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Abstract

In this paper, we give a combinatorial interpretation of the r-Whitney-Eulerian
numbers by means of coloured signed permutations. This sequence is a generaliza-
tion of the well-known Eulerian numbers and it is connected to r-Whitney numbers
of the second kind. Using generating functions, we provide some combinatorial
identities and the log-concavity property. Finally, we show some basic congruences
involving the r-Whitney-Eulerian numbers.
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1 Introduction

The Eulerian numbers were introduced by Euler in a noncombinatorial way. Euler was
trying to obtain a formula for the alternating sum

∑m
i=1 i

n(−1)i (cf. [10]). Explicitly,
Eulerian numbers A(n, k) can be defined by the recurrence relation [6]

A(n, k) = (n− k + 1)A(n− 1, k − 1) + kA(n− 1, k), n > 1, k > 2, (1)
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with the initial values A(n, 1) = 1 for n > 0 and A(0, k) = 0 if k > 2. Eulerian numbers
can also be computed by the following expression

A(n, k) =
k∑
i=0

S(n, i)i!

(
n− i
k − i

)
(−1)k−i, (2)

where S(n,m) are the Stirling numbers of the second kind.
Another interesting identity involving Eulerian numbers is called Worpitzky’s identity

xn =
n∑
k=1

(
x+ k − 1

n

)
A(n, k), n > 1.

It is well-known that Eulerian numbers have a combinatorial interpretation in term of
permutations. In particular, the Eulerian number A(n, k) counts the number of permu-
tations π = π1π2 · · · πn with k − 1 descents, that is k − 1 = |{i ∈ [n− 1] : πi > πi+1}|.

The Eulerian polynomials are defined by

An(x) :=
n∑
k=1

A(n, k)xk,

with A0(x) = 1. These polynomials satisfy the following relation for any non-negative
integer n [6, p. 245].

An(x)

(1− x)n+1
=
∞∑
k=0

knxk.

The Eulerian numbers and their generalizations have been studied extensively (cf. [21]).
In the present article, we are interested in a recent generalization called r-Whitney-
Eulerian numbers and denoted by Am,r(n, k) in [19]. This new sequence is defined by
the expression

Am,r(n, k) =
n∑
j=0

Wm,r(n, j)m
jj!

(
n− j
k − j

)
(−1)k−j, (3)

where Wm,r(n, k) are the r-Whitney numbers of the second kind.
The r-Whitney numbers of the second kind Wm,r(n, k) were defined by Mező [16] as the

connecting coefficients between some special polynomials. Specifically, for non-negative
integers n, k and r with n > k > 0 and for any integer m > 0

(mx+ r)n =
n∑
k=0

mkWm,r(n, k)xk, (4)

where xn = x(x− 1) · · · (x− n+ 1) if n > 1 and x0 = 1.
The r-Whitney numbers of the second kind satisfy the recurrence [16]

Wm,r(n, k) = Wm,r(n− 1, k − 1) + (km+ r)Wm,r(n− 1, k). (5)
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Note that if (m, r) = (1, 0) we obtain the Stirling numbers of the second kind, if
(m, r) = (1, r) we have the r-Stirling (or noncentral Stirling) numbers [4], and if (m, r) =
(m, 1) we have the Whitney numbers [1]. For more details on r-Whitney numbers see for
example [5, 7, 14, 15, 18, 20, 23, 24].

From (3) and recurrence (5) we obtain that the r-Whitney-Eulerian numbers satisfy
the recurrence relation

Am,r(n, k) = (km+ r)Am,r(n− 1, k) + (m(n− (k − 1))− r)Am,r(n− 1, k − 1), (6)

with the initial values Am,r(0, 0) = 1, Am,r(n, k) = 0 if k > n+ 1 or k 6 −1.
If (m, r) = (1, 0) we recover the Eulerian numbers A(n, k). If (m, r) = (1, r) we obtain

the cumulative numbers studied by Dwyer [8, 9], see also the Euler-Frobenius numbers
studied by Gawronski and Neuschel [11]. If (m, r) = (q + 1, 1) we obtain the q-Eulerian
numbers studied by Brenti [3].

The r-Whitney-Eulerian polynomials are defined by

An,m,r(x) :=
n∑
k=0

Am,r(n, k)xk.

For non-negative integers r, n and positive m, it is known [19] that they satisfy the fol-
lowing identity

∞∑
i=0

(mi+ r)nxi =
An,m,r(x)

(1− x)n+1
,

and their exponential generating function is

∞∑
n=0

An,m,r(x)
yn

n!
=

(1− x) exp(ry(1− x))

1− x exp(my(1− x))
. (7)

For a similar class of Eulerian numbers connected to the Whitney numbers see the papers
of Rahmani [22] and Mező [17].

In the present article, we give a combinatorial interpretation of the r-Whitney-Eulerian
numbers by means of coloured signed permutations. Afterwards, we find several combi-
natorial identities in terms of this new sequence. Moreover, we prove that the r-Whitney-
Eulerian numbers are log-concave and therefore unimodal. Finally, we establish some
interesting congruences involving this sequence.

2 Combinatorial Interpretation

A signed permutation on [n] is a map

σ : [n] 7→ {±1,±2, . . . ,±n}

which is bijective and |σ| is a permutation (|σ| is defined by |σ|(i) = |σ(i)| for all i ∈ [n]).
We denote by Bn the set of all signed permutations.
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For any signed permutation σ ∈ Bn, we define a descent to be a position i such that
σ(i+1) < σ(i) with i ∈ [n−1]∪{0}. We define σ(0) = 0. For example, if σ = 3(−2)54(−1)
then 1, 3 and 4 are the descents. If σ = (−3)(−2)5(−4)1 then 0 and 3 are the descents.
The number of descents of a signed permutation σ is denoted by desB(σ).

An inversion of a signed permutation σ in Bn is a pair (i, j) such that i < j, but
|σ(i)| > |σ(j)|. The set of all inversion of σ is denoted by InvB(σ). For example, if
σ = (−3)(−2)5(−4)1 then

InvB(σ) = {(1, 2), (1, 5), (2, 5), (3, 4), (3, 5), (4, 5)}.

A signed permutation σ ∈ Bn is (m, r)-coloured if it satisfies the following conditions:

• If (i, `) /∈ InvB(σ) for all ` > i, and σ(i) > 0 then σ(i) is coloured with one of r
colors. But, if σ(i) < 0 then it is coloured with one of m− r colours.

• If the above inversion property does not hold, then we colour σ(i) with one of m−1
colours providing that σ(i) < 0, but if σ(i) is positive we coloured it with one colour.

Let n, k,m, r > 0 be integers with m > r. Let B(m,r)
n,k denote the set of (m, r)-coloured

signed permutations of Bn with k descents.

Theorem 1. For any integers n, k,m, r > 0, with m > r we have

|B(m,r)
n,k | = Am,r(n, k).

Proof. Let b
(m,r)
n,k = |B(m,r)

n,k |. We are going to prove that the numbers b
(m,r)
n,k satisfy the

same recurrence that Am,r(n, k) with the same initial values. Indeed, note that any
(m, r)-coloured signed permutation of [n] with k descents can be obtained from a (m, r)-
coloured signed permutation π′ of [n− 1] with k or k− 1 descents by inserting the entries
n or −n into π′.

In the first case, we have to put the entry n at the end of π′, or we have to put the
entries n or −n between two entries that form one of the k descents of π′. Then we have
the following possibilities:

(r + k + k(m− 1))b
(m,r)
n−1,k = (km+ r)b

(m,r)
n−1,k.

In the second case, we have to put the entries n or −n at the beginning of π′, or we
have to put the entry −n at the end of π′ or we have to insert n or −n between one of
the (n− 2)− (k − 1) = n− k − 1 ascents of π′. Hence we have the following possibilities

(1+(m−1)+(m−r)+(n−k−1)+(n−k−1)(m−1))b
(m,r)
n−1,k−1 = (m(n−(k−1))−r)b(m,r)n−1,k−1.

Therefore
b
(m,r)
n,k = (km+ r)b

(m,r)
n−1,k + (m(n− (k − 1))− r)b(m,r)n−1,k−1,

and the theorem is proved.
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Descents Coloured signed permutations
0 12, 12, 12, 12.
1 21, 21, 2(-1), 1(-2), 1(-2), (-1)2, (-1)2,

(-2)1, (-2)1, (-2)1, (-2)1, (-2)(-1), (-2)(-1).
2 (-1)(-2).

Table 1: (3,2)-Coloured signed permutations of size 2.

Example 2. Let n = 2,m = 3 and r = 2. The m−1 = 2 different colours of the elements
will be fixed as red and green; the r = 2 different colours of the elements will be fixed
as cyan and blue; while the m − r = 1 colours of the elements will be fixed as magenta.
Therefore, A3,2(2, 0) = 4, A3,2(2, 1) = 13 and A3,2(2, 2) = 1, where the coloured signed
permutations are in Table 1.

Theorem 3. The following identity holds

mnn! =
n∑
k=0

Am,r(n, k).

Proof. Let σ ∈ B(m,r)
n,k . Consider the permutation |σ| defined by |σ|(i) = |σ(i)| for all

i ∈ [n]. Let Pσ = {i ∈ [n] : (i, j) /∈ Inv(|σ|) for any j > i}. We suppose that ` = |Pσ|,
and suppose there are t negative positions of these ` (0 6 t 6 `), then these negative
positions can be coloured with one of m− r colours, while the `− t positive positions can
be coloured with one of r-colours. Therefore by the product rule we have

∑̀
t=0

(
`

t

)
(m− r)tr`−t

n−∑̀
t=0

(
n− `
t

)
(m− 1)t1n−`−t = m`mn−` = mn

ways to colour each fixed permutation. So, summing over all possible non-signed permu-
tations we get the desired identity.

3 Some Combinatorial Identities

The goal of the current section is to extend some well-known identities for the classical
Eulerian numbers to the r-Whitney-Eulerian numbers.

Theorem 4. For n, k > 0, we have the following identity

Wm,r(n, k) =
1

mkk!

k∑
i=0

Am,r(n, i)

(
n− i
k − i

)
.

Proof. The proof follows by showing that the right side of the identity have the same
recurrence relations as the r-Whitney numbers of the second kind.
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The r-Whitney-Eulerian numbers are not symmetric as the classical Eulerian numbers
(A(n, k) = A(n, n−k+ 1)). However, we note that Am,r(n, n−k−1) = Âm,r(n, k), where

Âm,r(n, k) are the generalized Eulerian numbers defined by Xiong et al. [25]. From above
relation and Lemmas 7 and 8 of [25], we obtain a generalization of the Worpitzky’s identity.

Theorem 5. For n > 0, we have the identities

(mx+ r)n =
n∑
k=0

Am,r(n, k)

(
x+ n− k

n

)
=

n+1∑
k=1

Am,r(n, n− k + 1)

(
x+ k − 1

n

)
.

Theorem 6 gives a generalization of the well-known identity for the Eulerian numbers
(cf. [6, p. 243])

A(n, k) =
k∑
i=0

(−1)i(k − i)n
(
n+ 1

i

)
.

Theorem 6. For n, k > 0, we have the identity

Am,r(n, k) =
k∑
i=0

(−1)i[(k − i)m+ r]n
(
n+ 1

i

)
.

Proof. By using the generating function (7) we have

∞∑
n=0

∞∑
k=0

Am,r(n, k)xk
yn

n!
=

(1− x) exp(ry(1− x))

1− x exp(my(1− x))
= (1−x) exp(ry(1−x))

∞∑
i=0

xieimy(1−x)

= (1− x)
∞∑
i=0

xiey(1−x)(im+r) =
∞∑
i=0

∞∑
n=0

(1− x)n+1(im+ r)nxi
yn

n!

=
∞∑
i=0

∞∑
n=0

n+1∑
`=0

(
n+ 1

`

)
(−1)`(im+ r)nxi+`

yn

n!
.

Comparing the coefficients on both sides, we get the desired result.

Above identity gives us special values when k is small:

Am,r(n, 0) = rn, Am,r(n, 1) = (m+ r)n − rn(n+ 1),

Am,r(n, 2) = (2m+ r)n − (m+ r)n(n+ 1) + rn
(
n+ 1

2

)
.

Finally, by using the generating function (7) we find a relation between the r-Whitney-
Eulerian polynomials and the classical Eulerian polynomials.

Theorem 7. For n > 0, we have the following identity

An,m,r(x) =
n∑
j=0

(
n

j

)
mjrn−jAj(x)(1− x)n−j.
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4 Unimodality and Log-Concavity Properties

In this section we prove the log-concavity and therefore the unimodality of the r-Whitney-
Eulerian numbers. Recall that a finite sequence of non negative real numbers {ak}06k6n
is said to be unimodal if there is an index i such that a0 6 a1 6 · · · 6 ai−1 6 ai > ai+1 >
· · · > an−1 > an. A sequence of real numbers is log-concave if a2i > ai−1ai+1 for 0 < i < n.
It is well know that a sequence which is log-concave is also unimodal. We first prove the
following equality.

Theorem 8. For n > 1, the r-Whitney-Eulerian polynomials satisfy the recurrence

An,m,r(x) = (mx−mx2)A′n−1,m,r(x) + (r + (mn− r)x)An−1,m,r(x). (8)

Proof. From recurrence (6) we get

An,m,r(x) =
n∑
k=0

Am,r(n, k)xk

=
n∑
k=0

[
(km+ r)Am,r(n− 1, k)xk + (m(n− (k − 1))− r)Am,r(n− 1, k − 1)xk

]
= mx

n−1∑
k=0

kAm,r(n− 1, k)xk−1 + r
n−1∑
k=0

Am,r(n− 1, k)xk +mnx
n−1∑
k=0

Am,r(n− 1, k)xk

−mx2
n−1∑
k=0

kAm,r(n− 1, k)xk−1 − rx
n−1∑
k=0

Am,r(n− 1, k)xk

= (mx−mx2)A′n−1,m,r(x) + (r + (mn− r)x)An−1,m,r(x).

The log-concavity property of the Eulerian numbers can be proved by means of the
real zero property of the Eulerian polynomials An(x) (cf. [2]). A sequence {a0, a1, . . . , an}
of the coefficients of a polynomial f(x) =

∑n
k=0 akx

k of degree n with only real zeros is
called the Pólya frequency sequence (PF). It is well know that if a sequence is PF then it is
log-concave (cf. [2]). We are going to prove that the sequence Am,r(n, k) is a PF-sequence.
To reach this aim, we first prove the following general lemma.

Lemma 9. Let (Tn(x))n be a sequence of functions for n > 0 defined by

Tn+1(x) = pn(x)Tn(x) + qn(x)T ′n(x)

T0(x) = T (x),

for some sequence of functions (pn(x))n, (qn(x))n, then

Tn+1(x) = rn(x)
d

dx
(un(x)Tn(x)),

where we define for some suitable real number α

rn(x) =
qn(x)

un(x)
and un(x) = e

∫ x
α
pn(t)
qn(t)

dt.
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Proof. Observe that
d

dx
un(x) =

pn(x)

qn(x)
un(x).

Then

rn(x)
d

dx
(un(x)Tn(x)) =

qn(x)

un(x)

d

dx
(un(x)Tn(x))

=
qn(x)

un(x)
Tn(x)

d

dx
un(x) +

qn(x)

un(x)
T ′n(x)un(x)

=
qn(x)

un(x)
Tn(x)

(
pn(x)

qn(x)
un(x)

)
+ qn(x)T ′n(x)

= pn(x)Tn(x) + qn(x)T ′n(x)

= Tn+1(x).

Theorem 10. For n > 1, the r-Whitney-Eulerian polynomials An,m,r(x) have only non-
positive real roots if m > r > 0. Therefore (Am,r(n, k))k is a PF-sequence.

Proof. The case in which m = r is clear because Am,m(n, k) = mnA(n, n− k− 1). Let us
assume that m > r, this implies 0 < 1 − r

m
. Using our previous lemma and identity (8)

we have that

An,m,r(x) = mx1−
r
m (1− x)n+1 d

dx
(x

r
m (1− x)−nAn−1,m,r(x)). (9)

We now proceed by using induction over n. For n = 1 we get

A1,m,r(x) = r + (m− r)x

which have only one real root being

x = − r

m− r
< 0.

By the inductive hypothesis for n− 1 the term

x
r
m (1− x)−nAn−1,m,r(x)

has n − 1 non-positive real roots plus the root in x = 0. So by Rolle’s Theorem the
derivative of this term must have exactly n − 1 non-positive real roots and by Equation
(9) the polynomial An,m,r(x) must have n−1 non-positive real roots. Since complex roots
appear in conjugate pairs the only choice for the last root of An,m,r(x) is to be real and
non positive since the polynomial An,m,r(x) has positive coefficients.

Therefore we have the following theorem.

Theorem 11. If 0 6 r 6 m, the r-Whitney Eulerian sequence (Am,r(n, k))k is log-concave
and therefore unimodal.
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Note that the proof of the Theorem 10 actually provide more information than what
is stated. It also shows that the polynomials An,m,r(x) and An−1,m,r(x) are interlacing if
m > r.

Let (ri)i∈N and (sj)j∈N be the sequences of the real zeros of polynomials f of degree
n and g of degree n − 1 in nonincreasing order, respectively. We say that g interlaces f
[13], denoted by g 4 f , if

rn 6 sn−1 6 · · · 6 s2 6 r2 6 s1 6 r1.

So, by using the argument of the proof, we can state that

An−1,m,r(x) 4 An,m,r(x).

5 Some Congruences

In this section, we will show some properties regarding prime congruences over generalized
Eulerian numbers. These results generalize those of Knopfmacher and Robbins [12]. We
make use of the following lemmas [12].

Lemma 12. If p is a prime number and ` > 1, 1 6 k 6 p` − 1, then(
p`

k

)
≡ 0 (mod p).

Lemma 13. If p is a prime number and ` > 1, 1 6 k 6 p` − 1, then(
p` + 1

k

)
≡

{
1 (mod p), if k = 0, 1, pl, pl + 1;

0 (mod p), if 2 6 k 6 p` − 1.

Remember that Am,r(n, n − k − 1) = Âm,r(n, k). Now we can prove the main results
of this section.

Theorem 14. If p is a prime number and ` > 1, 1 6 k + 1 6 p` − 1, then

Âm,r(p
` − 1, k) ≡

{
1 (mod p), if p 6 | m(k + 2)− r;
0 (mod p), otherwise.

Proof. From Theorem 6 we can establish the identity

Âm,r(n, k) =
k+1∑
i=0

(−1)i[(k + 2− i)m− r]n
(
n+ 1

i

)
. (10)

Therefore

Âm,r(p
` − 1, k) =

k+1∑
i=0

(−1)i[(k + 2− i)m− r]p`−1
(
p`

i

)
≡ [m(k + 2)− r]p`−1 = ([m(k + 2)− r]p−1)

p`−1
p−1 (mod p).

From Fermat little’s theorem we get the desired result.
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In particular, if m = r = 1 we have the following congruence for the Eulerian numbers.

Corollary 15 ([12], Theorem 1). If p is a prime number and ` > 1, 1 6 k 6 p`− 1, then

A(p` − 1, k) ≡

{
1 (mod p), if p 6 |k;

0 (mod p), otherwise.

Theorem 16. Let n be an integer such that n does not divide the integers (k + 2)m −
r, (k + 1)m − r and m. Then n is prime if and only if Âm,r(n − 1, k) ≡ 1 (mod n), for
1 6 k + 1 6 n− 1 and mn−1 ≡ [(k + 2)m− r]n−1 ≡ [(k + 1)m− r]n−1 ≡ 1 (mod n).

Proof. If we assume that n is prime, then the implication follows from Theorem 14. For
the converse observe that

(n− 1)! ≡ mn−1(n− 1)! =
n−1∑
k=0

Âm,r(n− 1, k) ≡ Âm,r(n− 1, 0) +
n−1∑
k=1

1

= [(k + 2)m− r]n−1 − [(k + 1)m− r]n−1 + (n− 1) ≡ −1 (mod n).

From Wilson’s Theorem we deduce that n is a prime number.

Theorem 17. Suppose that p does not divide (k + 2)m − r and (k + 1)m − r. If p is a
prime number, ` > 1, and 1 6 k + 1 6 p`, then

Âm,r(p
`, k) ≡ m (mod p).

Proof. From identity (10) we have

Âm,r(p
`, k) =

k+1∑
i=0

(−1)i[(k + 2− i)m− r]p`
(
p` + 1

i

)
≡ [(k + 2)m− r]p` − [(k + 1)m− r]p`

≡ [(k + 2)m− r]− [(k + 1)m− r]
≡ m (mod p).

Theorem 18. Suppose that p does not divide (k + 2)m − r and (k + 1)m − r. If p is a
prime number, ` > 1 and 2 6 k + 1 6 p`, then

Âm,r(p
` + 1, k) ≡ 2m2 (mod p).

Proof. By recurrence (6) we have

Âm,r(p
` + 1, k) = ((k + 2)m− r)Âm,r(p`, k) + (r + (pm − k)m)Âm,r(p

` + 1, k).

From the previous theorem we have

Âm,r(p
` + 1, k) ≡ ((k + 2)m− r)m+ (r + (pm − k)m)m ≡ 2m2 (mod p).
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