
On the minimum size of an identifying code

over all orientations of a graph

Nathann Cohen
CNRS, LRI, Univ. Paris Sud

Orsay, France

nathann.cohen@gmail.com

Frédéric Havet ∗

CNRS, Université Côte d’Azur, I3S, INRIA
Projet COATI

Sophia Antipolis, France

Frederic.Havet@cnrs.fr

Submitted: Jun 21, 2017; Accepted: Feb 17, 2018; Published: Mar 2, 2018

Mathematics Subject Classifications: 05C88, 05C89

Abstract

If G be a graph or a digraph, let id(G) be the minimum size of an identifying
code of G if one exists, and id(G) = +∞ otherwise. For a graph G, let idor(G)
be the minimum of id(D) overall orientations D of G. We give some lower and
upper bounds on idor(G). In particular, we show that idor(G) 6 3

2 id(G) for every
graph G. We also show that computing idor(G) is NP-hard, while deciding whether
idor(G) 6 |V (G)| − k is polynomial-time solvable for every fixed integer k.

Keywords: identifying code; orientations; NP-complete

1 Introduction

Let G be a graph. The closed neighbourhood of v, denoted N [v], is the set of vertices
that are either v or adjacent to v in D. A set C ⊆ V (G) is an identifying code in G if
for every vertex v ∈ V (G), N [v] ∩ C 6= ∅, and for any two distinct vertices u, v ∈ V (D),
N [u] ∩ C 6= N [v] ∩ C. The set N [v] ∩ C is called the identifier of v (with respect to C
in G) and is denoted by IC,G(v), or simply IC(v) (resp. I(v)) when G (resp. G and C)
is clear from the context. Two vertices u and v are twins in G if N [u] = N [v]. Clearly,
if a graph has two twins u and v, then it has no identifying codes because IC(u) = IC(v)
for any subset C ⊆ V (G). Conversely, if a graph G is twin-free (i.e. has no twins), then
V (G) is an identifying code. Hence we have the following.

Proposition 1. A graph has an identifying code if and only if it is twin-free.

∗Supported by ANR under contract STINT ANR-13-BS02-0007.

the electronic journal of combinatorics 25(1) (2018), #P1.49 1

For a graph G, we define id(G) as the minimum size of an identifying code of G if one
exists, and id(G) = +∞ otherwise. Hence Proposition 1 asserts that id(G) is finite if and
only if G is twin-free.

Identifying codes have been widely studied since the introduction of the concept in
[19] and have been applied to problems such as fault-diagnosis in multiprocessor systems
[19], compact routing in networks [20, 21], emergency sensor networks in facilities [22]
or the analysis of secondary RNA structures [17]. In particular, it has been proved [5]
determining the value id(G) of a graph G is NP-hard.

Identifying codes have first been studied in undirected graphs, but the concept has
naturally been extended to directed and oriented graphs [4, 3]. Let D be a digraph. The
closed out-neighbourhood of v, denoted N+[v], is the set of vertices that are either v or
dominated by v in D. A set C ⊆ V (D) is an identifying code in D if for every vertex
v ∈ V (D), N+[v] ∩ C 6= ∅, and for any two distinct vertices u, v ∈ V (D), N+[u] ∩ C 6=
N+[v]∩C. The set N+[v]∩C is called the identifier of v (with respect to C in D) and is
denoted by IC,D(v), or simply IC(v) (resp. I(v)) when D (resp. D and C) is clear from
the context.

Two vertices u and v are twins in D if N+[u] = N+[v]. Clearly, if a digraph has
two twins u and v, then it has no identifying codes because I(u) = I(v) for any subset
C ⊆ V (D). Conversely, if a digraph is twin-free (i.e. has no twins), then V (D) is an
identifying code. Hence we have the following.

Proposition 2. A digraph has an identifying code if and only if it is twin-free. In par-
ticular, every oriented graph has an identifying code.

For a digraph D, we define id(D) as the minimum size of an identifying code of D if
one exists, and id(D) = +∞ otherwise. Hence Proposition 2 asserts that id(D) is finite
if and only if D is twin-free.

Let G be a graph. The symmetric digraph associated to G, denoted by DG, is the
digraph obtained fromG by replacing each edge by two arcs in opposite directions. Clearly,
a set C is an identifying code of G if and only if it is an identifying code of DG. Hence
all results on identifying codes in graphs may be seen as results on identifying codes in
symmetric digraphs. In particular, it NP-hard to determine id(D) for a given (symmetric)
digraph. Charon, Hudry, and Lobstein [5] proved that it is NP-hard to compute id(D)
even if D is an acyclic bipartite digraph, and in particular if D is an oriented graph.

Let D be a twin-free digraph of order n. If C is an identifying code of D, then the
sets of identifiers are distinct non-empty subsets of C, so n 6 2|C|− 1. Moreover, |C| 6 n
since C is a subset of V (D). Hence

log2(n+ 1) 6 id(D) 6 n. (1)

In this paper, we are interested by the following problem. We are given an undirected
graph G of order n, and we want to find an orientation D of G such that id(D) is as small
as possible. Let idor(G) be the minimum of id(D) over all possible orientations D of G.

the electronic journal of combinatorics 25(1) (2018), #P1.49 2

Equation (1) yields directly the following.

log2(n+ 1) 6 idor(G) 6 n. (2)

The bounds in this equation are tight. Indeed En, the empty graph of order n, satisfies
idor(En) = n, and Kn, the complete graph of order n, satisfies idor(Kn) = dlog2(n + 1)e
(see Proposition 5). The fact that the lower and upper bound are attained by the complete
graphs and the empty graphs, respectively, is explained by the fact that idor decreases
with the addition of edges (Proposition 10).

In Section 3, we prove additional upper bounds using several graph parameters. We
also consider the case of trees: we show that for a tree T of order at least 5, |V (T)|+1

2
6

idor(T) 6 4
3
α(T), where α(T) denotes the maximum size of a stable set in T .

In Section 4, we investigate the relation between the parameters id and idor. Similarly,
to Equation 1, we have log2(n+1) 6 id(G) 6 n for every twin-free graph G. Furthermore,
Gravier and Moncel [16] proved that every non-empty twin-free graph G of order n satisfies
id(G) 6 n − 1. Hence, together with Equation (2), we obtain that idor(G) 6 2id(G) − 1
and id(G) 6 2idor(G) − 2 for every twin-free graph G. It is then natural to ask whether
this bound are tight or not. We prove in Theorem 27 that idor(G) 6 3

2
id(G), and in

Proposition 29, we show that this bound is tight. Foucaud [10] observed that there are
twin-free graphs G for which id(G) 6 2idor(G) − 2; see Proposition 31.

In Section 5, we study the complexity of determining idor(G) and the corresponding
decision problem.

Idor
Input: A graph G and an integer k.
Question: idor(G) 6 k ?

We prove that this problem is NP-complete (Theorem 32). On the the other hand,
when k is fixed, deciding whether idor(G) 6 k can be done in polynomial time. Indeed,
by Equation (2), a graph satisfying idor(G) 6 k has order at most 2k − 1. We can
thus return ‘No’ if |V (G)| > 2k and try all possibilities if |V (G)| 6 2k − 1 (there are
at most 2|E(G)| 6 2|V (G)|2 possible orientations and for each of them there is at most(|V (G)|

2

)
6
(

2k−1
2

)
sets of k vertices). This procedure also shows that it can be done in FPT

time when parameterized by k. An interesting question is to investigate whether idor(G)
is close to the lower bound log2(|V (G)|+ 1).

Problem 3. What is the complexity of the following problem when parameterized by k?

Small-Idor
Input: A graph G and an non-negative integer k.
Question: idor(G) 6 log2(|V (G)|+ 1) + k ?

Dually, one might wonder whether idor(G) is close to the upper bound |V (G)| and
consider the following problem

the electronic journal of combinatorics 25(1) (2018), #P1.49 3

Large-Idor
Input: A graph G and an non-negative integer k.
Question: idor(G) > |V (G)| − k ?

We prove in Theorem 36 that this problem is in XP when parameterized by k, that
is that Large-Idor is polynomial-time solvable for every fixed k. A natural question is
then the following.

Problem 4. Is Large-Idor fixed-parameter tractable (FPT) when parameterized by k?

2 Preliminaries

For every positive integer n, we denote by [n] the set {1, . . . , n}.
Let G be a graph or a digraph. For every S ⊆ V (G), we denote by G〈S〉 the subgraph

or subdigraph induced by S.

Proposition 5. idor(Kn) = dlog2(n+ 1)e.
Proof. Let us denote by [i] the set {1, . . . , i}.

Set k = dlog2(n + 1)e. Let X = {x1, . . . , xk} be a set of k vertices of Kn and let
Y = V (Kn) \ X. Orient the edges of Kn〈X〉 in a transitive way, i.e. xixj is an arc if
and only if j > i. Let I = {[i] | 1 6 i 6 k}. Let us label the vertices of Y with distinct
non-empty subsets of [k] not in I. This is possible because n > 2k − 1. We orient Y
arbitrarily. Finally, we orient an edge yxi from y to xi if and only if i is in the label of y.
Let us denote by D the resulting orientation of Kn.

We claim thatX is an identifying code ofD. Indeed, with respect toX, the identifier of
xi is {xj | j ∈ [i]|} and for every y ∈ Y the identifier of y is {xj | j in the label of y}. Hence
all the identifiers are distinct and non-empty. Therefore idor(Kn) 6 k = dlog2(n + 1)e.
By Equation (2), idor(Kn) > dlog2(n+ 1)e.

This proposition shows that the lower bound log2(n + 1) 6 idor(G) of Equation 2 is
tight. The empty graphs show that the upper bound idor(G) 6 n of Equation (2) is tight.
We shall now completely characterize the graphs G of order n satisfying idor(G) = n.

We need the following useful lemma.

Lemma 6. Let G be a graph, (V1, V2) a partition of G, and set Gi = G〈Vi〉. idor(G) 6
idor(G1) + idor(G2).

Proof. For i = 1, 2, let Di be an orientation of Gi having an identifying code Ci of order
idor(Gi). Let D be the orientation of G obtained from D1 and D2 by orienting all edges
between V1 and V2 from V1 to V2. Let us prove that C1 ∪ C2 is an identifying code of D.
Obviously IC(v) 6= ∅ for every vertex v because IC1(v) or IC2(v) was not empty. Let u
and v be two vertices. If u and v are both in V2, then IC(u) = IC2(u) 6= IC2(v) = IC(v). If
u and v are both in C1 then IC(u)∩ V1 6= IC1(u) 6= IC1(v) = IC(v)∩ V1, so IC(u) 6= IC(v).
If u ∈ V1 and v ∈ V2, then IC(u) ∩ V1 6= ∅ and IC(v) ∩ V1 = ∅, so IC(u) 6= IC(v).
Therefore, all the identifiers (according to C) are distinct.

the electronic journal of combinatorics 25(1) (2018), #P1.49 4

Corollary 7. Let G be a graph and let k be an integer. If G has an induced subgraph H
such that idor(H) 6 |V (H)| − k, then idor(G) 6 |V (G)| − k.

Let G1 and G2 be two graphs. The disjoint union of G1 and G2 is denoted by G1 +G2

and their join is denoted by G1 ⊕G2.

Corollary 8. Let G1 and G2 be two graphs. idor(G1 +G2) = idor(G1) + idor(G2).

Proof. By Lemma 6, idor(G1 +G2) 6 idor(G1) + idor(G2).
Consider now an identifying code C of an orientation D of G1 + G2. For i = 1, 2, let

Ci = C ∩ V (Gi) and Di = D〈Ci〉. One easily checks that Ci is an identifying code of Di,
so idor(G1 +G2) = |C1|+ |C2| > idor(G1) + idor(G2).

Proposition 9. Let G be a graph of order n. idor(G) = n if and only if G is the disjoint
union of copies of K1 and copies of K2.

Proof. It is clear that if G is the disjoint union of copies of K1 and copies of K2, then
idor(G) = n.

Assume now that G is not the disjoint union of copies of K1 and copies of K2. Neces-
sarily, G has an induced subgraph isomorphic to either P3 the path of order 3, or K3 the
complete graph of order 3. K3 can be oriented into the directed cycle ~C3 and P3 can be
oriented into the directed path ~P3. These two digraphs have an identifying code of size 2,
hence idor(K3), idor(P3) 6 2. Thus, by Corollary 7, idor(G) 6 n− 1.

This proposition implies that one can decides in polynomial time whether a graph G
of order n satisfies idor(G) 6 n − 1. In Subsection 5.2, we extend this by showing that,
for every fixed k, it is polynomial-time solvable to decide whether a graph G of order n
satisfies idor(G) 6 n− k.

Proposition 10. Let G be a graph and H a spanning subgraph of G. Then idor(G) 6
idor(H).

Proof. It suffices to prove the result for H = G \ e for some edge e = xy. The result then
follows by an immediate induction.

Let D be an orientation of H having an identifying code C of size idor(H). Set
U = V (G) \ C. If one endvertex of e, say y, is in U , then consider the orientation D′ of
G obtained from D by adding the arc xy. Clearly, IC,D′(v) = IC,D(v) for all v ∈ V (G).
Hence C is an identifying code of D′. Thus idor(G) 6 idor(H).

Assume now that both x and y are in C. Let D′ be the orientation obtained from
D by adding the arc xy. Observe that IC,D′(v) = IC,D(v) for all v ∈ V (G) \ {x}, and
IC,D′(x) = IC,D(x) ∪ {y}. If no vertex v distinct from x has identifier IC,D′(x), then
C is an identifying code of D′. Otherwise, there is a vertex u such that N+[u] ∩ C =
IC,D′(u) = IC,D′(x) = N+

D′ [x] ∩ C. Necessarily, u must be in U , and u dominates y. Let
D′′ be the orientation of G obtained from D′ by reversing the arc uy into yu. Then
IC,D′′(v) = IC,D(v) for all v ∈ V (G) \ {x, u}, IC,D′(x) = IC,D(u), and IC,D′(u) = IC,D(x).
Hence C is an identifying code of D′′. In both cases, idor(G) 6 idor(H).

the electronic journal of combinatorics 25(1) (2018), #P1.49 5

3 Bounds using various parameters

3.1 Upper bounds

We denote by ω(G) the clique number of the graph G. Proposition 5 and Corollary 7
imply directly the following.

Proposition 11. idor(G) 6 |V (G)| − ω(G) + dlog2(ω(G) + 1)e for all graphs G.

Proposition 11 is tight for complete graphs and disjoint union of copies of K1, copies
of K2 and one complete graph. However, we might expect better upper bounds for other
graphs, for example for connected triangle-free graphs.

The minimum degree of a graph G is denoted by δ(G). Proposition 9 shows that
idorG) 6 n − 1 if and only δ(G) > 2. We now extend this for graphs with larger
minimum degree.

Proposition 12. For every graph G, idor(G) 6 |V (G)| − δ(G)/2 + 1.

Proof. We prove the result by induction on |E(G)|, the result holding when δ(G) 6 4 by
Proposition 9.

Let G be a graph with δ(G) > 5. Necessarily G contains a cycle. Let C be a shortest
cycle in G. Let G′ = G− C. Since C is a shortest cycle, then every vertex in V (G′) has
at most three neighbours in C. Hence δ(G′) > δ(G)− 3.

Assume first that δ(G′) > δ(G)−2. By the induction hypothesis, idor(G′) 6 |V (G′)|−
δ(G′)/2 + 1 6 |V (G′)| − δ(G)/2 + 2. Moreover by Proposition 33, we have idor(C) 6
|V (C)| − 1. Hence, by Lemma 6, idor(G) 6 idor(G′) + idor(C) 6 |V (G)| − δ(G)/2 + 1.

Assume now that δ(G′) = δ(G)− 3. There is a vertex v of G′ having three neighbours
in C. Since C is a shortest cycle, it implies that |C| = 3. Hence V (C)∪{v} is a clique K on
four vertices, say K = {t, u, v, w}. Since δ(G) > 5, there exists distinct vertices v′ and w′

in G−K such that v′ is adjacent to v and w′ is adjacent to w. Set H = G〈K ∪ {v′, w′}〉.
Let D be the orientation of H such that t is a source, (u, v, w, u) is a directed cycle,
{v′v, w′w} ⊂ A(D) and all other edges between {u, v, w} and {v′, w′} are oriented towards
{v′, w′}. The set {u, v, w} is an identifying code of D as I(t) = {u, v, w}, I(u) = {u, v},
I(v) = {v, w}, I(w) = {w, u}, I(v′) = {v}, and I(w′) = {w}. So idor(H) 6 3. By the
induction hypothesis, idor(G−H) 6 |V (G−H)|−δ(G−H)/2+1 6 |V (G−H)|−δ(G)/2+
5/2. Hence, by Lemma 6, idor(G) 6 idor(H) + idor(G−H) 6 |V (G)| − δ(G)/2 + 1.

The average degree of a graph G, denoted by Ad(G), is 2|E(G)|
|V (G)| . The maximum average

degree of a graph G, denoted by Mad(G), is max{Ad(H) | H subgraph of G}.

Proposition 13 (Folklore). Every graph contains an (induced) subgraph with minimum
degree at least Ad(G)/2.

Propositions 12, 13, and 9 imply the following.

Corollary 14. For every graph G, idor(G) 6 |V (G)| − Mad(G)/4 + 1 6 |V (G)| −
Ad(G)/4 + 1.

the electronic journal of combinatorics 25(1) (2018), #P1.49 6

This result suggests the more general problems:

Problem 15.

• What is the maximum value g(k) such that idor(G) 6 |V (G)|−g(k) for every graph
G with δ(G) > k ?

• What is the maximum value g1(α) such that idor(G) 6 |V (G)| − g1(α) for every
graph G with Ad(G) > α ?

• What is the maximum value g2(α) such that idor(G) 6 |V (G)| − g2(α) for every
graph G such that Mad(G) > α ?

Observe that g1 = g2 : As Ad > Mad, we trivially have that g2(α) > g1(α). Conversely,
let G be a graph with Mad(G) = α. It contains a subgraph H such that Mad(H) =
Ad(H) = α. idor(H) 6 |V (H)|−g1(α), so by Lemma 6, idor(G) 6 |V (G)|−g1(α). Hence
g2(α) > k

4
− 1.

Proposition 12 and Corollary 14 yields the lower bounds g(k) > k
2
−1 and g1(α) > α

4
−1.

We now show some upper bounds.
We denote by Ka,b the complete bipartite graph with a vertices in one part and b vertices
in the other.

Proposition 16. idor(Kk,n−k) > n− 2k + 1.

Proof. Let (A,B) be a bipartition of Kk,n−k with |A| = k and |B| = n − k. Let C be
an identifying code in an orientation D of Kk,n−k. Set P = A ∩ C, Q = B \ C, p = |P |,
and q = |Q|. The identifiers of vertices in Q are distinct non-empty subsets of P . Hence
q 6 2p − 1. Therefore |C| = n − k − q + p > n − k − 2p + p + 1. Now p ∈ [k], so
|C| > n− 2k + 1.

Observe that if n > 2k, δ(Kk,n−k) = k, Ad(Kk,n−k) = Mad(Kk,n−k) = 2k − 2k
n

. Thus

g(k) 6 2k − 1 ;

g1(α) 6 2bα/2c − 1.

3.2 Lower bounds

Theorem 17. Let G be a graph with maximum degree ∆. Then idor(G) > 2
∆+2
|V (G)|.

Proof. Let C be an identifying code of an orientation D of G. We shall use the Discharging
Method to prove that |C| > 2

∆+2
|V (G)|. This method was often use to get lower bounds

on the size of identifying codes, in particular for infinite grids, see e.g. [2, 6, 7, 8, 9].
We give an initial charge of 1 to every vertex v. Hence the total charge is |V (G)|.

Then every vertex distribute its charge uniformly to the vertices in its identifier. In other
word, we apply the following rule: every vertex sends 1

|I(v)| to every vertex of I(v).

Consider now the final charge w(v) of a vertex. If v /∈ C, then it gives all its charge
and receives nothing, so w(v) = 0. If v ∈ C, then it gives all its charge, but receives

the electronic journal of combinatorics 25(1) (2018), #P1.49 7

from all the vertices whose identifier contains v (including itself). Observe that there are
at most ∆ + 1 such vertices, and that at most one of this vertex has {v} for identifier.
So v receives 1 from at most one vertex, and at most 1/2 from all the others. Hence
w(v) 6 1 + ∆

2
= ∆+2

2
.

The total charge is unchanged, so

|V (G)| =
∑

v∈V (G)

w(v) =
∑
v∈C

w(v) 6 |C|∆ + 2

2
.

So, |C| > 2
∆+2
|V (G)|.

The bound 2
∆+2
|V (G)| of Theorem 17 is tight as shown by the following proposition.

The incidence graph of a graph H is the bipartite graph G with bipartition (V (H), E(H))
where there is an edge between v ∈ V (H) and e ∈ E(H) if and only if v is an end vertex
of e.

Proposition 18. If G is the incidence graph of a ∆-regular graph, then idor(G) =
2

∆+2
|V (G)|.

Proof. Let H be the ∆-regular graph with incidence graph G. Set p = |V (H)|. We have

|E(H)| = ∆p
2

, and so |V (G)| = (∆+2)p
2

. Let D be the orientation of G in which all edges are
oriented from E(H) towards V (H). The set V (H) is an identifying code of G. Indeed the
identifier of every v ∈ V (H) is {v}, and the identifier of every e = uv ∈ E(H) is {u, v}.
Hence idor(G) 6 p = 2

∆+2
|V (G)|. By Theorem 17, we get idor(G) = 2

∆+2
|V (G)|.

3.3 Trees

Of course better lower and upper bounds might be obtained when G belongs to some graph
classes. In this subsection, we give tight lower and upper bounds for trees. Identifying
codes of trees have been studied in [1].

We shall need the following lemma.

Lemma 19. Let G be a graph having three vertices u, v, w such that N(u) = {v} and
N(v) = {u,w}. Any identifying code of any orientation of G contains at least two vertices
in {u, v, w}. Moreover, there is a set of size idor(G) containing w that is an identifying
code of an orientation D of G.

Proof. Because u and v have non-empty distinct identifiers, any identifying code of any
orientation of G contains at least two vertices in {u, v, w}.

Suppose now that C is an identifying code of an orientation D of G. If C does not
contain w, then {u, v} ⊆ C. Let C ′ = (C \ {v}) ∪ {w} and let D′ be the orientation of
G obtained from D by reorienting (if necessary) all edges incident to v away from this
vertex. It is simple matter to check that C ′ is an identifying code of D′.

Theorem 20. If T is a tree of order n > 2, then idor(T) > d(n+ 1)/2e.

the electronic journal of combinatorics 25(1) (2018), #P1.49 8

Proof. Let us prove the result by induction on n, the result holding trivially when n 6 3.
Let T be a tree of order n > 3. Let P = (v1, . . . , vk) be a diameter of T , and let L be the
set of all neighbours of v2 distinct from v3. All vertices in L are leaves of T because P is
a diameter,

Let C be an identifying code of an orientation D of T . Assume that v2 /∈ C. Then
L ⊆ C. Moreover, C \L is an identifying code of D− (L∪ {v2}). Thus, by the induction
hypothesis, |C \ L| > d(n − |L|)/2e, so |C| > d(n + 1)/2e. Henceforth we may assume
that v2 ∈ C. Moreover we may assume that v2 dominates all vertices in L ∩ C in D.

Because at most one vertex has {v2} as an identifier, all vertices of L except possibly
one are in C.

We distinguish two cases according to whether |L| > 2 or not.

Case 1: Assume |L| > 2. If L ⊆ C, then C \ {v1} is an identifying code of D − v1,
as v2 has a vertex of L in its identifier in D − v1. Thus, by the induction hypothesis,
|C \ {v1}| > dn/2e, so |C| > d(n+ 1)/2e. Henceforth, we may assume that one vertex in
L, say v1, is not in C. Observe that I(v1) = {v2}. Henceforth, C \L is an identifying code
of D−L because either v3 dominates v2 and its identifier in D−L is not {v2} because C
was a code in D, or v2 dominates v3 and I(v3) does not contain v2. Thus, by the induction
hypothesis, |C \ L| > d(n − |L| + 1)/2e, so |C| = |C| + |L| − 1 > d(n + 1)/2e, because
|L| > 2.

Case 2: Assume |L| = 1. By Lemma 19, we may also assume that v3 ∈ C. If v1 /∈ C,
then I(v1) = {v2}. Necessarily, I(v2) = {v2, v3}. In particular, v2 dominates v3 in
D. Consequently, C \ {v2} is an identifying code of D − {v1, v2}. Thus, by the induction
hypothesis, |C\{v2}| > d(n−1)/2e, so |C| > d(n+1)/2e. Henceforth, we may assume that
v1 ∈ C. Without loss of generality, we may assume that v2 dominates v1. Hence C \ {v1}
is an identifying code of D − v1. Thus, by the induction hypothesis, |C \ {v1}| > dn/2e,
so |C| > d(n+ 1)/2e.

The bound of Theorem 20 is tight as shown by paths:

Proposition 21. Let Pn be the path of order n. idor(Pn) = d(n+ 1)/2e.

Proof. Set Pn = (v1, . . . , vn).
Let Dn be the orientation of Pn where vi → vi+1 if and only if i is even.

If n is odd, then {vi | i odd} is an identifying code of Pn: if i is odd then I(vi) = {vi},
and if i is even then I(vi) = {vi−1, vi+1}.
If n is even, then {vi | i odd} ∪ {vn} is an identifying code of Pn: if i is odd then
I(vi) = {vi}, if i is even and i < n then I(vi) = {vi−1, vi+1}, and I(vn) = {vn−1, vn}.
Hence idor(Pn) 6 d(n+ 1)/2e.

By Theorem 20, idor(Pn) = d(n+ 1)/2e.

K1 and K2 are trees T such that idor(T) = |V (T)|. However, Proposition 9 asserts
that they are the only ones. By Proposition 21, if T = P4, then idor(T) = |V (T)| − 1.
The stars also satisfy this equality. Recall that the star of order n is the graph Sn in
which a vertex called the centre is adjacent to all other vertices, called leaves.

the electronic journal of combinatorics 25(1) (2018), #P1.49 9

Proposition 22. idor(Sn) = n− 1.

Proof. Let c be the centre of the star and u1, . . . , un−1 be its leaves. One can check that
V (Sn) \ u1 is an identifying code of the orientation of Sn with arc set {(u1, c)} ∪ {(c, ui |
2 6 i 6 n− 1}.

Assume now that C is an identifying code of an orientation D of Sn. If all leaves
of Sn are in C, then |C| > n − 1. Henceforth, we assume that a leaf, say u1 is not in
C. Since I(u1) 6= ∅, necessarily, (u1, c) ∈ A(D), c ∈ C and I(u1) = c. Moreover, since
I(ui) 6= I(u1), we necessarily have ui ∈ C for 2 6 i 6 n− 1. Thus |C| > n− 1.

However, we can improve on the upper bound idor(T) = |V (T)| − 1 via some tree
parameters. Let us denote by leav(T) the number of leaves in a tree. A leaf in a tree is
a vertex of degree at most 1. When |V (T)| > 2, we have leav(T) 6 |V (T)| − 1. A vertex
of a tree that is not a leaf is called a node.

Theorem 23. If T is a tree, then idor(T) 6

⌊
|V (T)|+ leav(T)

2

⌋
.

Proof. Let T be a tree, and let L be its set of leaves. T − L is a tree. Therefore it has a

stable set S of size at least
⌈
|V (T−L)|

2

⌉
. Let D be an orientation of T such that all edges

between S and V (T) \ S are oriented away from S.
We claim that C = V (T)\S is an identifying code of D. Indeed every vertex of S has at

least two neighbours in T which are its out-neighbours in D. Hence the identifier of every
vertex is non-empty, since the identifier of each vertex c ∈ C contains c. Furthermore,
consider two distinct vertices u, v of V (T). If one of them, say u, is in S, then NT (u) =
I(u). But u is the only vertex adjacent to the (at least two) vertices of NT (u) in T ,
because T is acyclic. Hence I(u) 6= I(v). If both u and v are not in S, then they are in C.
Without loss of generality, u does not dominate v, and so v ∈ I(v) \ I(u), so I(u) 6= I(v).
This proves that C is an identifying code of D.

Hence idor(T) 6 |C| = |V (T)| − |V (S)| 6 |V (T)| −
⌈
|V (T−L)|

2

⌉
6
⌊
|V (T)|+leav(T)

2

⌋
.

Observe that the bound of Theorem 23 is attained for stars and paths.
Note moreover that leav(T) 6 α(T) and |V (T)|/2 6 α(T). This directly implies the

following corollary.

Corollary 24. If T is a tree, then idor(T) 6 3α(T)
2

.

This upper bound is attained for the paths P2 and P4 of order 2 and 4 respectively.
However, they are the only ones.

Theorem 25. Let T be a tree different from P2 and P4. Then idor(T) 6 4
3
α(T).

Proof. We prove the result by induction. One can easily check that the results holds for
|V (T)| 6 5. In particular, for every tree T of order 5, we have idor(T) 6 4

3
α(T). Suppose

now that |V (T)| > 6.

the electronic journal of combinatorics 25(1) (2018), #P1.49 10

Assume that some vertex v ∈ T is incident to at least two leaves v1, v2. Clearly,
α(T) = α(T − v1) + 1 and, by Lemma 6, idor(T) 6 idor(T − v1) + 1. By the induction
hypothesis, idor(T − v1) 6 4

3
α(T − v1). Consequently, idor(T) 6 4

3
α(T).

Henceforth, we may assume that every vertex of T is adjacent to at most one leaf. We
distinguish three cases, depending on the value of leav(T):

• If leav(T) 6 n/3, we apply Theorem 23 and obtain idor(T) 6 2
3
n = 4

3
· n

2
6 4

3
α(T).

• If n/3 < leav(T) < n/2, then there is a node v ∈ T not adjacent to any leaf. Orient
T as an in-arborescence of root v, while setting C to be the set of nodes. We observe
that all leaves and v have an identifier of cardinality 1, while all nodes distinct from
v have identifiers of cardinality 2 (which are thus different from each other). This
ensures that idor(T) 6 n− leav(T) 6 2

3
n 6 4

3
α(T).

• If leav(T) = n/2, then we define an orientation as previously using any leaf vertex v
as the root, and set the code C to contain all nodes of T and v. This time, all nodes
have an identifier of cardinality 2 while all leaves have an identifier of cardinality 1.
This ensures that idor(T) 6 n/2 + 1 6 2

3
n 6 4

3
α(T) as n > 5.

Theorem 25 is best possible. Indeed consider A6p the tree which is the union of 2p
disjoint paths Qi = (ai, bi, ci), 1 6 i 6 2p and the path P = (a1, a2, . . . , a2p). One can
easily see that a maximum matching of A6p is {ci | 1 6 i 6 2p} ∪ {a2j | 1 6 j 6 2p}, so
α(A6p) = 3p. On the other hand, for any code C of any orientation D of A6p, there must
be at least two vertices of C in each {ai, bi, ci}, by Lemma 19. Hence idor(A6p) > 4p.
Thus idor(A6p) > 4

3
α(A6p).

4 Relations between id and idor

We denote by E(A,B) the set of edges with an endvertex in A and the other in B.

Theorem 26. idor(G) 6 2 id(G) for all graph G.

Proof. Let G be a graph. If G has some twins, then id(G) = +∞ and the results holds
trivially. Assume now that G is twin-free, that is id(G) < +∞. Let C be a code of G with
cardinality id(G) and set U = V (G)\C. Let D be an orientation of G such that all edges of
E(U,C) are oriented towards C. Observe that for every u ∈ U , IC,D(u)∩C = IC,G(u) 6= ∅
and for every vertex w ∈ C, w ∈ IC,D(w). Therefore, IC,D(v) 6= ∅ for all v ∈ V (G).

Observe that for every two distinct vertices u1, u2 ∈ U , we have IC,D(u1) ∩ C =
IC,G(u1) 6= IC,G(u2) = IC,D(u2)∩C, so IC,D(u1) 6= IC,D(u2). Recall moreover, that for two
vertices w1, w2 in C, we have IC,D(w1) 6= IC,D(w2). Hence C is almost an identifying code
of D. There only thing that prevents it to be a code are pairs (u,w) ∈ U × C such that
IC,D(u) = IC,D(w). Call such pairs, bad pairs. Observe that for any bad pair (u, v), we
have (u, v) ∈ A(D). Moreover, a vertex w ∈ C is in at most one bad pair, so there are at
most |C| bad pairs. Let U ′ be the set of vertices of U which are the first vertex of a bad
pair. One can easily check that C ′ = C ∪ U ′ is an identifying code D since the identifier

the electronic journal of combinatorics 25(1) (2018), #P1.49 11

of the two elements of a bad pair are now distinct. Moreover, |U ′| 6 |C|, so C ′| 6 2|C|.
Hence idor(G) 6 2 id(G).

Theorem 27. idor(G) 6 3
2

id(G) for all graph G.

This theorem follows directly from the following lemma.

Lemma 28. Let G be a graph having an identifying code C. There exists an orientation
D of G having an identifying code C ′ with C ⊆ C ′ and |C ′| 6 3

2
|C|.

Proof. Set U = V (G) \ C.
We first orient all the edges of E(U,C) towards C. We then partition our graph using

the following process. Set U1 := U , C1 := C and i = 1. As long as there is a vertex in
Ui having at least two neighbours in Ci. Choose such a vertex ui. Set Bi = N(ui) ∩ C,
Si = N(Bi) ∩ Ui \ {ui}, Ci+1 = Ci \ Bi, Ui+1 = Ui \ (Si ∪ {ui}), and i := i + 1. Reorient
the edges of E(ui, Bi) towards ui, and reorient the edges of E(Ci+1, Bi) towards Bi. See
Figure 1.

U

C

ui
ui+1Si

Bi

Si+1

Bi+1

Figure 1: Partitioning the graph

Let p be the index i at which the process stops. Each vertex of Up has no neighbour
in C \ Cp for otherwise it would belong to some Si. Hence it has degree 1 in C and its
neighbour is in Cp. For every, u ∈ Up, let c(u) be its neighbour. We have IC,G(u) = {c(u)},
therefore c(u) 6= c(u′) for all u, u′ ∈ Up. Let Bp be the set of vertices of Cp having a
neighbour in Up, i. e. Bp = {c(u) | u ∈ Up}. Orient all edges of E(Bp, Cp \ Bp) towards
Cp \ Bp. For each connected component H of G〈Bp〉 of order at least 3, choose a vertex
rH in H, orient the edges of H such that all vertices of H except possibly rH have out-
degree at least 1, and let wH be the vertex of Up such that c(wH) = rH . Let W be the
set of all such wH . Now consider the connected components H of G〈Bp〉 of order 2 with
vertices c(u1) and c(u2). Since IC,G(u1) = {c(u1)} and IC,G(u2) = {c(u2)}, there is a
vertex bH ∈ {c(u1), c(u2)} such that IC,G(bH) contains a vertex in C \ {c(u1), c(u2)}. Let
aH be the other vertex of {c(u1), c(u2)}. Orient the edge aHbH towards bH .

Set U ′ = U \ ({u1, . . . , up−1} ∪ W). Orient the edges of E(U \ U ′, U ′) towards U ′.
Finally orient all the unoriented edges arbitrarily to obtain an orientation D of G. Set
C ′ = C ∪ {u1, . . . , up−1} ∪W . Observe that |{u1, . . . , up} ∪W | 6 |C|/2, so |C ′| 6 3|C|/2.
We shall now prove that C ′ is an identifying code of D.

the electronic journal of combinatorics 25(1) (2018), #P1.49 12

Observe first that for every vertex u ∈ U ′, IC,G(u) = IC′,D(u). In particular, IC′,D(u)
is not empty. Since the identifier of the vertices of C ′ are trivially non-empty, all the
identifiers are non-empty. Let us now prove that they are all distinct.

Two vertices in C ′ have clearly distinct identifiers. If u′1 and u′2 are two vertices of U ′,
then IC′,D(u′1) = IC,G(u′1) 6= IC,G(u′2) = IC′,D(u′2).

Consider now a vertex u ∈ U ′ and v ∈ C ′.
If v ∈ {u1, . . . , up−1} ∪W , then v ∈ IC′,D(v) \ IC′,D(u) because all the edges of E(U \

U ′, U ′) are oriented towards U ′; If v is in Bi for some 1 6 i 6 p− 1, then ui ∈ IC′,D(v) \
IC′,D(u); If uv is not an arc, then v ∈ IC′,D(v) \ IC′,D(u).

Henceforth we may assume that u ∈ Up, v ∈ Bp and c(u) = v. Note that IC′,D(u) =
{v}. Let H be the component of v in G〈Bp〉. If H has order at least 3, then v 6= rH
because u 6= wH as u ∈ U ′. Hence v has an out-neighbour in H, and so IC′,D(v) 6= {v}.
If H has order 2, then v is either aH or bH . If v = aH , then v dominates bH . If v = bH ,
then v has in G a neighbour w in C \{aH}. Since H is a component of G〈Bp〉, necessarily
w ∈

⋃p−1
i=1 Bi and so v dominates w in D by construction. In both cases, IC′,D(v) 6= {v}.

If H has order 1, then v is adjacent to a vertex w in C, because IC,G(v) 6= IC,G(u) = {v}.
Since v is isolated in G〈Bp〉, w ∈

⋃p−1
i=1 Bi and so v dominates w in D by construction.

Thus IC′,D(v) 6= {v}.

The bound of Theorem 27 is tight, as shown by the graph R depicted in Figure 2 and
the graph made of disjoint copies of it.

Proposition 29. Let R be the graph depicted in Figure 2. idor(R) = 6 and id(R) = 4.

b1

a2

a1

a4

a3

c4

c1

b3

b2

c2

b4

c3

Figure 2: The graph R

Proof. An identifying code of G must contain at least one vertex in each set {bi, ci}, so
id(G) > 4. Now {c1, c2, c3, c4} is an identifying code of G. Indeed, for all i, we have
I(ai) = {ai, ai+1} (indices are modulo 4), I(bi) = {ci}, and I(ci) = {ci−1, ci, ci+1}. Hence
id(R) = 4.

By Theorem 27, idor(R) 6 6. We shall now prove that idor(R) > 6.

the electronic journal of combinatorics 25(1) (2018), #P1.49 13

Assume for a contradiction that D contains an orientation of D having an identi-
fying code C of order less than 6. Moreover, we take such a pair (D,C) such that
C ∩ {c1, c2, c3, c4} is maximum.

We claim that {c1, c2, c3, c4} ⊆ C. Indeed, if ci /∈ C, then the identifier of bi is {bi},
and in particular, bi ∈ C. Let C ′ = (C \ {bi}) ∪ {ci}) and let D′ be the digraph obtained
from D by reorienting (if necessary) the edge bici towards ci. One easily checks that C ′

is an identifying code of D′ and so (D′, C ′) contradicts the maximality of (D,C). This
proves our claim.

Now since |C| < 6, we have |C ∩ {a1, a2, a3, a4, b1, b2, b3, b4}| 6 1. Without loss of
generality, we may assume that C ∩ {a1, a2, a3, b1, b2, b3} = ∅. Therefore for i ∈ {1, 2, 3},
we have I(bi) = {ci}. Consequently, i ∈ {1, 2}, we have I(ai) = {ci, ci+1}. Now I(c2) =
{c1, c2, c3}, and so (c2, c3) ∈ A(D). Thus c2 /∈ I(c3) and so I(c3) = {c3, c4} because
{c3} = I(b3). Now I(a3) = {c4}, and so b4 ∈ I(b4) ⊆ C. Thus c1 and a4 must have
identifier {c1, c4}, a contradiction.

Problem 30. What is the complexity of the following problems :

• Deciding whether idor(G) < 3
2

id(G).

• Given a graph G with an identifying code C, deciding whether an orientation D of
G and an identifying code C ′ of D such that C ⊆ C ′ and |C ′| < 3

2
|C|.

Recall that id(G) 6 2idor(G)−2 for every twin-free graph G. The following proposition,
observed by Florent Foucaud [10], shows that this bound is tight. Let J2p+1 be the graph
obtained from a complete graph on 2p+ 1 vertices by removing a matching of size p.

Proposition 31. Let k > 1 be an integer. idor(J2k−1) = k and id(J2k−1) = 2k − 2.

Proof. Twin-free graphs such that id(G) = |V (G)|−1 have been characterized by Foucaud
et al. [13]. The graphs J2p+1 are among them, so id(J2k−1) = 2k − 2.

Now, let C be a set of k vertices of J2k−1 such that C is complete to V (J2k−1) \ C.
Such a set clearly exists by definition of J2k−1. Take an arbitrary orientation DC of G〈C〉.
Let F be the set of closed out-neighbourhoods in DC : F = {N+

DC
(v) | v ∈ C}. Let us

label the vertices of V (J2k−1) \C with distinct non-empty subsets of C not in F . This is
possible because J2k−1 has 2k−1 vertices. Let D be an orientation of G obtained from DC

by orienting an edge uv with u ∈ V (J2k−1) \C and v ∈ C from u to v if and only if v is in
the label of u, and orienting the edges with both endvertices in V (J2k−1) \ C arbitrarily.
One easily checks that C is an identifying code of D. Thus idor(J2k−1) = k.

5 Complexity

5.1 Complexity of Idor

Finding the minimum size of an identifying code in a graph or a digraph is an NP-hard
problem even on some very restricted classes of graphs or digraphs, see e.g. [5, 12, 11, 4].
We now prove an analogous results for idor.

the electronic journal of combinatorics 25(1) (2018), #P1.49 14

Theorem 32. Idor is NP-complete, even when restricted to bipartite cubic graphs or
when restricted to bipartite planar graphs of maximum degree 3.

Proof. Reduction from Vertex Cover which consists, given a graph G and a non-
negative integer k, in deciding whether G has a vertex cover of size at most k. Recall that
a vertex cover in a graph G is a set S of vertices such that every edge of G has an endvertex
in S. The minimum size of a vertex cover of G is denoted by vc(G). This problem is one
of the 21 first problems proved to be NP-complete by Karp [18]. It is known to be NP-
complete even when restricted to cubic graphs [15] and when restricted to planar graphs
of maximum degree 3 [14]. It can easily be shown that it also remains NP-complete when
restricted to such planar graphs with minimum degree at least 2 and maximum degree 3.
(From an instance G of vertex cover, consider the graph H = G− (V1 ∪N(V1)) where V1

is the set of vertices of degree at most 1 and N(V1) the set of vertices adjacent to vertices
in V1.)

Let G be a graph. Let H be the graph obtained from G by replacing each edge by the
edge gadget Fe depicted Figure 3.

xev

u

yeu

xeu

yev

v

Figure 3: The edge-gadget Fe for an edge e = uv.

Observe that H is bipartite. Moreover if G is cubic then H is cubic, and if G is a
planar graph with minimum degree at least 2 and maximum degree 3 so is H. We claim
that idor(H) = vc(G) + 2|E(G)| which will imply the result.

We shall use the name of the vertices as written of this figure. For each edge e = uv,
we set Xe = {xeu, xev}.

Assume that G has a vertex cover S.
Let e = uv be an edge of G. We have |{u, v} ∩ S| > 1. If |{u, v} ∩ S| = 1, we

orient the edges of Fe as shown on Figure 4 left, and if |{u, v} ∩ S| = 2, we orient
the edges of Fe as shown on Figure 4 right. This result in an orientation D of G. Set
C = S ∪

⋃
e∈E(G) Xe. We claim that the set C is an identifying code in D. Indeed, for

all v ∈ S, I(v) = {v}, for all w ∈ V (G) \ S, I(w) = NH(w), for every edge e = uv with
v ∈ S, I(yeu) = {xeu, xev}, I(yev) = {xev}, I(xev) = {xev, v} and I(xeu) = {xeu, u} if u ∈ S and
I(xeu) = {xeu} otherwise. (Here the fact that G has minimum degree at least 2 implies
that for all w ∈ V (G) \ S, I(w) is non-empty and distinct from the other identifiers.)
Hence idor(H) 6 |C| = vc(G) + 2|E(G)|.

the electronic journal of combinatorics 25(1) (2018), #P1.49 15

Figure 4: The orientation of the edge-gadget Fe when one endvertex of e is in S (left) and
both endvertices of e are in s (right). Black vertices are those in S and black and grey
vertices those in C.

Reciprocally, consider an orientation D of H having an identifying code C of size
idor(H). Moreover consider such an identifying code that maximizes the number of ver-
tices in V (G).

Let E ′ be the set of edges of G having no endvertex in C. For each e ∈ E ′ select an
endvertex xe of e. Let S = (C ∩ V (G)) ∪ {xe | e ∈ E ′}. By construction, S is a vertex
cover of G. Moreover, for every edge e = uv of G, C contains at least two vertices in
{xeu, xev, yeu, yev} for otherwise either one of the identifiers of yeu and yev is empty, or they are
both the same. Furthermore, if e ∈ E ′, there are at least three vertices in {xeu, xev, yeu, yev}:
indeed, the identifiers of those four vertices are contained in {xeu, xev, yeu, yev} ∩ C and this
set must be of size at least 3 to have four non-empty distinct subsets. Consequently, |C| >
|C∩V (G)|+2|E(G)|+ |E ′| = |S|+2|E(G)|. Hence idor(H) > |C| = vc(G)+2|E(G)|.

Observe Idor can be solved in polynomial time for graphs with maximum degree 2.
Indeed such graphs are disjoint union of paths and cycles. Consequently idor can be
computed in linear time (the time required to compute the connected components of the
graphs) using Corollary 8, Proposition 21 and the following proposition.

Proposition 33. Let Cn be the cycle of length n. If n 6= 4 then idor(Cn) = dn/2e, and
idor(C4) = 3.

Proof. Assume first that n 6= 4. By Theorem 17, idor(Cn) > dn/2e. Let D be an
orientation of Cn with bn/2c sources and bn/2c sinks. One easily checks that the set of
dn/2e vertices of D which are not source is an identifying code of D. Hence idor(Cn) 6
dn/2e.

Assume now that n = 4. Equation (2) yields idor(C4) > 3 and Proposition 9 implies
idor(C4) 6 3.

Observe that graphs with maximum degree 2 have treewidth at most 2. More gener-
ally, one can compute Idor can be solved in polynomial time for graphs with bounded
treewidth.

Proposition 34. For every fixed integer t, Idor is polynomial-time solvable when re-
stricted to the class Tt of graphs with treewidth at most t.

the electronic journal of combinatorics 25(1) (2018), #P1.49 16

Proof. Using standard dynamic programming. For each bag B, let HB be the subgraph
induced by the vertices contains in the bags of the subtree with root B. For each subset
A and set P of unordered pairs of B, we keep the minimum size of a partial code C of
an orientation DB of HB \ E(G〈B〉) such that B ∩ C = A and each pair {u, v} in P is
distinguished (i.e. N+

D (u) 6= N+
D (v)).

Problem 35. What is the complexity of Idor when restricted to cographs? when re-
stricted to split graphs ? when restricted to interval graphs ? when restricted to chordal
graphs ?

5.2 Large-Idor

The aim of this subsection is to prove that Large-Idor is XP when parameterized by
k. This is equivalent to the following statement.

Theorem 36. For every fixed non-negative k, the following problem is polynomial-time
solvable.

k-Large-Idor
Input: A graph G.
Question: idor(G) > |V (G)| − k ?

Our proof of Theorem 36 is based on the notion of atom. A graph G is a k-atom if
idor(G) = |V (G)|−k and idor(H) > |V (H)|−k for all proper induced subgraphs H of G.
Let Ak be the set of k-atoms. Observe that Corollary 7 implies that every graph G such
that idor(G) 6 |V (G)| − k contains a k-atom as an induced subgraph. In other words,
the set of graphs such that idor(G) > |V (G)| − k is the set of Ak-free graphs.

We shall prove that for every k the set Ak is finite. Then a brute-force algorithm
checking whether a given graph G contains a (k+ 1)-atom would solve k-Large-Idor in
polynomial time.

Theorem 37. Let k be a positive integer. Every k-atom has order at most
(
k
2

)
+ 2k + 1.

Proof. Let G be a graph of order n. It has an orientation D which has an identifying
code C of order n− k. Set U = V (G) \ C.

To prove the result, it is sufficient to prove that there is a set C ′ of size at most(
k
2

)
+ k + 1 which is an identifying code of an orientation D′ of G〈U ∪ C ′〉. For such C ′

and D′, the following four properties will be satisfied.

(P1) for every vertex v ∈ V (D′), IC′(v) 6= ∅.

(P2) for every two distinct vertices u, u′ ∈ U , IC′(u) 6= IC′(u′).

(P3) for every two distinct vertices v, v′ ∈ C ′, IC′(v) 6= IC′(v′).

(P4) for every u ∈ U and v ∈ C, IC′(u) 6= IC′(v).

the electronic journal of combinatorics 25(1) (2018), #P1.49 17

For every two distinct vertices u, u′ ∈ U , choose a vertex s(u, u′) in IC(u)4 IC(u′). Set
S = {s(u, u′) | {u, u′} 2-subset of U}. We have |S| 6

(
k
2

)
. Moreover, s(u, u′) is dominated

by u or u′ in D because it is in IC(u)4 IC(u′). Therefore at most one vertex of U has no
out-neighbour in S. If such a vertex u0 exists, let t(u0) be its out-neighbour in C and let
C0 = S ∪ {t(u0)}. Otherwise let C0 = S. Let D0 = D〈C0 ∪ U〉. We shall now extend
C0 into set Ci and D0 into an orientation Di of G〈Ci ∪ U〉 that satisfies the following
properties.

Observe that C0 and D0 have been constructed so that P1 and P2 hold. Moreover,
P3 holds for every oriented graph since for two elements in the code, one of them is not
in the identifier of the other. However, C0 and D0 do not necessarily fulfill P4. Let B =
{(u1, v1), . . . , (up, vp)} be the pairs of U×C0 that do not satisfy P4 (i.e. IC0(ui) = IC0(vi)).
Observe that, since P3 holds, all the ui are distinct, and so p 6 k.

For i = 1, . . . , p, choose a vertex t(ui, vi) in IC(ui)4 IC(vi). Let T = {t(ui, vi) | 1 6
i 6 p}. Note that T ∩ C0 = ∅. Now orient all edges between C0 and T towards T and
all edges between T and U towards U . Finally, if {vi, t(ui, vi)} is not an edge, then we
reorient {ui, t(vi)} in (ui, t(vi)). This results in an orientation D′ of G〈S ∪ T ∪ U〉.

We claim that C ′ = C0∪T is an identifying code of D′. Clearly, C ′ and D′ satisfy P1,
P2 and P3. Let us now prove that P4 also holds. Let u and v be two vertices in U and
C respectively.
Assume first that v ∈ C0. If (u, v) /∈ B, then IC0(u) 6= IC0(v), so IC′(u) 6= IC′(v).
If (u, v) ∈ B, then either {u, t(u, v)} is an edge of G and t(u, v) ∈ N+[v] \ N+[u], or
{u, t(u, v)} is not an edge of G and t(u, v) ∈ N+[u]\N+[v]. In both cases, IC′(u) 6= IC′(v).
Assume now that v ∈ T . There exists i such that v = t(ui, vi). If u 6= ui, then v /∈ N+[u]
and so IC′(u) 6= IC′(v). If u = ui, then either v /∈ N+[u], or {vi, v} is not an edge of G.
In both cases, IC′(u) 6= IC′(v).

In view of Theorem 37, one naturally asks the following questions.

Problem 38. What is precisely the set of k-atoms ? In particular, what is the maximum
size of a k-atom ? How many k-atoms are there ?

Note that Proposition 9 implies that the set of 1-atoms is {K3, P3}.

5.3 IsCode

Problem 39. What is the complexity of the following problem :

IsCode
Input: A graph G and a set C ⊆ V (G).
Question: Is there an orientation D of G for which C is an identifying code ?

Theorem 40. IsCode is NP-complete.

Proof. IsCode is clearly in NP. An orientation D of G in which C is an identifying code
is clearly a certificate.

the electronic journal of combinatorics 25(1) (2018), #P1.49 18

Let us now prove that IsCode is NP-hard. We give a reduction from 3, 4-SAT which
is a restriction of 3-SAT to instances in which each variable occurs at most 4 times. This
problem was shown NP-complete by Tovey [23].

Consider a 3, 4-SAT formula. We first double every clause to obtain an equivalent 3, 4-
SAT formula F with 2m clauses C1, . . . , C2m on n variables x1, . . . , xn. Let G be the graph
and C its subset of vertices constructed as follows. For each variable xi, we create a vari-
able gadget V Gi with vertex set {x1

i , x
2
i , x̄

1
i , x̄

2
i , yi}, and edge set {x1

i yi, x
2
i yi, x̄

1
i yi, x̄

2
i yi}. For

each clause Cj = `1
j ∨ `2

j ∨ `3
j , we create a clause gadget CGj with vertex set {`1

j , `
2
j , `

3
j , zj},

and edge set {`1zj, `2zj, `3zj}. See Figure 5. Moreover, if `kj , k ∈ [3], is the negated literal
x̄i then we connect the vertex `kj to x1

i and x2
i , and if `kj is the non-negated literal xi then

we connect the vertex `kj to x̄1
i and x̄2

i .

x2
i x1

i x̄1
i x̄2

i

yi

`1
j `2

j `3
j

zj

Figure 5: Variable gadget V Gi (left) and clause gadget CGj (right).

We define C =
⋃n
i=1 V (V Gi) ∪

⋃2m
j=1 V (CGj).

The two gadgets are very similar in their principle: we want to ensure that, in any
orientation of G in which C is an identifying codes, every variable/clause gadget has at
least one vertex whose edges leaving the gadget are all directed away from it. To this
aim, we add new vertices in G (but not in C). For every vertex v in {x1

i , x
2
i , x̄

1
i , x̄

2
i }, let

P [v] = NG[v] \ {yi}.

• For every variable xi, we add a vertex whose unique neighbour is yi;

• For every clause Cj, we add a vertex whose unique neighbour is zj;

• For every set S which is a non-empty strict subset of P [v] for some vertex v ∈⋃n
i=1{x1

i , x
2
i , x̄

1
i , x̄

2
i }, we add a vertex whose neighbourhood is S.

Observe that in the last step, for every `kj , we create a vertex of V (G)\C whose unique
neighbour is `kj .

Observe that since every variable occurs in at most 8 clauses, there are at most 29−2 =
510 non-empty strict subsets of P [v] for all v ∈

⋃n
i=1{x1

i , x
2
i , x̄

1
i , x̄

2
i }. Hence G has a size

at most 2046n+ 2m.

Let us now show that F is satisfiable if and only if G has an orientation in which C
is an identifying code.

Suppose first that C is an identifying code of an orientation D of G. Observe that
every vertex v ∈ V (G) \ C must satisfy I(v) = NG(v), and all edges of E(V (G) \ C,C)
are oriented towards C.

the electronic journal of combinatorics 25(1) (2018), #P1.49 19

In particular, for every v ∈ C, there is a vertex in V (G) \ C whose identifier is {v}.
Consequently, all vertices of C must have at least one out-neighbour in C. In particular,
each yi has an out-neighbour which must be in C so in {x1

i , x
2
i , x̄

1
i , x̄

2
i }. Furthermore,

we can assume that yi has exactly one out-neighbour in {x1
i , x

2
i , x̄

1
i , x̄

2
i } because reversing

some arcs towards yi leaves C an identifying code of D (provided that yi keeps one out-
neighbour). Let wi be the out-neighbour of yi. As mentioned above it is in {x1

i , x
2
i , x̄

1
i , x̄

2
i }.

The identifier of wi is contained in P [wi]. Now by construction and the fact that all
edges of E(V (G) \ C,C) are oriented towards C, every strict subset S of this set is the
neighbourhood and the identifier of a vertex in V (G) \ C. Hence the identifier of wi is
P [wi]. In particular, it dominates all its neighbours in clause gadgets.

Let φ be the truth assignment defined by φ(xi) = true if wi ∈ {x1
i , x

2
i } and φ(xi) =

false otherwise. Let us prove that it satisfies φ.
Let Cj = `1

j ∨ `2
j ∨ `3

j be a clause of F . In D, zj has an out-neighbour, say `kj .
Assume that the literal lkj corresponds to the negated variable x̄i. Then vertex NG(`kj) =
{zj, x1

i , x
2
i }. Hence its identifiers is contained in {`kj , x1

i , x
2
i }. But since xi is in at least two

clauses (because we doubled the clauses), {`kj}, {`kj , x1
i } and {`kj , x2

i } are strict subsets of
P [x1

i] and P [x2
i] respectively. Therefore, those three sets are identifiers of some vertices

of V (G) \ C. Hence the identifier of `kj is {`kj , x1
i , x

2
i }. In particular, `kj dominates x1

i and
x2
i and so wi is not in {x1

i , x
2
i }. Hence by definition φ(`kj) = φ(x̄i) = true. So Cj contains

a true literal.

Assume now that there is a truth assignment φ satisfying F . Let D be the orientation
of G obtained as follows. Firstly we orient all edges of E(V (G)\C,C) are oriented towards
C. Secondly for every variable xi, we orient the edges yix

1
i and yix

2
i away from yi and

the edges yix̄
1
i and yix̄

2
i towards yi if φ(xi) = true, and we orient the edges in the other

direction if φ(xi) = false. Finally, for every clause Cj = `1
j ∨ `2

j ∨ `3
j , we orient zj towards

its literals which are true. (There is at least one of them). Moreover if φ(`kj) = true, we
orient all edges between `kj and vertices in variable gadgets away from `kj . Otherwise, we
orient all these edges towards `kj . One can easily check that C is an identifying code of
D.

Despite Theorem 40, there are many cases when IsCode can be solved in polynomial
time. If C = V (G) the answer is trivially ‘yes’, and if 2|C| − 1 < V (G) then the answer is
trivially ‘no’. If C is a stable set of G, or if G〈C〉 has a bounded number of edges, then
it can be solved in polynomial time using matchings, as we shall now explain.

Lemma 41. Given a graph G, a set C ⊆ V (G), and an orientation DC of G〈C〉, one can
check in polynomial time whether there exists an orientation D of G such that D〈C〉 = DC

and C is an identifying code of D.

Proof. Observe first that for any orientation D such that D〈C〉 = DC , IC,D(v) = N+[v]∩C
for all v ∈ C.

For every vertex v ∈ V (G), let P (v) be the set of potential identifiers of v and p(v)
its cardinality: if v ∈ C, then P (v) = {N+[v] ∩ C} and p(v) = 1; if v ∈ V (G) \ C, then

the electronic journal of combinatorics 25(1) (2018), #P1.49 20

P (v) consists in all non-empty subsets of N(v) ∩ C and p(v) = 2|N(v)∩C| − 1. Note that
p(v) can be computed in polynomial time.

We need to assign to each vertex v a set I(v) in P (v) such that the I(v) are pairwise
distinct. Observe that if p(v) > |V (G)| whatever assignment is done for the other vertices,
one can find a set I(v) in P (v) which is distinct from the I(u), u 6= v. Hence, we do the
assignment of such vertices greedily at the end.

Let A be the set of vertices such that p(v) < |V (G)|. By the above observation, it
suffices to assign identifiers to vertices in A. Let us construct an auxiliary bipartite graph
H. The partition of its vertex set is (A,B) with B the set of subsets of C in

⋃
v∈A P (v).

Note that B has size less than |V (G)|2 because p(v) < n for all v ∈ A. The edge set of
H is E(H) = {ab | a ∈ A, b ∈ P (a)}. Finding an assignment of distinct identifiers for
vertices in A is equivalent to find a matching saturating A in H. This can be done in
polynomial time, by the celebrated Hungarian Method for example.

Lemma 41 implies that IsCode can be solved in polynomial time if C has few edges,
that is at most log2(P (|V (G)|)) for P a fixed polynomial.

Problem 42. What is the complexity of the following problem :

CliqueCode
Input: A graph G and a clique C ⊆ V (G).
Question: Is there an orientation D of G for which C is an identifying code ?

Acknowledgements

The authors would like to thank an anonymous referee for their careful reading and
suggestions that helped to improve the presentation of the paper.

References

[1] Mostafa Blidia, Mustapha Chellali, Frédéric Maffray, Julien Moncel, and Ahmed
Semri. Locating-domination and identifying codes in trees. Australasian Journal of
Combinatorics, 39:219–232, 2007.

[2] Marwane Bouznif, Frédéric Havet, and Myriam Preissmann. Minimum-density iden-
tifying codes in square grids. In Algorithmic Aspects in Information and Management
- 11th International Conference, AAIM 2016, Bergamo, Italy, July 18-20, 2016, Pro-
ceedings, pages 77–88, 2016.

[3] Irène Charon, Sylvain Gravier, Olivier Hudry, Antoine Lobstein, Michel Mollard, and
Julien Moncel. A linear algorithm for minimum 1-identifying codes in oriented trees.
Discrete Applied Mathematics, 154(8):1246–1253, 2006.

[4] Irène Charon, Olivier Hudry, and Antoine Lobstein. Identifying and locating-
dominating codes: NP-completeness results for directed graphs. IEEE Transactions
on Information Theory, 48(8):2192–2200, Aug 2002.

the electronic journal of combinatorics 25(1) (2018), #P1.49 21

[5] Irène Charon, Olivier Hudry, and Antoine Lobstein. Minimizing the size of an iden-
tifying or locating-dominating code in a graph is NP-hard. Theoretical Computer
Science, 290(3):2109 – 2120, 2003.

[6] Daniel W. Cranston and Gexin Yu. A new lower bound on the density of vertex
identifying codes for the infinite hexagonal grid. Electron. J. Combin., 16(1):#R113,
2009.

[7] Ari Cukierman and Gexin Yu. New bounds on the minimum density of an identifying
code for the infinite hexagonal grid. Discrete Appl. Math., 161(18):2910–2924, 2013.

[8] Rennan Dantas, Frédéric Havet, and Rudini M. Sampaio. Identifying codes for infinite
triangular grids with a finite number of rows. Discrete Math., 340(7):1584–1597, 2017.

[9] Rennan Dantas, Rudini M. Sampaio, and Frédéric Havet. Minimum density of iden-
tifying codes of king grids. Electronic Notes in Discrete Mathematics, 62:51–56, 2017.

[10] Florent Foucaud. Personnal communication.

[11] Florent Foucaud. Decision and approximation complexity for identifying codes and
locating-dominating sets in restricted graph classes. J. Discrete Algorithms, 31:48–68,
2015.

[12] Florent Foucaud, Sylvain Gravier, Reza Naserasr, Aline Parreau, and Petru Valicov.
Identifying codes in line graphs. Journal of Graph Theory, 73(4):425–448, 2013.

[13] Florent Foucaud, Eleonora Guerrini, Matjaz Kovse, Reza Naserasr, Aline Parreau,
and Petru Valicov. Extremal graphs for the identifying code problem. Eur. J. Comb.,
32(4):628–638, 2011.

[14] Michael R. Garey and David S. Johnson. Computers and intractability. W. H. Free-
man and Co., San Francisco, Calif., 1979. A guide to the theory of NP-completeness,
A Series of Books in the Mathematical Sciences.

[15] Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified
np-complete graph problems. Theoretical Computer Science, 1(3):237 – 267, 1976.

[16] Sylvain Gravier and Julien Moncel. On graphs having a set as an identifying code.
Discrete Mathematics, 307(3-5):432 – 434, 2007.

[17] Teresa Haynes, Debra Knisley, Edith Seier, and Yue Zou. A quantitative analy-
sis of secondary rna structure using domination based parameters on trees. BMC
Bioinformatics, 7(1):108, 2006.

[18] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103.
Springer US, Boston, MA, 1972.

[19] Mark G. Karpovsky, Krishnendu Chakrabarty, and Lev B. Levitin. On a new class of
codes for identifying vertices in graphs. IEEE Trans. Information Theory, 44(2):599–
611, 1998.

[20] Moshe Laifenfeld, Ari Trachtenberg, Reuven Cohen, and David Starobinski. Joint
monitoring and routing in wireless sensor networks using robust identifying codes. In
Fourth International Conference on Broadband Communications, Networks and Sys-

the electronic journal of combinatorics 25(1) (2018), #P1.49 22

tems, (BROADNETS 2007), 10-14 September 2007, Raleigh, North-Carolina, USA,
pages 197–206. IEEE, 2007.

[21] Moshe Laifenfeld, Ari Trachtenberg, Reuven Cohen, and David Starobinski. Joint
monitoring and routing in wireless sensor networks using robust identifying codes.
MONET, 14(4):415–432, 2009.

[22] Saikat Ray, Rachanee Ungrangsi, Francesco De Pellegrini, Ari Trachtenberg, and
David Starobinski. Robust location detection in emergency sensor networks. In
Proceedings IEEE INFOCOM 2003, The 22nd Annual Joint Conference of the IEEE
Computer and Communications Societies, San Franciso, CA, USA, March 30 - April
3, 2003. IEEE, 2003.

[23] Craig A. Tovey. A simplified np-complete satisfiability problem. Discrete Applied
Mathematics, 8(1):85 – 89, 1984.

the electronic journal of combinatorics 25(1) (2018), #P1.49 23

	Introduction
	Preliminaries
	Bounds using various parameters
	Upper bounds
	Lower bounds
	Trees

	 Relations between `39`42`"613A``45`47`"603Aid and `39`42`"613A``45`47`"603Aidor
	Complexity
	Complexity of Idor
	Large-Idor
	IsCode

