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Abstract

Intersecting and cross-intersecting families usually appear in extremal combinatorics in the vein of
the Erdős–Ko–Rado theorem [4]. On the other hand, P. Erdős and L. Lovász in the noted paper [6] posed
problems on coloring intersecting families as a restriction of classical hypergraph coloring problems to
a special class of hypergraphs. This note deals with the mentioned coloring problems stated for cross-
intersecting families.

1 Introduction

A hypergraph is a pair (V,E), where V is a finite set whose elements are called vertices and E is a family of
subsets of V , called edges. A hypergraph is n-uniform if every edge has size n.

Definition 1.1. Intersecting family is a hypergraph H = (V,E) such that e ∩ f 6= ∅ for every e, f ∈ E.

Intersecting families in extremal combinatorics appeared in the paper by P. Erdős, C. Ko and R. Rado [4],
where they determine the maximal number of edges in an n-uniform intersecting family on a given vertex
set. A large branch of extremal combinatorics starts from the mentioned paper.

Then P. Erdős and L. Lovász in [6] introduced several problems on coloring intersecting families (cliques
in the original notation), i. e. hypergraphs without a pair of disjoint edges. Obviously, an intersecting family
could have chromatic number 2 or 3 only; the main interest refers to chromatic number 3.

Definition 1.2. Cross-intersecting family is a hypergraph H = (V,E), equipped by a (not necessarily dis-
joint) covering E = A∪B by nonempty sets A and B of edges, such that every a ∈ A intersects every b ∈ B.
Slightly abusing proper notation we allow the use of both H = (V,E) and H = (V,A,B).

Cross-intersecting families were introduced to study maximal and almost-maximal intersecting families
(the notation appears in [13]). The Hilton–Milner theorem [10] uses this notion to determine the maximal
number of edges in an n-uniform intersecting family with empty common intersection on a given vertex set.
The Frankl theorem [7] is a sharpening of the Hilton–Milner theorem in the case of the bounded maximal
vertex degree of an intersecting family. Recently a general approach to mentioned problems was introduced
by A. Kupavskii and D. Zakharov [12] (the reader can also see it for a survey).

1.1 The chromatic number

A vertex r-coloring of a hypergraph (V,E) is a map c : V → {1, . . . , r}. We are interested in vertex
colorings of cross-intersecting families. Coloring is proper if there are no monochromatic edges. Chromatic
number χ(H) is the minimal number of colors such that H admits a proper coloring. First, note that a
cross-intersecting family could have an arbitrarily large chromatic number.
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Example 1.3. Consider an arbitrary integer r > 1. Consider a hypergraph H0 = (V0, E0) with chromatic
number r. Put A := E0, B := {V0}. Obviously, H := (V0, A,B) is a cross-intersecting family with chromatic
number r.

However, under a natural assumption (note that it holds for any n-uniform hypergraph) a chromatic number
of a cross-intersecting family is bounded.

Proposition 1.4. Let H = (V,A,B) be a cross-intersecting family. Suppose that A and B both have minimal
elements of E, i. e. there are such a ∈ A, b ∈ B that a, b both have no subedge in H. Then χ(H) ≤ 4.

Proof. Let us color a∩ b in color 1, a \ b in color 2, b \ a in color 3 and all other vertices in color 4. One can
see that the coloring is proper because both a and b have no subedge.

It turns out, that if there is no pair e1, e2 ∈ E such that e1 ⊂ e2 and every edge has a size of at least 3,
then the cross-intersecting family can have chromatic number 2 or 3 only. Moreover, the following theorem
holds.

Theorem 1.5. Let H = (V,A,B) be a cross-intersecting family such that there is no pair e1, e2 ∈ A ∪ B
such that e1 ⊂ e2 (i. e. (V,E) is a Sperner system). Then χ(H) ≤ 3 or V := {v1, . . . , vm, u1, . . . ul};
B := {{v1, . . . , vm}, {u1, . . . ul}}; A := {{vi, uj} for all i, j} (modulo A-B symmetry), where m, l ≥ 2.

Corollary 1.6. Let H = (V,A,B) be an n-uniform cross-intersecting family. Then χ(H) ≤ 3 or n = 2 and
H is a complete graph on 4 vertices.

Corollary 1.7. Let H = (V,A,B) be an n-uniform cross-intersecting family and min(|A|, |B|) ≥ 3. Then
χ(H) ≤ 3.

1.2 Maximal number of edges

It turns out that the maximal number of edges in a “nontrivial” n-uniform intersecting family is bounded.
There are two ways to formalize the notion “nontrivial”. The first one is to say that χ(H) ≥ 3 (denote
the corresponding maximum by M(n)). The second one says that H is nontrivial if and only if τ(H) = n
(denote the corresponding maximum by r(n)), where τ(H) is defined below.

Definition 1.8. Let H = (V,E) be a hypergraph. The covering number τ(H) (also known as transversal
number or blocking number) of the hypergraph H is the smallest size of a set A ⊂ V such that every e ∈ E
intersects A.

1.2.1 Upper bounds.

Note that M(n) ≤ r(n), because if τ(H) < n one can color an arbitrary minimal covering set in the first
color, and the rest vertices in the second, producing a proper 2-coloring. P. Erdős and L. Lovász proved in [6]
that r(n) ≤ nn (one can find slightly better bound in [2]). The best current upper bound is r(n) ≤ cnn−1

(see [1]). Surprisingly, we can prove a very similar statement for cross-intersecting families. Let us introduce
a “nontriviality” notion for cross-intersecting families.

Definition 1.9. Let us call a cross-intersecting family H = (V,A,B) critical if

• for any edge a ∈ A and any v ∈ a there is b ∈ B such that a ∩ b = {v};

• for any edge b ∈ B and any v ∈ b there is a ∈ A such that a ∩ b = {v}.
Note that if an n-uniform intersecting family H = (V,E) has τ(H) = n then (V,E,E) is a critical cross-
intersecting family.

Theorem 1.10. Let H = (V,A,B) be a critical cross-intersecting family. Denote

n := max
e∈A∪B

|e|.

Then
max(|A|, |B|) ≤ nn.
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1.2.2 Lower bounds.

L. Lovász conjectured that M(n) = [(e− 1)n!] (an example was constructed in [6]). This was disproved by
P. Frankl, K. Ota and N. Tokushige [8]. They have provided an explicit example of an n-uniform hypergraph
H with τ(H) = n and at least

c
(n

2

)n−1
(1)

edges. For cross-intersecting families Example 1.16 shows that Theorem 1.10 is tight.

1.3 The set of the pairwise edge intersection sizes

Definition 1.11. For a hypergraph H = (V,E) let us consider the set of the sizes of pairwise edge intersec-
tions:

Q(H) := {|e1 ∩ e2|, e1, e2 ∈ E}.

Again, P. Erdős and L. Lovász showed that for an n-uniform intersecting family H with χ(H) = 3 one
has 3 ≤ |Q(H)| for sufficiently large n, but there is no example with |Q(H)| < n−1

2 . For cross-intersecting
families there is a simple example with |Q(H)| = 4.

Theorem 1.12. There is an n-uniform cross-intersecting family H with Q(H) = {0, 1, 2, n−1} and χ(H) =
3.

See Example 1.17 for the proof.

1.4 Examples

Unlike the case of intersecting families there is a method of constructing a large set of (critical) cross-
intersecting families with chromatic number 3, based on percolation. This method makes it possible to
construct a cross-intersecting family from a planar triangulation, which in turn may be generated by well-
known random processes.

Example 1.13. Consider an arbitrary planar triangulation with external face F that has a size of at least 4.
Split F into 4 disjoint connected parts F1, F2, F3, F4. Let A0 be the set of collections of vertices that form
a simple path from F1 to F3; B0 be the set of collections of vertices that form a simple path from F2 to F4.
Finally, let A ⊂ A0, B ⊂ B0 be the sets of all minimal (by the inclusion relation) subsets; H := (V,A,B).

Obviously, χ(H) = 3 (one may see that no example with chromatic number 4 could be obtained from a
planar triangulation).

Remark 1.14. The same procedure can be generalized on the intersecting families as follows. Consider a
planar triangulation with a marked point in the interior. Then every set containing a loop around the marked
point intersects all other such sets. Passing to minimal (by the inclusion relation) sets we got an intersecting
hypergraph with chromatic number 3.

For a given n > 2 there exists an n-uniform cross-intersecting family (not critical) with chromatic number
3 and an arbitrarily large number of edges.

Example 1.15. Let m be an arbitrary integer number. Put V (H) := {v1, . . . , v2n−1} ∪ {u1, . . . , um};
E(H) := A1 ∪ A2 ∪ B1 ∪ B2, where A1 ∪ B1 is the set of all n-subsets of {v1, . . . , v2n−1}, A1 contains
edges intersecting {v1, . . . vn−1}, B1 contains edges intersecting {v1, vn, . . . , v2n−3} (so A1 ∩B1 6= ∅),

A2 := {{v1, . . . vn−1, ui} for every i},

B2 := {{v1, vn, . . . , v2n−3, ui} for every i}.

Note that H1 := (V1, A1 ∪ B1) has chromatic number 3, so χ(H) ≥ 3, hence by Corollary 1.6 we have
χ(H) = 3.
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Let us show that H is a cross-intersecting family. Clearly, since A1, B1 ⊂ V1, every edge from A1

intersects with every edge from B1. By the definition every edge of A2 contains {v1, . . . vn−1}, so it intersects
with every edge from B1; by symmetry the same holds for B2 and A1. Also every edge from A2 intersects
with every edge from B2 at the point v1.

Example 1.16. Consider an arbitrary n > 1. Let V := {vij | 1 ≤ i, j ≤ n}, A := {{vi1, . . . vin} | 1 ≤ i ≤ n},
B := {{v1i1 , v2i2 , . . . , vnin} | 1 ≤ i1, i2, . . . , in ≤ n}. Note that |A| = n, |B| = nn. Obviously, H := (V,A,B)
is a cross-intersecting family and χ(H) = 3.

Example 1.17 (Proof of Theorem 1.12). Our construction is based on the following object.

Definition 1.18. A hypergraph is called simple if every two edges share at most one vertex.

Let us take an (n − 1)-uniform simple hypergraph H0 = (V0, E0) such that χ(H) = 3 (see [6, 11] for
constructions). Denote V := V0 t {u1, . . . , un}, B := {{u1, . . . , un}}, A := {e ∪ {ui}|e ∈ E0, 1 ≤ i ≤ n}. By
the construction, H is an n-uniform cross-intersecting family.

Let us show that χ(H) = 3. Suppose the contrary, i.e. there is a 2-coloring of V without monochromatic
edges of A ∪ B. By the definition of H0, every 2-coloring of V0 gives a monochromatic (say, blue) edge
e ∈ E0. Then every ui is red, otherwise e ∪ {ui} is monochromatic. So {u1, . . . , un} is red, a contradiction.

Note that Q(H0) = {0, 1}, so Q(H) = {0, 1, 2, n− 1}.

2 Proofs

Proof of Theorem 1.5. First, suppose that there is no edge of size 2. We show that in this case χ(H) ≤ 3.
Consider such a pair a ∈ A, b ∈ B that |a∪ b| is the smallest. Pick arbitrary vertices va ∈ a\ b and vb ∈ b\a.
Let us color va and vb in color 1, a ∪ b \ {va, vb} in color 2 and the remaining vertices in color 3.

Let us show that this coloring is proper. Since there is no edge of size 2, there is no edge of color 1. Every
edge intersects a or b, so there is no edge of color 3. Suppose that there is an edge e of color 2. Without loss
of generality e ∈ A. Then e ⊂ |a ∪ b \ {va}|, so |e ∪ b| < |a ∪ b|, a contradiction.

Now let us consider the case {u, v} ∈ E(H). We suppose that χ(H) > 3 and show that H has the claimed
structure.

Lemma 2.1. Let a = {u, v} ∈ A, u ∈ b ∈ B. Then for every w ∈ B there is the edge {v, w} ∈ E(H) or
χ(H) ≤ 3.

Proof. Suppose that χ(H) > 3. Then for every w ∈ b there is edge {w, v} ∈ E(H), otherwise one can color
v, w in color 1, b \ w in color 2 and all other vertices in color 3, producing a proper 3-coloring.

Without loss of generality {u, v} ∈ A. Consider any edge b ∈ B (without loss of generality u ∈ b).
By Lemma 2.1 for w ∈ B edge {v, w} is contained in E(H). Suppose that for some w ∈ b there is edge
{v, w} ∈ B. Then, by Lemma 2.1 (for a = {u, v} and b = {v, w}) we have {u,w} ∈ E(H), so b = {u,w}.
Thus H contains a triangle on {u, v, w} with edges both in A and B (?). If H coincides with the triangle on
{u, v, w}, then χ(H) = 3. Otherwise, H contains an edge e which does not intersect one of the edges {u, v},
{u,w}, {v, w}. So, we can change denotation as follows: {u, v, w} = {q, r, s}, such that e, {q, r} ∈ B and
e ∩ {q, r} = ∅. Note that one of the edges {q, s}, {r, s} lies in A (without loss of generality it is {q, s}).

By Lemma 2.1 (for a = {q, s} and b = e) for every t ∈ e there is edge {q, t}. If {r, s} ∈ B, then for every
t ∈ e \ s one has {q, t} ∈ A. So by Lemma 2.1 (for a = {q, t} and b = {q, r}) there is an edge {r, t} for every
t ∈ e. If {r, s} ∈ A, then by Lemma 2.1 again (for a = {r, s} and b = e) there is an edge {r, t} for every
t ∈ e. Summing up, we have edges {q, r}, e ∈ B, {q, s} ∈ A and {x, t} ∈ E(H) for every choice x ∈ {q, r}
and t ∈ e.

If |e| = 2, then H is a complete graph on 4 vertices, and χ(H) = 4.
Let us deal with the case |e| > 2. It means that there are different s, t1, t2 ∈ e. Note that {r, t1} ∈ A since

{q, s} ∈ A, so {q, t2} ∈ A. Thus for every choice x ∈ {q, r} and t ∈ e, A contains an edge {x, t}. Obviously,
every edge of hypergraph either intersects both {q, r} and e (then it coincides with an edge {x, t}, where
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x ∈ {q, r} and t ∈ e) or contains one of them (then it coincides with {q, r} or e). Thus we have listed all the
edges of the hypergraph, so we proved the claim in this case. Note also that the set of colors in {q, r} does
not intersect the set of colors in e, so again χ(H) = 4.

In the remaining case we have all {v, w} in A. If |B| = 1, then χ(H) ≤ 3, so there is an edge b′ ∈ B,
such that it does not contain u. Suppose that b ∩ b′ = ∅. Then for every w ∈ b and t′ ∈ b′ by Lemma 2.1
(for a = {v, w} and b′) we have edges {w, t′} in E. Obviously, all these edges lie in A, otherwise we are done
by the first case (if some {w, t′} ∈ B, then we have {w, v} ∈ A, {w, t′}, b′ ∈ B). Thus, H has the claimed
structure.

Finally, if b ∩ b′ 6= ∅, then by Lemma 2.1 for a = {u, v} and b we have edge {v, t} for some t ∈ b ∩ b′.
Then b′ = {v, t}. Analogously, b = {u, t}. So the condition (?) holds, and we are done.

Proof of Theorem 1.10. First, we need the following definition.

Definition 2.2. Let H = (V,E) be a hypergraph and W be a subset of V . Define

HW := (V \W, {e \W | e ∈ E}).

Then H is a flower with k petals with core W if τ(FW ) ≥ k.

The following Lemma was proved by J. H̊astad, S. Jukna and P. Pudlák [9]. We provide its proof for the
completeness of presentation.

Lemma 2.3. Let H = (V,E) be a hypergraph; n := maxe∈E |e|. If |E| > (k − 1)n then F contains a flower
with k petals.

Proof. Induction on n. The basis n = 1 is trivial.
Now suppose that the statement is true for n−1 and prove it for n. If τ(H) ≥ k, then H itself is a flower

with at least k petals (and an empty core). Otherwise, some set of size k−1 intersects all the edges of H, and
hence, at least |E|/(k − 1) of the edges must contain some vertex x. The hypergraph H{x} = (V{x}, E{x})
has

|E{x}| ≥
|E|
k − 1

> (k − 1)n−1

edges, each of cardinality at most n− 1. By the induction hypothesis, H{x} contains a flower with k petals
and some core Y . Adding the element x back to the sets in this flower, we obtain a flower in H with the
same number of petals and the core Y ∪ {x}.

Now let us prove Theorem 1.10. Suppose the contrary, that is, without loss of generality, |A| ≥ nn + 1.
Then by Lemma 2.3 the hypergraph (V,A) contains a flower with n + 1 petals. It means that every b ∈ B
intersects the core of the flower, and H is not critical. A contradiction.

3 Open questions

The most famous problem in hypergraph coloring is to determine the minimal number of edges in an n-
uniform hypergraph with χ(H) = 3 (it is usually denoted by m(n)). The best known bounds ([5, 14, 3])
are

c

√
n

lnn
2n ≤ m(n) ≤ e · ln 2

4
n22n(1 + o(1)). (2)

P. Erdős and L. Lovász in [6] posed the same question for the class of intersecting families. Even though
the intersecting condition is very strong, it does not provide a better lower bound. On the other hand, the
upper bound in (2) is probabilistic, so it does not work for intersecting families. The current asymptotically

best upper bound [6] is 7
n−1
2 for n = 3k, which is given by the iterated Fano plane.
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Another question is to determine the minimal size a(n) of the largest intersection in an n-uniform inter-
secting family. The best bounds at this time are

n

log2 n
≤ a(n) ≤ n− 2.

Studying the mentioned problems for cross-intersecting families is also of interest.
Recall that Example 1.16 shows that Theorem 1.10 is tight. On the other hand, max min(|A|, |B|) over

all cross-intersecting families with chromatic number 3 is unknown. Obviously, one may take the example
(V,E) by P. Frankl, K. Ota and N. Tokushige and put A = B = E to get lower bound (1).
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