(g) is a prime power. By Lemma 4.1
any Sylow subgroup of N has prime order. Therefore o(g) is prime distinct from p since
elements of order p centralize g. In this case by the previous Remark, the group 〈g〉P
satisfies the assumptions of Lemma 5.1 and therefore, is not a connected CIM group. A
contradiction.

Step 2. T has a normal complement.
By Proposition 4.5, T is isomorphic to one of the groups Zr2,Z4,Z8 or Q8. If T is cyclic,
then the result follows from the Cayley normal 2-complement theorem.

Assume now that T is not cyclic, i.e. T ∼= Zr2 or T ∼= Q8. By Frobenius normal
p-complement Theorem it is sufficient to show that NH(U)/CH(U) is a 2-group for every
non-trivial subgroup of T . Notice that NH(U)/CH(U) embeds into Aut(T ).

If U 6∼= Q8, then U ∼= Ze2 for some e > 1. Assume, towards a contradiction, that
NH(U)/CH(U) is not a 2-group. Then there exists an element g ∈ NH(U) of odd order
which acts on U non-trivially. Without loss of generality, we may assume that o(g) is a
p-power for some odd prime divisor p of |H|. Again, we conclude o(g) = p. Since U is
an elementary abelian 2-group, it contains a minimal g-invariant subgroup U1 on which g
acts non-trivially. The group 〈g〉U1 satisfies the assumptions of Proposition 5.1. Therefore
〈g〉U1 is not a connected CIM-group. A contradiction.

If U ∼= Q8 and NH(U)/CH(U) is not a 2-group, then this group contains an element
of order 3. Hence NH(U) contains an element g of order 3 which acts on U non-trivially.
Applying Lemma 5.1 once more we get a contradiction.

If U ∼= Z4, then its automorphism group is a 2-group. Therefore the condition on
NH(U)/CH(U) is trivially satisfied.

Step 3. If T is non-cyclic, then H ∼= N × T .
As it was mentioned before, a CIM-group H has the property that any two elements of
the same order are either conjugate or inverse conjugate by an automorphism of H. In
particular, this implies that all involutions of H are Aut(H)-conjugate.

If T is non-cyclic group, then either it is elementary abelian or Q8. Let us assume
first that T is an elementary abelian 2-group of order at least 4. Then all non-trivial
elements of T are Aut(H)-conjugate. Since N is characteristic in H, the subgroups CN(s)
and CN(t) are Aut(H)-conjugate for any s 6= t ∈ T \ {1}. Since any subgroup of N is
characteristic in N , we have that any subgroup of N is characteristic in H. We conclude
that K := CN(s) = CN(t) = CN(ts). Let L 6 N be the unique subgroup complementary
to K in N . Such a subgroup exists since N is a cyclic group of square-free odd order.

L is a subgroup of N so it is the direct sum of cyclic groups of different prime order,
therefore an automorphism of order 2 fixing only the identity element must invert all
elements of L. Then both s and t invert the elements of L. Therefore st acts trivially
on L implying L 6 K, and consequently L = 1. Thus any element of T centralizes N .
Therefore H ∼= N × T .
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It remains to settle the case when T ∼= Q8. In this case all cyclic subgroups of order
4 are Aut(H)-conjugate. Since Aut(N) is abelian the commutator subgroup Z of T acts
trivially on N . Hence Z E H. The quotient group H̄ = H/Z is isomorphic to N o Z2

2.
Moreover all involutions of Z2

2 are Aut(H̄)-conjugate. From the previous paragraph we
obtain that Z2

2 acts trivially on N . So, the semi-direct product N oZ2
2 is, in fact, a direct

one. Z is central, therefore H ∼= N × T . �

6 Proof of Theorem 1.2

In what follows we denote by M the set of groups of the form Zm×Zr2, Zm×Z4, Zm×Q8,
where m is a square-free odd number. Thus, Theorem 1.2 states that every H ∈ M is
a CIM-group. The proof of this property is divided into several steps. First, we show
that is sufficient to check that groups in M are connected CIM-groups. Then we prove
Theorem 6.3 which resolves the connected case. Note, that the proof of the latter theorem
is divided into several propositions following it.

The statement below collects the properties of groups in class M. We omit the proof
because it is straightforward.

Proposition 6.1. Let H ∈M. The following properties hold:

(a) Every subgroup and factor group of H ∈M belong to M ;

(b) Any two subgroups A,B 6 H ∈M of the same order are conjugate by an automor-
phism of H;

(c) Any subgroup automorphism β ∈ Aut(A), where A 6 H may be extended to an
automorphism of H;

(d) The groups in M are Dedekind groups.

Our first step provides a reduction of Theorem 1.2 to the connected case.

Proposition 6.2. If the groups of M are connected CIM-groups, then they are CIM-
groups.

Proof. Let M = CM(H,S, ρ) and M ′ = CM(H,S ′, ρ′) be two isomorphic maps over a
group H ∈ M . Then |〈S〉| = |〈S ′〉|, and by Proposition 6.1 (b) there exists an auto-
morphism α ∈ Aut(H) such that α(〈S ′〉) = 〈S〉. Thus replacing M ′ by α(M ′) we may
assume that 〈S〉 = 〈S ′〉. Since M and M ′ are isomorphic, their connected components
M1 := CM(〈S〉, S, ρ) and M ′

1 := CM(〈S〉, S ′, ρ′) are isomorphic too. Both M1 and M ′
1 are

connected maps over the group 〈S〉 ∈M . Therefore there exists β ∈ Aut(〈S〉) such that
β(M1) = M ′

1. By Proposition 6.1 (c) β can be extended up to an automorphism of H, α
say. Then α(M) = M ′, hereby proving the claim. �

To prove Theorem 1.2 for connected maps we provide a little bit more general result.
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Theorem 6.3. Let G 6 Sym(Ω) be a transitive permutation group with cyclic point
stabilizer which contains a regular subgroup H ∈M . Then any H-regular subgroup of G
is conjugate to H in G.

Kegel-Wielandt theorem says that if a finite group is the product of two nilpotent
groups, then it is solvable. In our case this gives that G = HGe is solvable.

We will prove Theorem 6.3 by induction on |G| and assume that G is a counterexample
of a minimal order. In particular, this implies that the theorem is correct for any proper
subgroup X where H 6 X < G. Since G is a counterexample, there exists an H-regular
subgroup F of G which is not conjugate to Ĥ inside G. We fix F till the end of the proof.
By the minimality of G, we may assume that 〈Ĥ, F g〉 = G for each g ∈ G. We write the
order of H as 2rm. Recall that m is an odd square-free number.

Below the following notiation is used. If G is a group acting on a set X, then GX

denotes the kernel of this action and GX denotes the image of G in Sym(X). Thus
GX ∼= G/GX .

We call a system of imprimitivity system minimal if it is not the trivial imprimitivity
system consisting of one element sets and there is no nontrivial block contained in any
of the elements of the system. Note that the trivial imprimitivity system consisting of
only one set might be minimal using our definition. Hence there is at least one minimal
imprimitivity system.

Proposition 6.4. Let G be a minimal counterexample to Theorem 6.3 and D be a proper
non-trivial imprimitivity system of G. Then GD = HD, or equivalently, G = HGD, which
is further equivalent to Gω 6 GD (here Gω is the stabilizer of an arbitrary ω ∈ Ω).

Proof. Note that D is an imprimitivity system of H too. Since H is regular, the setwise
stabilizer H{D} of a block D ∈ D acts regularly on D. Since the block stabilizers are
conjugate in H and H is a Hamiltonian group, the subgroup H{D} does not depend on
a choice of D ∈ D. Therefore the subgroup H{D}, D ∈ D coincides with HD implying
that D is an orbit of HD. It follows from HD 6 GD that GD acts transitively on each
block of D. The group HD is a regular subgroup of GD. Also HD ∼= H/HD ∈ M . The
point stabilizer of GD is isomorphic to GωGD/GD ∼= Gω/(Gω ∩ GD), and, therefore, is
cyclic. Thus GD 6 Sym(D) satisfies the assumptions of Theorem 6.3. Since |GD| =
|G|/|GD| < |G|, we may apply the induction hypothesis to GD. It yields us that FD and
HD are conjugate in GD. Therefore there exists g ∈ G such that (F g)D = HD implying
GD = 〈F g, H〉D = 〈(F g)D, HD〉 = HD. �

Proposition 6.5. Let G be a minimal counterexample to Theorem 6.3. Then G admits
a unique minimal imprimitivity system.

Proof. Assume, towards a contradiction, that G admits two minimal imprimitivity sys-
tems, say D and E . By Proposition 6.4 Gω 6 GD and Gω 6 GE . It follows from the
minimality of E and D that GD ∩ GE = {1}. Therefore Gω = {1} implying G = H
contrary to G being a counterexample. �
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For a set of elements S of a group acting on a set X, we denote by Fix(S), the elements
of X fixed by every s ∈ S.

Proposition 6.6. Let G 6 Sym(Ω) be a transitive permutation group with cyclic point
stabilizer. Then for each S 6 Gω the set Fix(T ) is a block of G.

Proof. Assume that Fix(T )∩Fix(T )g = Fix(T )∩Fix(T g) is non-empty, and pick an arbitrary
δ ∈ Fix(T ) ∩ Fix(T g). Then T, T g 6 Gδ. Since Gδ is cyclic, any two subgroups of Gδ of
the same order coincide. Therefore T = T g implying that Fix(T g) = Fix(T ). �

Proof of Theorem 6.3
Let P be a minimal imprimitivity system of G. Pick an arbitrary block Π ∈ P . Then
GΠ
{Π} is a solvable primitive permutation subgroup of Sym(Π). Therefore |Π| is a power

of a prime divisor p of |H|.

We split the proof into few steps.

Step 1. We claim that |P| > 1, or equivalently G is imprimitive.
Assume the contrary, that is |P| = 1, or, equivalently, Π = Ω. In this case H is a p-group.
By Proposition 6.6 the set Fix(Gα,β) is a block of G for any pair of points α, β ∈ Ω.
Together with the primitivity of G this implies that Gα,β = 1 whenever α 6= β. Therefore
G is a Frobenius group (the stabilizer Ge is clearly non-trivial) the kernel of which, K say,
has order |H|. Since K is a characteristic subgroup of G, it is a unique Sylow p-subgroup
of G. Therefore H = K = F , a contradiction.

Step 2. We claim GP is a p-group.
Assume that there exists a prime divisor q 6= p of |GP |. Since GP acts transitively on each
block Π ∈ P and Gω 6 GP by Proposition 6.4, we conclude that |GP | = |Gω| · |Π|. This
implies that q divides |Gω|. Thus Gω contains a subgroup Q of order q. By Proposition 6.6
the set Fix(Q) is a block of G. Since Q 6 Gω 6 GP we have that Q fixes each block of
P setwise. Since blocks of P have a p-power size, the set Fix(Q) intersects each block
of P non-trivially. By Proposition 6.5 P is a unique minimal imprimitivity system of G.
Therefore each block of G is a union of some blocks of P . Thus Fix(Q) = Ω implying that
Q = {1}. A contradiction.

Step 3. We claim that Gp′ = Hp′ = Op′(G) 6= {1}6.
By Step 2 GP is a p-group. Therefore |H|p′ = |HP |p′ and |G|p′ = |GP |p′ . By Propo-
sition 6.4 HP = GP ∼= G/GP . Therefore |Gp′ | = |Hp′ | implying Gp′ = Hp′ . By Hall’s
Theorem there exists g ∈ G such that (F g)p′ = (Fp′)

g = Hp′ . Hence F g normalizes Hp′ .
Combining this with G = 〈H,F g〉 we conclude that Hp′ E G. Together with Hp′ = Gp′

we obtain that Hp′ = Gp′ = Op′(G).
To finish the proof we need to eleminate the case of Gp′ = {1}. Assume Gp′ is trivial.

Then G and H are p-groups of order greater than p, so they are not primitive permutation
groups. Thus P is non-trivial and |P| > 1, we conclude that |H| = |Ω| > p2. Together
with H ∈M this implies that p = 2 and H is one of the groups: Zr2, Z4, Q8.

6Recall that Op′ is a maximal normal sugroup of G of order coprime to p.
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Since GΠ
{Π} is a primitive 2-group, we conclude that |Π| = 2. Therefore GP is an

elementary abelian 2-group. By Proposition 6.4 Gω 6 GP . Therefore |Gω| = 2 since
Gω 6= {1} is cyclic. Both H and F are index two subgroups of G. So, both of them are
normal in G and, in particular, G 6 NSym(Ω)(H). If H is isomorphic to one of Z4, Q8,
then H is a unique H-regular subgroup of NSym(Ω)(H), contrary to F 6 G 6 NSym(Ω)(H).
Therefore H ∼= Zr2, where r > 2.

It follows from H 6= F that G = HF and H ∩ F 6 Z(G). Further the unique
involution s ∈ Gω has a presentation s = h0f0 with h0 ∈ H and f0 ∈ F . Notice
that h0 6∈ H ∩ F and f0 6∈ H ∩ F (otherwise we would have s ∈ (H ∪ F ) \ {1} which
cannot happen because (H ∪F ) \ {1} contains only fixed-point-free permutations). Thus
G = HF = 〈f0〉〈h0〉(H ∩ F ). It follows from s2 = 1 that [f0, h0] = 1. Together with
H ∩ F 6 Z(G) we conclude that G is an abelian group. Thus G should be regular,
contrary to |Gω| = 2.

Step 4. Getting the final contradiction. It follows from Step 3 that Op′(G) is non-
trivial. Therefore the orbits of Op′(G) form a non-trivial imprimitivity system of G with
block size coprime to p. Since P is a unique minimal imprimitivity system (Proposi-
tion 6.5), the orbits of Op′(G) are unions of blocks of P . But this is impossible, since the
cardinality of blocks of P is a p-power. �

We finish this section by resolving the status of the cyclic group of order 8.

Proposition 6.7. The cyclic group Z8 is a CIM-group.

Proof. Assume towards a contradiction that M := CM(Z8, S, ρ) is a non-CI map over Z8.

Let P be a Sylow 2-subgroup of G := Aut(M) which contains Ẑ8. Then P contains a

regular cyclic subgroup which is not conjugate to Ẑ8 inside P . In particular, |P | > 16.

Therefore |NP (Ẑ8)| > 16. The point stabilizer NP (Ẑ8)0 is cyclic and is contained in

Aut(Z8). Therefore |NP (Ẑ8)0| = 2, or, equivalently, NP (Ẑ8)0 = 〈α〉 for some α ∈ Aut(Z8).

If Ẑ8 is a unique regular cyclic subgroup of NP (Ẑ8), then NP (NP (Ẑ8)) normalizes

Ẑ8. So, in this case NP (NP (Ẑ8)) = NP (Ẑ8) implying P = NP (Ẑ8), since a p-group
is nilpotent and hence the normalizer of a proper subgroup is strictly bigger than the
subgroup itself. The latter equality contradicts our assumption that P contains non-
conjugate regular cyclic subgroups. Thus NP (Ẑ8) = Ẑ8 o 〈α〉 contains non-conjugate
regular cyclic subgroups. This yields a unique choice for α ∈ Aut(H), namely: α(x) =

5x, x ∈ Z8. Notice that Ẑ8 o 〈α〉 contains exactly two regular cyclic subgroups Ẑ8 and

〈1̂α〉. Each of these subgroups is normal in Ẑ8 o 〈α〉.
Since α ∈ G0, it acts semiregularly on S. Combining this with 〈S〉 = Z8 and S = −S

we obtain that the only possibility for S is {1, 5, 3, 7}. It follows from ρ2 = α|S that
either ρ = (1, 3, 5, 7) or ρ = (1, 7, 5, 3). In both cases M is an antibalanced map the full

automorphism group of which has order 32 and has a decomposition G = Ẑ8〈ρ〉 where ρ
acts trivially on the subgroup 2Z8. In both cases all regular cyclic subgroups are conjugate
in G. �
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7 Connected CIM-groups

The main goal of this section is to prove Theorem 1.4. We start with the following.

Lemma 7.1. Let G be a group which possesses a factorization G = CS where C is cyclic
and S is a non-abelian simple group. If S is not normal in G and coreG(C) = {1}, then
one of the following holds7

(a) G ∼= An, where n is odd S ∼= An−1, C ∼= Zn;

(b) G = PSL2(11), S ∼= A5, C ∼= Z11;

(c) G = M23, S ∼= M22, C ∼= Z23.

Proof. Induction on |G|.
Consider the action of G on the set G/S of left cosets of S. This action is faithful,

because its point stabilizer is a non-normal simple subgroup of G, therefore its core is
trivial. Since the action of C on G/S is transitive, it should be regular. Thus G is
a transitive subgroup of Sym(G/S) which contains a regular cyclic subgroup C point
stabilizer of which is simple.

Assume first that the action of G is primitive. Since G is non-solvable, a more detailed
version of Feit’s Theorem [10] proved by Jones [15] implies that G is one of the following
groups (here m := |C|):

(i) G = Sym(m) for some m > 2 or G = Alt(m) for somme odd m > 3;

(ii) PSLd(q) 6 G 6 PΓLd(q) with m = (qd − 1)/(q − 1) for some d > 2;

(iii) G = PSL2(11),M11 or M23 with m = 11, 11 or 23, respectively.

Since Gx is a non-abelian simple group, the only possibillities for G are (i) or (iii). This
proves our statement in the case of primitive action.

Assume now that G acts imprimitively on the coset space G/S. Then there exists an
intermediate subgroup S < H < G. It follows from G = SC that H = S(H ∩ C) with
|H ∩C| = [H : S] > 1. The core N of H in G is a normal subgroup in G. It is non-trivial
because

N =
⋂
g∈G

Hg =
⋂
g∈C

Hg > H ∩ C

since for x ∈ H ∩ C we have xg = x for every g ∈ C. Note, that H ∩ C 6 N 6
H = S(H ∩ C) implies that N = (N ∩ S)(H ∩ C). Since S is simple, either S 6 N or
S ∩N = {1}.
Case A: S 6 N .
In this case N = H, i.e. H is normal in G. Since H < G, we can apply the induction
hypothesis to H. Thus either S E H or coreH(H ∩C) 6= {1} or H is one of the groups in
the list.

7Recall that coreG(C) is the maximal normal sugroup of G containing in C.
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In the first case, S is characteristic in H, and, therefore, normal in G. A contradiction.
In the second case, coreH(H∩C) 6= {1} is normalized by H and hence by S 6 H and it

is clearly normalized or even centralized by C. Since G = CS we have coreH(H ∩C)EG.
Therefore H ∩ C is a non-trivial normal sugroup of G contained in C. A contradiction.

In the third case, H is one of the groups in the list with a decomposition H = S(H∩C).
Let c be a generator of C. Then c induces an automorphism ofH: x 7→ xc which centralizes
the cyclic factor H ∩C. A direct check shows that the only automorphisms of the groups
in (a)-(c) which centralizes the cyclic factor are the internal ones induced by elements of
this factor. Therefore xc = xd, x ∈ H for some d ∈ H ∩ C < C. This implies that cd−1

centralizes H. But this element is centralized by C too. Hence cd−1 ∈ Z(G)∩C, contrary
to coreG(C) = {1}.

Note that this last case could also be handled using the fact that in 7 and 7 the group
G are simple. Thus the action of G on G/S is faithful and clearly primitive, giving a
contradiction in these cases.

Case B: S ∩N = {1}.
It follows from the decomposition N = (N ∩ S)(H ∩ C) that N = H ∩ C.

The automorphism group of the cyclic group H ∩ C is abelian while S is non-abelian
and simple. Therefore S acts trivially on H∩C (by conjugation). Thus S centralizes H∩C
implying H ∩C 6 Z(G). But in this case H ∩C 6 coreG(C) = {1}. A contradiction. �

Proof of Theorem 1.4. Let G be the automorphism group of a connected map
CM(H,S, ρ). We have to show that any H-regular subgroup of G is conjugate to H inside
G.

By Theorem 2.3 the point stabilizer Ge is cyclic. Therefore G has a factorization
G = GeH which satisfies the assumptions of Lemma 7.1. Thus either H is normal in
G or G is one of the groups mentioned in the list of Lemma 7.1. If H is normal in G,
then [G,G] = H implying that any non-abelian simple subsgroup of G is contained in H.
Therefore any H-regular subgroup of G coincides with H.

Assume for the rest of the proof that H is not normal in G. Then one of the cases
(a)-(c) happens.

Since H 6∼= A5, the case (b) is impossible.
In the case of (a) G ∼= An, n odd and H ∼= An−1. Since for n > 7 all subgroups of An

isomorphic to An−1 are conjugate in An, our statement is true.
In the case of (c) G ∼= M23 the group H is isomorphic to M22. According to [2] all

subgroups of M23 isomorphic to M22 are conjugate in M23. �
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