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Abstract

For a graph G, let χ(G) and λ(G) denote the chromatic number of G and the
maximum local edge connectivity of G, respectively. A result of Dirac implies that
every graph G satisfies χ(G) 6 λ(G) + 1. In this paper we characterize the graphs
G for which χ(G) = λ(G) + 1. The case λ(G) = 3 was already solved by Aboulker,
Brettell, Havet, Marx, and Trotignon. We show that a graph G with λ(G) = k > 4
satisfies χ(G) = k+ 1 if and only if G contains a block which can be obtained from
copies of Kk+1 by repeated applications of the Hajós join.

Keywords: graph coloring; connectivity; critical graphs; Brooks’ theorem

1 Introduction and main result

The paper deals with the classical vertex coloring problem for graphs. The term graph
refers to a finite undirected graph without loops and without multiple edges. The chro-
matic number of a graph G, denoted by χ(G), is the least number of colors needed to
color the vertices of G such that each vertex receives a color and adjacent vertices receive
different colors. There are several degree bounds for the chromatic number. For a graph
G, let δ(G) = minv∈V (G) dG(v) and ∆(G) = maxv∈V (G) dG(v) denote the minimum degree
and the maximum degree of G, respectively. Furthermore, let

col(G) = 1 + max
H⊆G

δ(H)

∗Booth authors thank the Danish Research Council for support through the program Algodisc.
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denote the coloring number of G, and let

mad(G) = max
∅6=H⊆G

2|E(H)|
|V (H)|

denote the maximum average degree of G. By H ⊆ G we mean that H is a subgraph
of G. If G is the empty graph, that is, V (G) = ∅, we briefly write G = ∅ and define
δ(G) = ∆(G) = mad(G) = 0 and col(G) = 1. A simple sequential coloring argument
shows that χ(G) 6 col(G), which implies that every graph G satisfies

χ(G) 6 col(G) 6 bmad(G)c+ 1 6 ∆(G) + 1.

These inequalities were discussed in a paper by Jensen and Toft [10]. Brooks’ famous
theorem provides a characterization for the class of graphs G satisfying χ(G) = ∆(G)+1.
Let k > 0 be an integer. For k 6= 2, let Bk denote the class of complete graphs having
order k+1; and let B2 denote the class of odd cycles. A graph in Bk has maximum degree
k and chromatic number k + 1. Brooks’ theorem [2] is as follows.

Theorem 1 (Brooks 1941). Let G be a non-empty graph. Then χ(G) 6 ∆(G) + 1 and
equality holds if and only if G has a connected component belonging to the class B∆(G).

In this paper we are interested in connectivity parameters of graphs. Let G be a
graph with at least two vertices. The local connectivity κG(v, w) of distinct vertices v and
w is the maximum number of internally vertex disjoint v-w paths of G. The local edge
connectivity λG(v, w) of distinct vertices v and w is the maximum number of edge-disjoint
v-w paths of G. The maximum local connectivity of G is

κ(G) = max{κG(v, w) | v, w ∈ V (G), v 6= w},

and the maximum local edge connectivity of G is

λ(G) = max{λG(v, w) | v, w ∈ V (G), v 6= w}.

For a graph G with |G| 6 1, we define κ(G) = λ(G) = 0. Clearly, the definition implies
that κ(G) 6 λ(G) for every graphG. By a result of Mader [11] it follows that δ(G) 6 κ(G).
Since κ is a monotone graph parameter in the sense that H ⊆ G implies κ(H) 6 κ(G),
it follows that every graph G satisfies col(G) 6 κ(G) + 1. Consequently, every graph G
satisfies

χ(G) 6 col(G) 6 κ(G) + 1 6 λ(G) + 1 6 ∆(G) + 1. (1)

Our aim is to characterize the class of graphs G for which χ(G) = λ(G) + 1. For such
a characterization we use the fact that if we have an optimal coloring of each block of a
graph G, then we can combine these colorings to an optimal coloring of G by permuting
colors in the blocks if necessary. For every non-empty graph G, we thus have

χ(G) = max{χ(H) | H is a block of G}. (2)
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We also need a famous construction, first used by Hajós [9]. Let G1 and G2 be two
vertex-disjoint graphs and, for i = 1, 2, let ei = viwi be an edge of Gi. Let G be the graph
obtained from G1 and G2 by deleting the edges e1 and e2 from G1 and G2, respectively,
identifying the vertices v1 and v2, and adding the new edge w1w2. We then say that
G is the Hajós join of G1 and G2 and write G = (G1, v1, w1) 4 (G2, v2, w2) or briefly
G = G14G2.

For an integer k > 0 we define a class Hk of graphs as follows. If k 6 2, then Hk = Bk.
The class H3 is the smallest class of graphs that contains all odd wheels and is closed
under taking Hajós joins. Recall that an odd wheel is a graph obtained from on odd cycle
by adding a new vertex and joining this vertex to all vertices of the cycle. If k > 4, then
Hk is the smallest class of graphs that contains all complete graphs of order k + 1 and is
closed under taking Hajós joins. Our main result is the following counterpart of Brooks’
theorem. In fact, Brooks’ theorem may easily be deduced from it.

Theorem 2. Let G be a non-empty graph. Then χ(G) 6 λ(G) + 1 and equality holds if
and only if G has a block belonging to the class Hλ(G).

For the proof of this result, let G be a non-empty graph with λ(G) = k. By (1), we
obtain χ(G) 6 k + 1. By an observation of Hajós [9] it follows that every graph in Hk

has chromatic number k + 1. Hence if some block of G belongs to Hk, then (2) implies
that χ(G) = k + 1. So it only remains to show that if χ(G) = k + 1, then some block of
G belongs to Hk. For proving this, we shall use the critical graph method, see [12].

A graph G is critical if every proper subgraph H of G satisfies χ(H) < χ(G). We shall
use the following two properties of critical graphs. As an immediate consequence of (2)
we obtain that if G is a critical graph, then G = ∅ or G contains no separating vertex,
implying that G is its only block. Furthermore, every graph contains a critical subgraph
with the same chromatic number.

Let G be a non-empty graph with λ(G) = k and χ(G) = k + 1. Then G contains a
critical subgraph H with chromatic number k+ 1, and we obtain that λ(H) 6 λ(G) = k.
So the proof of Theorem 2 is complete if we can show that H is a block of G which belongs
to Hk. For an integer k > 0, let Ck denote the class of graphs H such that H is a critical
graph with chromatic number k + 1 and with λ(H) 6 k. We shall prove that the two
classes Ck and Hk are the same.

2 Connectivity of critical graphs

In this section we shall review known results about the structure of critical graphs. First
we need some notation. Let G be an arbitrary graph. For an integer k > 0, let COk(G)
denote the set of all colorings of G with color set {1, 2, . . . , k}. Then a function f :
V (G) → {1, 2, . . . , k} belongs to COk(G) if and only if f−1(c) is an independent vertex
set of G (possibly empty) for every color c ∈ {1, 2, . . . , k}. A set S ⊆ V (G) ∪ E(G) is
called a separating set of G if G − S has more components than G. A vertex v of G is
called a separating vertex of G if {v} is a separating set of G. An edge e of G is called
a bridge of G if {e} is a separating set of G. For a vertex set X ⊆ V (G), let ∂G(X)
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denote the set of all edges of G having exactly one end in X. Clearly, if G is connected
and ∅ 6= X  V (G), then F = ∂G(X) is a separating set of edges of G. The converse
is not true. However if F is a minimal separating edge set of a connected graph G, then
F = ∂G(X) for some vertex set X. As a consequence of Menger’s theorem about edge
connectivity, we obtain that if v and w are distinct vertices of G, then

λG(v, w) = min{|∂G(X)| | X ⊆ V (G), v ∈ X,w 6∈ X}.

Color critical graphs were first introduced and investigated by Dirac in the 1950s. He
established the basic properties of critical graphs in a series of papers [3], [4] and [5].
Some of these basic properties are listed in the next theorem.

Theorem 3 (Dirac 1952). Let G be a critical graph with chromatic number k + 1 for an
integer k > 0. Then the following statements hold:

(a) δ(G) > k.

(b) If k ∈ {0, 1}, then G is a complete graph of order k + 1; and if k = 2, then G is an
odd cycle.

(c) No separating vertex set of G is a clique of G. As a consequence, G is connected
and has no separating vertex, i.e., G is a block.

(d) If v and w are two distinct vertices of G, then λG(v, w) > k. As a consequence G
is k-edge-connected.

Theorem 3(a) leads to a very natural way of classifying the vertices of a critical graph
into two classes. Let G be a critical graph with chromatic number k + 1. The vertices of
G having degree k in G are called low vertices of G, and the remaining vertices are called
high vertices of G. So any high vertex of G has degree at least k+1 in G. Furthermore, let
GL be the subgraph of G induced by the low vertices of G, and let GH be the subgraph of
G induced by the high vertices of G. We call GL the low vertex subgraph of G and GH the
high vertex subgraph of G. This classification is due to Gallai [8] who proved the following
theorem. Note that statements (b) and (c) of Gallai’s theorem are simple consequences
of statement (a), which is an extension of Brooks’ theorem.

Theorem 4 (Gallai 1963). Let G be a critical graph with chromatic number k+ 1 for an
integer k > 1. Then the following statements hold:

(a) Every block of GL is a complete graph or an odd cycle

(b) If GH = ∅, then G is a complete graph of order k + 1 if k 6= 2, and G is an odd
cycle if k = 2.

(c) If |GH | = 1, then either G has a separating vertex set of two vertices or k = 3 and
G is an odd wheel.
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As observed by Dirac, a critical graph is connected and contains no separating vertex.
Dirac [3] and Gallai [8] characterized critical graphs having a separating vertex set of size
two. In particular, they proved the following theorem, which shows how to decompose a
critical graph having a separating vertex set of size two into smaller critical graphs.

Theorem 5 (Dirac 1952 and Gallai 1963). Let G be a critical graph with chromatic
number k+ 1 for an integer k > 3, and let S ⊆ V (G) be a separating vertex set of G with
|S| 6 2. Then S is an independent vertex set of G consisting of two vertices, say v and
w, and G − S has exactly two components H1 and H2. Moreover, if Gi = G[V (Hi) ∪ S]
for i ∈ {1, 2}, we can adjust the notation so that for some coloring f1 ∈ COk(G1) we have
f1(v) = f1(w). Then the following statements hold:

(a) Every coloring f ∈ COk(G1) satisfies f(v) = f(w) and every coloring f ∈ COk(G2)
satisfies f(v) 6= f(w).

(b) The subgraph G′1 = G1 + vw obtained from G1 by adding the edge vw is critical and
has chromatic number k + 1.

(c) The vertices v and w have no common neighbor in G2 and the subgraph G′2 = G2/S
obtained from G2 by identifying v and w is critical and has chromatic number k+1.

Dirac [6] and Gallai [8] also proved the converse theorem, that G is critical and has
chromatic number k+ 1 provided that G′1 is critical and has chromatic number k+ 1 and
G2 obtained from the critical graph G′2 with chromatic number k+ 1 by splitting a vertex
into v and w has chromatic number k.

Hajós [9] invented his construction to characterize the class of graphs with chromatic
number at least k + 1. Another advantage of the Hajós join is the well known fact that
it not only preserve the chromatic number, but also criticality. It may be viewed as a
special case of the Dirac–Gallai construction, described above.

Theorem 6 (Hajós 1961). Let G = G14G2 be the Hajós join of two graphs G1 and G2,
and let k > 3 be an integer. Then G is critical and has chromatic number k + 1 if and
only if both G1 and G2 are critical and have chromatic number k + 1.

If G is the Hajós join of two graphs that are critical and have chromatic number k+1,
where k > 3, then G is critical and has chromatic number k + 1. Moreover, G has a
separating set consisting of one edge and one vertex. Theorem 5 implies that the converse
statement also holds.

Theorem 7. Let G be a critical graph graph with chromatic number k + 1 for an integer
k > 3. If G has a separating set consisting of one edge and one vertex, then G is the
Hajós join of two graphs.

Next we will discuss a decomposition result for critical graphs having chromatic num-
ber k + 1 an having an separating edge set of size k. Let G be an arbitrary graph. By
an edge cut of G we mean a triple (X, Y, F ) such that X is a non-empty proper subset of
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V (G), Y = V (G) \ X, and F = ∂G(X) = ∂G(Y ). If (X, Y, F ) is an edge cut of G, then
we denote by XF (respectively YF ) the set of vertices of X (respectively, Y ) which are
incident to some edge of F . An edge cut (X, Y, F ) of G is non-trivial if |XF | > 2 and
|YF | > 2. The following decomposition result was proved independently by T. Gallai and
Toft [13].

Theorem 8 (Toft 1970). Let G be a critical graph with chromatic number k + 1 for an
integer k > 3, and let F ⊆ E(G) be a separating edge set of G with |F | 6 k. Then |F | = k
and there is an edge cut (X, Y, F ) of G satisfying the following properties:

(a) Every coloring f ∈ COk(G[X]) satisfies |f(XF )| = 1 and every coloring f ∈
COk(G[Y ]) satisfies |f(YF )| = k.

(b) The subgraph G1 obtained from G[X∪YF ] by adding all edges between the vertices of
YF , so that YF becomes a clique of G1, is critical and has chromatic number k + 1.

(c) The subgraph G2 obtained from G[Y ] by adding a new vertex v and joining v to all
vertices of YF is critical and has chromatic number k + 1.

A particular nice proof of this result is due to T. Gallai (oral communication to the
second author). Recall that the clique number of a graph G, denoted by ω(G), is the
largest cardinality of a clique in G. A graph G is perfect if every induced subgraph H of
G satisfies χ(H) = ω(H). For the proof of the next lemma, due to Gallai, we use the fact
that complements of bipartite graphs are perfect.

Lemma 9. Let H be a graph and let k > 3 be an integer. Suppose that (A,B, F ′) is an
edge cut of H such that |F ′| 6 k and A as well as B are cliques of H with |A| = |B| = k.
If χ(H) > k + 1, then |F ′| = k and F ′ = ∂H({v}) for some vertex v of H.

Proof. The graph H is perfect and so ω(H) = χ(H) > k + 1. Consequently, H contains
a clique X with |X| = k + 1. Let s = |A ∩ X| and hence k + 1 − s = |B ∩ X|. Since
|A| = |B| = k, this implies that s > 1 and k + 1 − s > 1. Since X is a clique of H, the
set E ′ of edges of H joining a vertex of A ∩X with a vertex of B ∩X satisfies E ′ ⊆ F ′

and |E ′| = s(k + 1− s). The function g(s) = s(k + 1− s) is strictly concave on the real
interval [1, k] as g′′(s) = −2. Since g(1) = g(k) = k, we conclude that g(s) > k for all
s ∈ (1, k). Since g(s) = |E ′| 6 |F ′| 6 k, this implies that s = 1 or s = k. In both cases
we obtain that |E ′| = |F ′| = k, and hence E ′ = F ′ = ∂H({v}) for some vertex v of H.

Based on Lemma 9 it is easy to give a proof of Theorem 8, see also the paper by Dirac,
Sørensen, and Toft [7]. Theorem 8 is a reformulation of a result by Toft [13, Chapter 4]
in his Ph.D thesis. Toft gave a complete characterization of the class of critical graphs,
having chromatic number k + 1 and containing a separating edge set of size k. The
characterization involves critical hypergraphs.
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3 Proof of the main result

Theorem 10. Let k > 0 be an integer. Then the two graph classes Ck and Hk coincide.

Proof. That the two classes Ck and Hk coincide if 0 6 k 6 2 follows from Theorem 3(b).
In this case both classes consists of all critical graphs with chromatic number k + 1.
In what follows we therefore assume that k > 3. The proof of the following claim is
straightforward and left to the reader.

Claim 1. The odd wheels belong to the class C3 and the complete graphs of order k + 1
belong to the class Ck.

Claim 2. Let k > 3 be an integer, and let G = G14G2 the Hajós join of two graphs G1

and G2. Then G belongs to the class Ck if and only if both G1 and G2 belong to the class
Ck.

Proof : We may assume that G = (G1, v1, w1) 4 (G2, v2, w2) and v is the vertex of G
obtained by identifying v1 and v2. First suppose that G1, G2 ∈ Ck. From Theorem 6 it
follows that G is critical and has chromatic number k + 1. So it suffices to prove that
λ(G) 6 k. To this end let u and u′ be distinct vertices of G and let p = λG(u, u′). Then
there is a system P of p edge disjoint u-u′ paths in G. If u and u′ belong both to G1,
then only one path P of P may contain vertices not in G1. In this case P contains the
vertex v and the edge w1w2. If we replace in P the subpath vPw1 by the edge v1w1, we
obtain a system of p edge disjoint u-u′ paths in G1, and hence p 6 λG1(u, u

′) 6 k. If u
and u′ belong to G2, a similar argument shows that p 6 k. It remains to consider the
case that one vertex, say u, belongs to G1 and the other vertex u′ belongs to G2. By
symmetry we may assume that u 6= v. Again at most one path P of P uses the edge
w1w2 and the remaining paths of P all uses the vertex v(= v1 = v2). If we replace P
by the path uPw1 + w1v1, then we obtain p edge disjoint u-v1 path in G1, and hence
p 6 λG1(u, v1) 6 k. This shows that λ(G) 6 k and so G ∈ Ck.

Suppose conversely that G ∈ Ck. From Theorem 6 it follows that G1 and G2 are
critical graphs, both with chromatic number k + 1. So it suffices to show that λ(Gi) 6 k
for i = 1, 2. By symmetry it suffices to show that λ(G1) 6 k. To this end let u and
u′ be distinct vertices of G1 and let p = λG1(u, u

′). Then there is a system P of p edge
disjoint u-u′ paths in G1. At most one path P of P can contain the edge v1w1. Since
k > 3, there is a v2-w2 path P ′ in G2 not containing the edge v2w2. So if we replace the
edge v1w1 of P by the path P ′ +w2w1, we get p edge disjoint u-u′ paths of G, and hence
p 6 λG(u, u′) 6 k. This shows that λ(G1) 6 k and by symmetry λ(G2) 6 k. Hence
G1, G2 ∈ Ck. 4

As a consequence of Claim 1 and Claim 2 and the definition of the class Hk we obtain
the following claim.

Claim 3. Let k > 3 be an integer. Then the class Hk is a subclass of Ck.

Claim 4. Let k > 3 be an integer, and let G be a graph belonging to the class Ck. If G
is 3-connected, then either k = 3 and G is an odd wheel, or k > 4 and G is a complete
graph of order k + 1.
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Proof : The proof is by contradiction, where we consider a counterexample G whose
order |G| is minimum. Then G ∈ Ck is a 3-connected graph, and either k = 3 and G is
not an odd wheel, or k > 4 and G is not a complete graph of order k + 1. First we claim
that |GH | > 2. If GH = ∅, then Theorem 4(b) implies that G is a complete graph of
order k + 1, a contradiction. If |GH | = 1, then Theorem 4(c) implies that k = 3 and G
is an odd wheel, a contradiction. This proves the claim that |GH | > 2. Then let u and
v be distinct high vertices of G. Since G ∈ Ck, Theorem 3(d) implies that λG(u, v) = k
and, therefore, G contains a separating edge set F of size k which separates u and v.
From Theorem 8 it then follows that there is an edge cut (X, Y, F ) satisfying the three
properties of that theorem. Since F separates u and v, we may assume that u ∈ X and
v ∈ Y . By Theorem 8(a), |YF | = k and hence each vertex of YF is incident to exactly
one edge of F . Since Y contains the high vertex v, we conclude that |YF | < |Y |. Now we
consider the graph G′ obtained from G[X ∪ YF ] by adding all edges between the vertices
of YF , so that YF becomes a clique of G′. By Theorem 8(b), G′ is a critical graph with
chromatic number k+1. Clearly, every vertex of YF is a low vertex of G′ and every vertex
of X has in G′ the same degree as in G. Since X contains the high vertex u of G, this
implies that |XF | < |X|. Since G is 3-connected, we conclude that |XF | > 3 and that G′

is 3-connected.
Now we claim that λ(G′) 6 k. To prove this, let x and y be distinct vertices of G′. If

x or y is a low vertex of G′, then λG′(x, y) 6 k and there is nothing to prove. So assume
that both x and y are high vertices of G′. Then both vertices x and y belong to X. Let
p = λG′(x, y) and let P be a system of p edge disjoint x-y paths in G′. We may choose
P such that the number of edges in P is minimum. Let P1 be the paths in P which uses
edges of F . Since |YF | = k and each vertex of YF is incident with exactly one edge of F ,
this implies that each path P in P1 contains exactly two edges of F . Since |XF | < |X|
and |YF | < |Y |, there are vertices u′ ∈ X \ XF and v′ ∈ Y \ YF . By Theorem 3(d) it
follows that λG(u′, v′) = k and, therefore, there are k edge disjoint u′-v′ paths in G. Since
|YF | = k, for each vertex z ∈ YF , there is a v′-z path Pz in G[Y ] such that these paths
are edge disjoint. Now let P be an arbitrary path in P1. Then P contains exactly two
vertices of YF , say z and z′, and we can replace the edge zz′ of the path P by a z-z′ path
contained in Pz ∪ Pz′ . In this way we obtain a system of p edge disjoint x-y paths in G,
which implies that p 6 λG(x, y) 6 k. This proves the claim that λ(G′) 6 k. Consequently
G′ ∈ Ck. Clearly, |G′| < |G| and either k = 3 and G′ is not an odd wheel, or k > 4 and G
is not a complete graph of order k + 1. This, however, is a contradiction to the choice of
G. Thus the claim is proved. 4

Claim 5. Let k > 3 be an integer, and let G be a graph belonging to the class Ck. If G
has a separating vertex set of size 2, then G = G1 4 G2 is the Hajós sum of two graphs
G1 and G2, which both belong to Ck.

Proof : If G has a separating set consisting of one edge and one vertex, then Theorem 7
implies that G is the Hajoś join of two graphs G1 and G2. By Claim 2 it then follows that
both G1 and G2 belong to Ck and we are done. It remains to consider the case that G
does not contain a separating set consisting of one edge and one vertex. By assumption,
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there is a separating vertex set of size 2, say S = {u, v}. Then Theorem 5 implies that
G − S has exactly two components H1 and H2 such that the graphs Gi = G[V (Hi) ∪ S]
with i ∈ {1, 2} satisfies the three properties of that theorem. In particular, we have that
G′1 = G1 +uv is critical and has chromatic number k+1. By Theorem 3(d), it then follows
that λG′

1
(u, v) > k implying that λG1(u, v) > k − 1. Since G ∈ Ck, we then conclude that

λG2(u, v) 6 1. Since G2 is connected, this implies that G2 has a bridge e. Since k > 3,
we conclude that {u, e} or {v, e} is a separating set of G, a contradiction. 4

As a consequence of Claim 4 and Claim 5, we conclude that the class Ck is a subclass
of the class Hk. Together with Claim 3 this yields Hk = Ck as wanted.

Proof of of Theorem 2 : For the proof of this theorem let G be a non-empty graph with
λ(G) = k. By inequality (1) we obtain that χ(G) 6 k + 1. If one block H of G belongs
to Hk, then H ∈ Ck (by Theorem 10) and hence χ(G) = k + 1 (by (2)).

Assume conversely that χ(G) = k+1. Then G contains a subgraph H which is critical
and has chromatic number k + 1. Clearly, λ(H) 6 λ(G) 6 k, and, therefore, H ∈ Ck. By
Theorem 3(c), H contains no separating vertex. We claim that H is a block of G. For
otherwise, H would be a proper subgraph of a block G′ of G. This implies that there are
distinct vertices u and v in H which are joined by a path P of G with E(P )∩E(H) = ∅.
Since λH(u, v) > k (by Theorem 3(c)), this implies that λG(u, v) > k + 1, which is
impossible. This proves the claim that H is a block of G. By Theorem 10, Ck = Hk

implying that H ∈ Hk. This completes the proof of the theorem �

The case λ = 3 of Theorem 2 was obtained earlier by Aboulker, Brettell, Havet, Marx,
and Trotignon [1]; their proof is similar to our proof. Let Lk denote the class of graphs G
satisfying λ(G) 6 k. It is well known that membership in Lk can be tested in polynomial
time. It is also easy to show that there is a polynomial-time algorithm that, given a
graph G ∈ Lk, decides whether G or one of its blocks belong to Hk. So it can be tested
in polynomial time whether a graph G ∈ Lk satisfies χ(G) 6 k. Moreover, the proof
of Theorem 2 yields a polynomial-time algorithm that, given a graph G ∈ Lk, finds a
coloring of COk(G) when such a coloring exists. This result provides a positive answer to
a conjecture made by Aboulker et al. [1, Conjecture 1.8]. The case k = 3 was solved by
Aboulker et al. [1].

Theorem 11. For fixed k > 1, there is a polynomial-time algorithm that, given a graph
G ∈ Lk, finds a coloring in COk(G) or a block of G belonging to Hk.

Sketch of Proof : The Theorem is evident if k ∈ {1, 2}; and the case k = 3 was solved
by Alboulker et al. [1]. Hence we assume that k > 4 and G ∈ Lk. If we find for each
block H of G a coloring in COk(H), we can piece these colorings together by permuting
colors to obtain a coloring in COk(G). Hence we may assume that G is a block. Since
λ(G) 6 k and λ(H) = k for every graph H ∈ Hk, it then follows that no proper subgraph
of G belongs to Hk.

First, we check whether G has a separating set S consisting of one vertex and one edge.
If we find such a set, say S = {v, e} with v ∈ V (G) and e ∈ E(G), then G−e is the union
of two connected graphs G1 and G2 having only vertex v in common where e = w1w2 and
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wi ∈ V (Gi) for i = 1, 2. Both blocks G′1 = G1 + vw1 and G′2 = G2 + vw2 belong to Lk.
Now we check whether these blocks belong to Hk. If both blocks G′1 and G′2 belong to
Hk, then vwi 6∈ E(Gi) for i = 1, 2, and hence G belongs to Hk and we are done. If one
of the blocks, say G′1 does not belong to Hk, we can construct a coloring f1 ∈ COk(G′1).
Since no block of G2 belongs to Hk, we can construct a coloring f2 ∈ COk(G2). Then
f1 ∈ COk(G1) and f1(v) 6= f1(w1). Since k > 4, we can permute colors in f2 such that
f1(v) = f2(v) and f1(w1) 6= f2(w2). Consequently, f = f1 ∪ f2 belongs to COk(G) and we
are done.

It remains to consider the case that G contains no separating set consisting of one
vertex and one edge. Then let p denote the number of vertices of G whose degree is
greater that k. If p 6 1, then let v be a vertex of maximum degree in G. Color v with
color 1 and let L be a list assignment for H = G − v satisfying L(u) = {2, 3, . . . , k} if
vu ∈ E(G) and L(u) = {1, 2, . . . , k} otherwise. Then H is connected and |L(u)| > dH(u)
for all u ∈ V (H). Now we can use the degree version of Brooks’ theorem, see [12, Theorem
2.1]. Either we find a coloring f of H such that f(u) ∈ L(u) for all u ∈ V (H), yielding a
coloring of COk(G), or |L(u)| = dH(u) for all u ∈ V (H) and each block of H is a complete
graph or an odd cycle. In this case, dH(u) ∈ {k, k− 1} for all u ∈ V (H) and, since k > 4,
each block of H is a Kk or a K2. Since G contains no separating set consisting of one
vertex and one edge, this implies that H = Kk and so G = Kk+1 ∈ Hk and we are done.

If p > 2, then we choose two vertices u and u′ whose degrees are greater that k. Then
we construct an edge cut (X, Y, F ) with u ∈ X, u′ ∈ Y , and |F | = λG(u, u′). We may
assume that a = |XF | and b = |YF | satisfies a 6 b 6 k.

If b 6 k − 1, then both graphs G[X] and G[Y ] belong to Lk and there are colorings
fX ∈ COk(G[X]) and fY ∈ COk(G[Y ]). Note that no block of these two graphs can
belong to Hk. By permuting colors in fY , we can combine the two colorings fX and fY
to obtain a coloring f ∈ COk(G). To see this, we apply Lemma 9 to the auxiliary graph
H = H(fX , fY ) obtained from two disjoint complete graphs of order k, one with vertex
set A = {a1, a2, . . . , ak} and the other one with vertex set B = {b1, b2, . . . , bk}, by adding
all edges of the form aibj for which there exists an edge e = vv′ ∈ F such that fX(v) = i
and fY (v′) = j. By the assumption on the edge cut (X, Y, F ) it follows from Lemma 9
that χ(H) 6 k, which leads to to the desired coloring f .

If a < b = k, then we consider the graph G1 obtained from G[X ∪ YF ] by adding all
edges between the vertices of YF , so that YF becomes a clique of G1. Then G1 belongs
to Lk (see the proof of Claim 4) and, since G contains no separating set consisting of
one vertex and one edge, the block G1 does not belongs to Hk. Hence there are colorings
f1 ∈ COk(G1) and fY ∈ COk(G[Y ]). Then the restriction of f1 to X yields a coloring
fX ∈ COk(G[X]) such that |fX(XF )| > 2. By permuting colors in fY , we can combine
the two colorings fX and fY to obtain a coloring f ∈ COk(G) (by applying Lemma 9 to
the auxiliary graph H = H(fX , fY ) as in the former case).

It remains to consider the case a = b = k. Then let G2 be the graph obtained from
G[Y ∪XF ] by adding all edges between the vertices of XF , so that XF becomes a clique
of G2. Then we find colorings f1 ∈ COk(G1) and f2 ∈ COk(G2) and, hence, colorings
fX ∈ COk(G[X]) and fY ∈ COk(G[Y ]) such that |fX(XF )| > 2 and |fY (YF )| > 2. By
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permuting colors in fY , we can combine the two colorings fX and fY to obtain a coloring
f ∈ COk(G) (by using Lemma 9). �
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