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Abstract

Let ex(n, P ) be the maximum possible number of ones in any 0-1 matrix of
dimensions n×n that avoids P . Matrix P is called minimally non-linear if ex(n, P ) 6=
O(n) but ex(n, P ′) = O(n) for every proper subpattern P ′ of P . We prove that the
ratio between the length and width of any minimally non-linear 0-1 matrix is at
most 4, and that a minimally non-linear 0-1 matrix with k rows has at most 5k− 3
ones. We also obtain an upper bound on the number of minimally non-linear 0-1
matrices with k rows.

In addition, we prove corresponding bounds for minimally non-linear ordered
graphs. The minimal non-linearity that we investigate for ordered graphs is for the
extremal function ex<(n,G), which is the maximum possible number of edges in
any ordered graph on n vertices with no ordered subgraph isomorphic to G.

Keywords: 0-1 matrices, generalized Davenport-Schinzel sequences, ordered
graphs, pattern avoidance, extremal functions, minimally non-linear

1 Introduction

A 0-1 matrix M contains a 0-1 matrix P if some submatrix of M either equals P or can
be turned into P by changing some ones to zeroes. Otherwise M avoids P . The function
ex(n, P ) is the maximum number of ones in any 0-1 matrix of dimensions n × n that
avoids P .

The function ex(n, P ) has been used for many applications, including resolving the
Stanley-Wilf conjecture [10] and bounding the maximum number of unit distances in a
convex n-gon [4], the complexity of algorithms for minimizing rectilinear path distance
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while avoiding obstacles [11], the maximum number of edges in ordered graphs on n ver-
tices avoiding fixed ordered subgraphs [9, 13, 19], and the maximum lengths of sequences
that avoid certain subsequences [14].

It is easy to see that ex(n, P ) = ex(n, P ′) if P ′ is obtained from P by reflections over
horizontal or vertical lines or ninety-degree rotations. It is also obvious that if P ′ contains
P , then ex(n, P ) 6 ex(n, P ′).

If P has at least two entries and at least one 1-entry, then ex(n, P ) > n since there
exists a matrix with ones only in a single column or a single row that avoids P . For
example, ex(n,

[
1 1

]
) = n since the n× n matrix with ones only in the first column and

zeroes elsewhere avoids
[
1 1

]
and every 0-1 matrix of dimensions n× n with n+ 1 ones

has a row with at least two ones. It is also easy to see that ex(n, P ) = (k− 1)n when P is
a 1×k matrix with all ones: the n×n matrix with ones only in the first k−1 columns and
zeroes elsewhere avoids P , while every 0-1 matrix with dimensions n×n and (k− 1)n+ 1
ones has a row with at least k ones.

Since the 0-1 matrix extremal function has a linear lower bound for all 0-1 matrices
except those with all zeroes or just one entry, it is natural to ask which 0-1 matrices have
linear upper bounds on their extremal functions. Füredi and Hajnal posed the problem
of finding all 0-1 matrices P such that ex(n, P ) = O(n) [5]. Their problem has only been
partially answered.

Marcus and Tardos proved that ex(n, P ) = O(n) for every permutation matrix P [10].
This linear bound was extended in [6] to tuple permutation matrices, which are obtained
by replacing every column of a permutation matrix with multiple adjacent copies of itself.

Keszegh [7], Tardos [17] and Füredi and Hajnal [5] found multiple operations that can
be used to construct new linear 0-1 matrices (matrices P for which ex(n, P ) = O(n)) from
known linear 0-1 matrices. No one has found a way to determine whether an arbitrary
0-1 matrix is linear just by looking at it. However, one approach that might eventually
resolve the Füredi-Hajnal problem is to identify all minimally non-linear 0-1 matrices.

A 0-1 matrix P is called minimally non-linear if ex(n, P ) 6= O(n) but ex(n, P ′) = O(n)
for every P ′ that is contained in P but not equal to P . If M contains a minimally non-
linear 0-1 matrix, then ex(n,M) is non-linear. If M avoids all minimally non-linear 0-1
matrices, then ex(n,M) is linear. Thus identifying all minimally non-linear 0-1 matrices
is equivalent to solving Füredi and Hajnal’s problem.

Keszegh [7] constructed a class Hk of 0-1 matrices for which ex(n,Hk) = Θ(n log n) and
conjectured the existence of infinitely many minimally non-linear 0-1 matrices contained
in the class. This conjecture was confirmed in [6], without actually constructing an infinite
family of minimally non-linear 0-1 matrices.

There are only seven minimally non-linear 0-1 matrices with 2 rows. These matrices

include

[
1 1
1 1

]
,

[
1 0 1
0 1 1

]
,

[
0 1 1
1 0 1

]
,

[
1 0 1 0
0 1 0 1

]
, and reflections of the last three over

a vertical line.
In this paper, we bound the number of minimally non-linear 0-1 matrices with k rows

for k > 2. In order to obtain upper bounds for this number, we bound the ratio between
the length and width of a minimally non-linear 0-1 matrix. We also investigate similar
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problems for sequences and ordered graphs.
Call two sequences u and v isomorphic if u can be made equal to v by a one-to-one

renaming of its symbols. In Section 2, we bound the lengths as well as the number of
minimally non-linear sequences with k distinct letters. These bounds are easier to obtain
than the bounds on minimally non-linear 0-1 matrices and ordered graphs, since they
rely mainly on the fact that every minimally non-linear sequence not isomorphic to ababa
must avoid ababa.

In Section 3, we bound the number of minimally non-linear 0-1 matrices with k rows.
We also prove that the ratio between the length and width of a minimally non-linear
0-1 matrix is at most 4 and that a minimally non-linear 0-1 matrix with k rows has at
most 5k − 3 ones. In Section 4, we find corresponding bounds for extremal functions of
forbidden ordered graphs.

2 Minimally non-linear patterns in sequences

A sequence u contains a sequence v if some subsequence of u is isomorphic to v. Otherwise
u avoids v, and u is called v-free. If u has r distinct letters, then the function Ex(u, n) is
the maximum possible length of any u-free sequence with n distinct letters in which every
r consecutive letters are distinct.

Like the extremal function ex(n, P ) for forbidden 0-1 matrices, Ex(u, n) has been used
for many applications in combinatorics and computational geometry. These applications
include upper bounds on the complexity of lower envelopes of sets of polynomials of
bounded degree [2], the complexity of faces in arrangements of arcs with a limited number
of crossings [1], and the maximum possible number of edges in k-quasiplanar graphs on
n vertices with no pair of edges intersecting in more than t points [3, 16].

Minimal non-linearity for Ex(u, n) is defined as for ex(n, P ). Only the sequences
equivalent to ababa, abcacbc, or its reversal are currently known to be minimally non-
linear, but a few other minimally non-linear sequences are known to exist [15].

In order to bound the number of minimally non-linear sequences with k distinct letters,
we bound the length of such sequences in terms of the extremal function Ex(ababa, k),
which satisfies Ex(ababa, k) ∼ 2kα(k) [8, 12].

In the next proof, we use a well-known fact about the function Ex(u, n) [8]: If u is a
linear sequence and u′ is obtained from u by inserting the letter a between two adjacent
occurrences of a in u, then u′ is linear.

Lemma 2.1. The maximum possible length of a minimally non-linear sequence with k
distinct letters is at most 2 Ex(ababa, k).

Proof. First we claim that there is no immediate repetition of letters greater than 2 in
a minimally non-linear sequence. Suppose for contradiction that there is a minimally
non-linear sequence u with a repetition of length at least 3.

Remove one of the letters in the repetition and get u′. By definition u′ is linear, but
then inserting the letter back still gives a linear sequence by the well-known fact stated
before this lemma, a contradiction.
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If u is not isomorphic to ababa, then the number of segments of repeated letters in u
is at most Ex(ababa, k) because u avoids ababa. Thus u has length at most 2 Ex(ababa, k)
since each segment has length at most 2. �

Corollary 2.2. The number of minimally non-linear sequences with k distinct letters is
at most 2k

∑Ex(ababa,k)
i=1 (2k − 2)i−1.

Proof. The number of segments of repeated letters is at most Ex(ababa, k). Each segment
can be filled with one of at most k letters, with length 1 or 2, with no adjacent segments
having the same letters.

Thus there are at most 2k choices for the first segment and at most 2k−2 choices for the
remaining segments. So the number of such sequences is bounded by 2k

∑Ex(ababa,k)
i=1 (2k−

2)i−1. �

3 Minimally non-linear patterns in 0-1 matrices

Although the existence of infinitely many minimally non-linear 0-1 matrices was proved
in [6], only finitely many minimally non-linear 0-1 matrices have been identified. It is an
open problem to identify an infinite family of minimally non-linear 0-1 matrices.

In this section, we prove an upper bound of
∑4k−2

i=d(k+2)/4e(i
k − (i − 1)k)ki−1 on the

number of minimally non-linear 0-1 matrices with k rows. In order to obtain this bound,
we first show that any minimally non-linear 0-1 matrix with k rows has at most 4k − 2
columns. Next, we bound the number of minimally non-linear 0-1 matrices with k rows
and c columns. We prove this bound by showing that no column of a minimally non-linear
0-1 matrix has multiple ones after leftmost ones are removed from each row, unless the

matrix is the 2× 2 matrix of all ones,

[
1 0 1
0 1 1

]
, or its reflection over a horizontal line.

In order to bound the ratio between the length and width of any minimally non-linear
0-1 matrix, we use a few well-known lemmas about 0-1 matrix extremal functions. These
facts are proved in [5, 17].

Lemma 3.1. 1. If P has two adjacent ones x and y in the same row in columns c and
d, and P ′ is obtained from P by inserting a new column between c and d with a single
one between x and y and zeroes elsewhere, then ex(n, P ) 6 ex(n, P ′) 6 2 ex(n, P ).

2. If P ′ is obtained by inserting columns or rows with all zeroes into P , then ex(n, P ′) =
O(ex(n, P ) + n).

3. If P =

[
1 0 1 0
0 1 0 1

]
, then ex(n, P ) = Θ(nα(n)), where α(n) denotes the inverse

Ackermann function.

The next theorem shows that a minimally non-linear 0-1 matrix must not be more
than four times longer than it is wide. The greatest known ratio between the length and

width of a minimally non-linear 0-1 matrix is 2 for the matrix

[
1 0 1 0
0 1 0 1

]
.
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Theorem 3.2. The ratio of width over height of any minimally non-linear matrix is
between 0.25 and 4.

Proof. Since the lemma holds for

[
1 0 1 0
0 1 0 1

]
and its reflections, suppose that P is a

minimally non-linear 0-1 matrix with k rows that is not equal to

[
1 0 1 0
0 1 0 1

]
or its

reflections.
Let P ′ be obtained by scanning through the columns of P from left to right. The first

column of P ′ has a one only in the first row where the first column of P has a one. For
i > 1, the ith column of P ′ has a one only in the first row where the ith column of P has
a one and where the (i− 1)st column of P ′ does not have a one, unless the ith column of
P only has a single one. If the ith column of P only has a single one in row r, then the
ith column of P ′ has a one only in row r.

The reduction produces a 0-1 matrix with a single one in each column. Let each of
the rows 1, . . . , k of P and P ′ correspond to a letter a1, . . . , ak, and construct a sequence
S from P ′ so that the ith letter of S is aj if and only if P ′ has a one in row j and column
i.

By definition |S| equals the number of columns of the minimally non-linear pattern P .
There cannot be 3 adjacent same letters in S, because any 3 adjacent same letters implies
a column in P with a single 1 and the immediate right and left neighbors of the 1-entry
being 1 as well, which would imply that P is not minimally non-linear. Also S avoids

abab because otherwise P contains

[
1 0 1 0
0 1 0 1

]
or its reflection, which are non-linear.

So |S| 6 2 Ex(abab, k) = 4k − 2. This shows that the ratio of width over height of a
minimally non-linear matrix is between 0.25 and 4. �

Using the bound that we obtained on the number of columns in a minimally non-linear
0-1 matrix with k rows, next we prove that the number of ones in a minimally non-linear
0-1 matrix with k rows is at most 5k− 3. Note that any minimally non-linear 0-1 matrix
with k rows has at least k ones since it has no rows with all zeroes.

In order to bound the number of ones in a minimally non-linear 0-1 matrix with k
rows, we first prove a more general bound on the number of ones in a minimally non-linear
0-1 matrix with k rows and c columns, assuming that it is not the 2×2 matrix of all ones.

Lemma 3.3. The number of ones in any minimally non-linear 0-1 matrix with k rows
and c columns, besides the 2× 2 matrix of all ones, is at most k + c− 1.

Proof. The result is true for Q =

[
1 0 1
0 1 1

]
, so suppose that P is a minimally non-linear

0-1 matrix with k rows that is not equal to Q, its reflection Q̄ over a horizontal line, or
the 2× 2 matrix R of all ones. Then P must avoid Q, Q̄, and R.

If P has k rows and c columns, then remove the first one in each row to obtain a
new matrix P ′. Matrix P ′ cannot have any column with multiple ones, since otherwise P
would contain Q, Q̄, or R. Thus P ′ has at most c− 1 ones since the first column has no
ones, so P has at most k + c− 1 ones. �
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Corollary 3.4. The number of ones in any minimally non-linear 0-1 matrix with k rows
is at most 5k − 3.

Proof. Suppose that the minimally non-linear 0-1 matrix P has k rows and c columns.
Since c 6 4k − 2, matrix P has at most 5k − 3 ones. �

Using the bound on the number of columns in a minimally non-linear 0-1 matrix with
k rows, combined with the technique that we used to bound the number of ones in a
minimally non-linear 0-1 matrix with k rows, we prove an upper bound on the number of
minimally non-linear 0-1 matrices with k rows.

Corollary 3.5. For k > 2, the number of minimally non-linear 0-1 matrices with k rows
is at most

∑4k−2
i=d(k+2)/4e(i

k − (i− 1)k)ki−1.

Proof. In a minimally non-linear 0-1 matrix with k rows and i columns, there are at
most ik− (i− 1)k possible combinations of leftmost ones that can be deleted in each row,
because having all leftmost ones in the rightmost i − 1 columns implies that the first
column is empty, which is impossible. After leftmost ones are deleted in each row, each
column except the first has at most a single one. If a column has no one removed, then it
stays non-empty with k possibilities. If a column has at least a one removed, say in the
second row, then it cannot become a column with a one in the second row. In either case,
every column except for the first has at most k possibilities, leaving at most ki−1 possible
matrices. Moreover there are between d(k + 2)/4e and 4k − 2 columns in a minimally
non-linear 0-1 matrix with k rows. �

4 Minimally non-linear patterns in ordered graphs

In this section, we prove bounds on parameters of minimally non-linear ordered graphs.
The definitions of avoidance, extremal functions, and minimal non-linearity for ordered
graphs are analogous to the corresponding definitions for 0-1 matrices.

Call ordered graphs H and G order isomorphic if H can be transformed into G by a
one-to-one renaming of its vertices that preserves their order. If H and G are any ordered
graphs, then H avoids G if no subgraph of H is order isomorphic to G. The extremal
function ex<(n,G) is the maximum possible number of edges in any ordered graph with
n vertices that avoids G.

Past research on ex< has identified similarities with the 0 − 1 matrix extremal func-
tion ex. For example, Klazar and Marcus [9] proved that ex<(n,G) = O(n) for every
ordered bipartite matching G with interval chromatic number 2. This is analogous to the
result of Marcus and Tardos [10] that ex(n, P ) = O(n) for every permutation matrix P .
Weidert also identified several parallels between ex< and ex [19], including linear bounds
on extremal functions of forbidden tuple matchings with interval chromatic number 2.
These bounds were analogous to the linear bounds for tuple permutation matrices that
were proved in [6].

In order to prove results about minimally non-linear ordered graphs, we use two lem-
mas about ex<(n,G). The first is from [19]:
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Lemma 4.1. [19] If G′ is created from G by inserting a single vertex v of degree one
between two consecutive vertices that are both adjacent to v’s neighbor, then ex<(n,G′) 6
2 ex<(n,G).

The second lemma and its proof is by Gabor Tardos via private communication [18].

Lemma 4.2. [18] If G′ is an ordered graph obtained from G by adding an edgeless vertex,
then ex<(n,G′) = O(ex<(n,G) + n).

Proof. For simplicity assume the new isolated vertex in G′ is neither first nor last. Let H ′

be an ordered graph avoiding G′. Take uniform random sample R of the vertices of H ′,
then select a subset S of R deterministically by throwing away the second vertex from
every pair of consecutive vertices in V (H ′) if both of them were selected in R. Now S is a
subset of vertices without a consecutive pair, so H = H ′[S] avoids G, since you can stick
in a vertex between any two wherever you wish. Now every edge of H ′ has a minimum of
1/16 chance of being in H except the edges connecting neighboring vertices, which have
no chance. Thus w(H ′) < 16E[w(H)] + n and we are done. �

Most of the results that we prove in this section about minimal non-linearity for the
extremal function ex< are analogous to the results that we proved in the last section
about minimal non-linearity for the 0-1 matrix extremal function ex. First we prove that
the number of edges in any minimally non-linear ordered graph with k vertices is at most
2k − 2. Since there are no singleton vertices in a minimally non-linear ordered graph,
there is a lower bound of k/2 on the number of edges.

Theorem 4.3. Any minimally non-linear ordered graph with k vertices has at most 2k−2
edges.

Proof. For a 0-1 matrix P , define Go (P ) to be the family of all bipartite ordered graphs
with a unique decomposition into two independent sets that form a 0-1 matrix equiva-
lent to P when the vertices in each set are arranged in either increasing or decreasing
order as columns and rows with edges corresponding to ones. Then every element of

Go

([
1 0 1
0 1 1

])
∪ Go

([
1 1
1 1

])
is non-linear for ex<, since

[
1 0 1
0 1 1

]
and

[
1 1
1 1

]
are

non-linear for ex and any ordered graph with interval chromatic number more than 2 is
non-linear for ex< [19].

The lemma is true for every element of Go

([
1 0 1
0 1 1

])
∪Go

([
1 1
1 1

])
, so let G be a

minimally non-linear ordered graph that is not equal to any element of Go

([
1 0 1
0 1 1

])
∪

Go

([
1 1
1 1

])
.

Thus G avoids every element of Go

([
1 0 1
0 1 1

])
∪ Go

([
1 1
1 1

])
. Define an edge as

e = (vi, vj) where vi < vj. Remove all edges (vi, vj) where vj is the smallest number t
such that (vi, t) ∈ E(G). There are at most k − 1 such edges.
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The resulting graph G′ cannot have both edges (vi, vk) and (vj, vk) for any node vk.
Because if it does, then there are vi < va < vk and vj < vb < vk such that (vi, va),
(vi, vk), (vj, vb), and (vj, vk) are all in E(G), and therefore G must contain some element

in Go

([
1 0 1
0 1 1

])
∪Go

([
1 1
1 1

])
. Note that va and vb may be identical, and there are

no edges of the form (vi, v1) where v1 denotes the minimal vertex. Thus |E(G′)| 6 k − 1,
so |E(G)| 6 2k − 2. �

The next result is analogous to the ratio bound for 0-1 matrices in Theorem 3.2, except
rows and columns are replaced by the parts of a bipartite ordered graph.

Theorem 4.4. Any minimally non-linear bipartite ordered graph with k vertices in one
part has at most 4k − 2 vertices in the other part.

Proof. Given a minimally non-linear bipartite ordered graph G, without loss of generality
assume that the first part U has k nodes. For each node vi in the second part V , we
choose a neighbor in the first part using a process analogous to the one that we used for
0-1 matrices: if vi has only one neighbor then pick it, otherwise pick the smallest neighbor
different from what we pick for vi−1.

Now we get a sequence with k distinct elements without any repetition of length more
than 2 because otherwise G is not minimally non-linear. The sequence cannot be longer

than 2 Ex(abab, k) = 4k−2, or else it would contain some element in Go

([
1 0 1 0
0 1 0 1

])
,

which has all elements non-linear. �

Next we obtain an upper bound of k − 1 on the number of edges in minimally non-
linear bipartite ordered graphs with k vertices unless the underlying graph is K2,2. This
bound is half the upper bound for minimally non-linear ordered graphs in Theorem 4.3.
The lemma that we use to obtain this bound is analogous to Lemma 3.3, which we used
to bound the number of ones in minimally non-linear 0-1 matrices.

Lemma 4.5. The number of edges in any minimally non-linear bipartite ordered graph
with w vertices in one part and h vertices in the other part, besides ordered graphs whose
underlying graph is K2,2, is at most w + h− 1.

Proof. The result is clear if G is an element of Go

([
1 0 1
0 1 1

])
, so suppose that G is a

minimally nonlinear bipartite ordered graph that is not an element of Go

([
1 0 1
0 1 1

])
∪

Go

([
1 1
1 1

])
. For each node u ∈ U , remove the edge (u, v) ∈ E(G) with the smallest

possible v ∈ V , no matter whether u > v or u < v. So we remove exactly |U | edges.
Each vk ∈ V in the resulting graph G′ has at most one neighbor. If it has more, say

(ua, vk), (ub, vk), then there are vi and vj, which could be identical, such that vi < vk,
vj < vk and (ua, vi) ∈ E(G), (ub, vj) ∈ E(G). Clearly G contains some element in
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Go

([
1 0 1
0 1 1

])
∪Go

([
1 1
1 1

])
, a contradiction. So |E(G)| 6 |U |+ |V | − 1 = |V (G)| −

1. �

Corollary 4.6. The number of edges in any minimally non-linear bipartite ordered graph
with k total vertices is at most k− 1 unless the underlying graph is K2,2, and the number
of edges in any minimally non-linear bipartite ordered graph with k vertices in one part
is at most 5k − 3.

Corollary 4.7. For k > 2, the number of minimally non-linear bipartite ordered graphs
with k nodes in one part is at most

∑4k−2
i=d(k+2)/4e

(
k+i
k

)
(ik − (i− 1)k)ki−1.

5 Open Problems

We proved bounds for the following problems, but none of these problems are completely
resolved.

1. (a) For each k > 0, what is the maximum possible length of a minimally non-linear
sequence with k distinct letters?

(b) How many minimally non-linear sequences have k distinct letters?

(c) Characterize all minimally non-linear sequences with k distinct letters.

2. (a) What is the maximum possible ratio between the length and width of a mini-
mally non-linear 0-1 matrix?

(b) For each k > 0, what is the maximum possible number of columns in a mini-
mally non-linear 0-1 matrix with k rows?

(c) What is the maximum possible number of ones in a minimally non-linear 0-1
matrix with k rows?

(d) How many minimally non-linear 0-1 matrices have k rows?

(e) Characterize all minimally non-linear 0-1 matrices with k rows.

3. (a) What is the maximum possible ratio between the sizes of the parts of a mini-
mally non-linear bipartite ordered graph?

(b) For each k > 0, what is the maximum possible number of vertices in the second
part in a minimally non-linear bipartite ordered graph with k vertices in the
first part?

(c) What is the maximum possible number of edges in a minimally non-linear
bipartite ordered graph with k total vertices?

(d) What is the maximum possible number of edges in a minimally non-linear
bipartite ordered graph with k vertices in one part?

(e) How many minimally non-linear bipartite ordered graphs have k vertices in
one part?
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(f) Characterize all minimally non-linear bipartite ordered graphs with k vertices
in one part.

4. (a) For each k > 0, what is the maximum possible number of edges in a minimally
non-linear ordered graph with k vertices?

(b) Characterize all minimally non-linear ordered graphs with k vertices.
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