A Brooks type theorem for the maximum local edge connectivity

Michael Stiebitz*

Bjarne Toft*

Technische Universität Ilmenau Inst. of Math. PF 100565 D-98684 Ilmenau, Germany University of Southern Denmark IMADA Campusvej 55 DK-5320 Odense M, Denmark

michael.stiebitz@tu-ilmenau.de

btoft@imada.sdu.dk

Submitted: Mar 31, 2016; Accepted: Feb 18, 2018; Published: Mar 2, 2018 Mathematics Subject Classifications: 05C15

Abstract

For a graph G, let $\chi(G)$ and $\lambda(G)$ denote the chromatic number of G and the maximum local edge connectivity of G, respectively. A result of Dirac implies that every graph G satisfies $\chi(G) \leq \lambda(G) + 1$. In this paper we characterize the graphs G for which $\chi(G) = \lambda(G) + 1$. The case $\lambda(G) = 3$ was already solved by Aboulker, Brettell, Havet, Marx, and Trotignon. We show that a graph G with $\lambda(G) = k \geq 4$ satisfies $\chi(G) = k + 1$ if and only if G contains a block which can be obtained from copies of K_{k+1} by repeated applications of the Hajós join.

Keywords: graph coloring; connectivity; critical graphs; Brooks' theorem

1 Introduction and main result

The paper deals with the classical vertex coloring problem for graphs. The term graph refers to a finite undirected graph without loops and without multiple edges. The *chromatic number* of a graph G, denoted by $\chi(G)$, is the least number of colors needed to color the vertices of G such that each vertex receives a color and adjacent vertices receive different colors. There are several degree bounds for the chromatic number. For a graph G, let $\delta(G) = \min_{v \in V(G)} d_G(v)$ and $\Delta(G) = \max_{v \in V(G)} d_G(v)$ denote the *minimum degree* and the *maximum degree* of G, respectively. Furthermore, let

$$\operatorname{col}(G) = 1 + \max_{H \subseteq G} \delta(H)$$

^{*}Booth authors thank the Danish Research Council for support through the program Algodisc.

denote the *coloring number* of G, and let

$$\mathrm{mad}(G) = \max_{\varnothing \neq H \subseteq G} \frac{2|E(H)|}{|V(H)|}$$

denote the maximum average degree of G. By $H \subseteq G$ we mean that H is a subgraph of G. If G is the empty graph, that is, $V(G) = \emptyset$, we briefly write $G = \emptyset$ and define $\delta(G) = \Delta(G) = \operatorname{mad}(G) = 0$ and $\operatorname{col}(G) = 1$. A simple sequential coloring argument shows that $\chi(G) \leq \operatorname{col}(G)$, which implies that every graph G satisfies

$$\chi(G) \leqslant \operatorname{col}(G) \leqslant \lfloor \operatorname{mad}(G) \rfloor + 1 \leqslant \Delta(G) + 1.$$

These inequalities were discussed in a paper by Jensen and Toft [10]. Brooks' famous theorem provides a characterization for the class of graphs G satisfying $\chi(G) = \Delta(G) + 1$. Let $k \ge 0$ be an integer. For $k \ne 2$, let \mathcal{B}_k denote the class of complete graphs having order k+1; and let \mathcal{B}_2 denote the class of odd cycles. A graph in \mathcal{B}_k has maximum degree k and chromatic number k + 1. Brooks' theorem [2] is as follows.

Theorem 1 (Brooks 1941). Let G be a non-empty graph. Then $\chi(G) \leq \Delta(G) + 1$ and equality holds if and only if G has a connected component belonging to the class $\mathcal{B}_{\Delta(G)}$.

In this paper we are interested in connectivity parameters of graphs. Let G be a graph with at least two vertices. The *local connectivity* $\kappa_G(v, w)$ of distinct vertices v and w is the maximum number of internally vertex disjoint v-w paths of G. The *local edge connectivity* $\lambda_G(v, w)$ of distinct vertices v and w is the maximum number of edge-disjoint v-w paths of G. The maximum local connectivity of G is

$$\kappa(G) = \max\{\kappa_G(v, w) \mid v, w \in V(G), v \neq w\},\$$

and the maximum local edge connectivity of G is

$$\lambda(G) = \max\{\lambda_G(v, w) \mid v, w \in V(G), v \neq w\}$$

For a graph G with $|G| \leq 1$, we define $\kappa(G) = \lambda(G) = 0$. Clearly, the definition implies that $\kappa(G) \leq \lambda(G)$ for every graph G. By a result of Mader [11] it follows that $\delta(G) \leq \kappa(G)$. Since κ is a monotone graph parameter in the sense that $H \subseteq G$ implies $\kappa(H) \leq \kappa(G)$, it follows that every graph G satisfies $\operatorname{col}(G) \leq \kappa(G) + 1$. Consequently, every graph G satisfies

$$\chi(G) \leqslant \operatorname{col}(G) \leqslant \kappa(G) + 1 \leqslant \lambda(G) + 1 \leqslant \Delta(G) + 1.$$
(1)

Our aim is to characterize the class of graphs G for which $\chi(G) = \lambda(G) + 1$. For such a characterization we use the fact that if we have an optimal coloring of each block of a graph G, then we can combine these colorings to an optimal coloring of G by permuting colors in the blocks if necessary. For every non-empty graph G, we thus have

$$\chi(G) = \max\{\chi(H) \mid H \text{ is a block of } G\}.$$
(2)

The electronic journal of combinatorics 25(1) (2018), #P1.50

We also need a famous construction, first used by Hajós [9]. Let G_1 and G_2 be two vertex-disjoint graphs and, for i = 1, 2, let $e_i = v_i w_i$ be an edge of G_i . Let G be the graph obtained from G_1 and G_2 by deleting the edges e_1 and e_2 from G_1 and G_2 , respectively, identifying the vertices v_1 and v_2 , and adding the new edge w_1w_2 . We then say that G is the Hajós join of G_1 and G_2 and write $G = (G_1, v_1, w_1) \triangle (G_2, v_2, w_2)$ or briefly $G = G_1 \triangle G_2$.

For an integer $k \ge 0$ we define a class \mathcal{H}_k of graphs as follows. If $k \le 2$, then $\mathcal{H}_k = \mathcal{B}_k$. The class \mathcal{H}_3 is the smallest class of graphs that contains all odd wheels and is closed under taking Hajós joins. Recall that an *odd wheel* is a graph obtained from on odd cycle by adding a new vertex and joining this vertex to all vertices of the cycle. If $k \ge 4$, then \mathcal{H}_k is the smallest class of graphs that contains all complete graphs of order k + 1 and is closed under taking Hajós joins. Our main result is the following counterpart of Brooks' theorem. In fact, Brooks' theorem may easily be deduced from it.

Theorem 2. Let G be a non-empty graph. Then $\chi(G) \leq \lambda(G) + 1$ and equality holds if and only if G has a block belonging to the class $\mathcal{H}_{\lambda(G)}$.

For the proof of this result, let G be a non-empty graph with $\lambda(G) = k$. By (1), we obtain $\chi(G) \leq k + 1$. By an observation of Hajós [9] it follows that every graph in \mathcal{H}_k has chromatic number k + 1. Hence if some block of G belongs to \mathcal{H}_k , then (2) implies that $\chi(G) = k + 1$. So it only remains to show that if $\chi(G) = k + 1$, then some block of G belongs to \mathcal{H}_k . For proving this, we shall use the critical graph method, see [12].

A graph G is *critical* if every proper subgraph H of G satisfies $\chi(H) < \chi(G)$. We shall use the following two properties of critical graphs. As an immediate consequence of (2) we obtain that if G is a critical graph, then $G = \emptyset$ or G contains no separating vertex, implying that G is its only block. Furthermore, every graph contains a critical subgraph with the same chromatic number.

Let G be a non-empty graph with $\lambda(G) = k$ and $\chi(G) = k + 1$. Then G contains a critical subgraph H with chromatic number k + 1, and we obtain that $\lambda(H) \leq \lambda(G) = k$. So the proof of Theorem 2 is complete if we can show that H is a block of G which belongs to \mathcal{H}_k . For an integer $k \geq 0$, let \mathcal{C}_k denote the class of graphs H such that H is a critical graph with chromatic number k + 1 and with $\lambda(H) \leq k$. We shall prove that the two classes \mathcal{C}_k and \mathcal{H}_k are the same.

2 Connectivity of critical graphs

In this section we shall review known results about the structure of critical graphs. First we need some notation. Let G be an arbitrary graph. For an integer $k \ge 0$, let $\mathcal{CO}_k(G)$ denote the set of all colorings of G with color set $\{1, 2, \ldots, k\}$. Then a function f: $V(G) \to \{1, 2, \ldots, k\}$ belongs to $\mathcal{CO}_k(G)$ if and only if $f^{-1}(c)$ is an independent vertex set of G (possibly empty) for every color $c \in \{1, 2, \ldots, k\}$. A set $S \subseteq V(G) \cup E(G)$ is called a *separating set* of G if G - S has more components than G. A vertex v of G is called a *separating vertex* of G if $\{v\}$ is a separating set of G. An edge e of G is called a *bridge* of G if $\{e\}$ is a separating set of G. For a vertex set $X \subseteq V(G)$, let $\partial_G(X)$ denote the set of all edges of G having exactly one end in X. Clearly, if G is connected and $\emptyset \neq X \subsetneq V(G)$, then $F = \partial_G(X)$ is a separating set of edges of G. The converse is not true. However if F is a minimal separating edge set of a connected graph G, then $F = \partial_G(X)$ for some vertex set X. As a consequence of Menger's theorem about edge connectivity, we obtain that if v and w are distinct vertices of G, then

$$\lambda_G(v, w) = \min\{|\partial_G(X)| \mid X \subseteq V(G), v \in X, w \notin X\}.$$

Color critical graphs were first introduced and investigated by Dirac in the 1950s. He established the basic properties of critical graphs in a series of papers [3], [4] and [5]. Some of these basic properties are listed in the next theorem.

Theorem 3 (Dirac 1952). Let G be a critical graph with chromatic number k + 1 for an integer $k \ge 0$. Then the following statements hold:

- (a) $\delta(G) \ge k$.
- (b) If $k \in \{0, 1\}$, then G is a complete graph of order k + 1; and if k = 2, then G is an odd cycle.
- (c) No separating vertex set of G is a clique of G. As a consequence, G is connected and has no separating vertex, i.e., G is a block.
- (d) If v and w are two distinct vertices of G, then $\lambda_G(v, w) \ge k$. As a consequence G is k-edge-connected.

Theorem 3(a) leads to a very natural way of classifying the vertices of a critical graph into two classes. Let G be a critical graph with chromatic number k + 1. The vertices of G having degree k in G are called *low vertices* of G, and the remaining vertices are called *high vertices* of G. So any high vertex of G has degree at least k+1 in G. Furthermore, let G_L be the subgraph of G induced by the low vertices of G, and let G_H be the subgraph of G induced by the high vertices of G. We call G_L the *low vertex subgraph* of G and G_H the *high vertex subgraph* of G. This classification is due to Gallai [8] who proved the following theorem. Note that statements (b) and (c) of Gallai's theorem are simple consequences of statement (a), which is an extension of Brooks' theorem.

Theorem 4 (Gallai 1963). Let G be a critical graph with chromatic number k + 1 for an integer $k \ge 1$. Then the following statements hold:

- (a) Every block of G_L is a complete graph or an odd cycle
- (b) If $G_H = \emptyset$, then G is a complete graph of order k + 1 if $k \neq 2$, and G is an odd cycle if k = 2.
- (c) If $|G_H| = 1$, then either G has a separating vertex set of two vertices or k = 3 and G is an odd wheel.

As observed by Dirac, a critical graph is connected and contains no separating vertex. Dirac [3] and Gallai [8] characterized critical graphs having a separating vertex set of size two. In particular, they proved the following theorem, which shows how to decompose a critical graph having a separating vertex set of size two into smaller critical graphs.

Theorem 5 (Dirac 1952 and Gallai 1963). Let G be a critical graph with chromatic number k + 1 for an integer $k \ge 3$, and let $S \subseteq V(G)$ be a separating vertex set of G with $|S| \le 2$. Then S is an independent vertex set of G consisting of two vertices, say v and w, and G - S has exactly two components H_1 and H_2 . Moreover, if $G_i = G[V(H_i) \cup S]$ for $i \in \{1, 2\}$, we can adjust the notation so that for some coloring $f_1 \in \mathcal{CO}_k(G_1)$ we have $f_1(v) = f_1(w)$. Then the following statements hold:

- (a) Every coloring $f \in \mathcal{CO}_k(G_1)$ satisfies f(v) = f(w) and every coloring $f \in \mathcal{CO}_k(G_2)$ satisfies $f(v) \neq f(w)$.
- (b) The subgraph $G'_1 = G_1 + vw$ obtained from G_1 by adding the edge vw is critical and has chromatic number k + 1.
- (c) The vertices v and w have no common neighbor in G_2 and the subgraph $G'_2 = G_2/S$ obtained from G_2 by identifying v and w is critical and has chromatic number k+1.

Dirac [6] and Gallai [8] also proved the converse theorem, that G is critical and has chromatic number k + 1 provided that G'_1 is critical and has chromatic number k + 1 and G_2 obtained from the critical graph G'_2 with chromatic number k + 1 by splitting a vertex into v and w has chromatic number k.

Hajós [9] invented his construction to characterize the class of graphs with chromatic number at least k + 1. Another advantage of the Hajós join is the well known fact that it not only preserve the chromatic number, but also criticality. It may be viewed as a special case of the Dirac–Gallai construction, described above.

Theorem 6 (Hajós 1961). Let $G = G_1 \triangle G_2$ be the Hajós join of two graphs G_1 and G_2 , and let $k \ge 3$ be an integer. Then G is critical and has chromatic number k + 1 if and only if both G_1 and G_2 are critical and have chromatic number k + 1.

If G is the Hajós join of two graphs that are critical and have chromatic number k + 1, where $k \ge 3$, then G is critical and has chromatic number k + 1. Moreover, G has a separating set consisting of one edge and one vertex. Theorem 5 implies that the converse statement also holds.

Theorem 7. Let G be a critical graph graph with chromatic number k + 1 for an integer $k \ge 3$. If G has a separating set consisting of one edge and one vertex, then G is the Hajós join of two graphs.

Next we will discuss a decomposition result for critical graphs having chromatic number k + 1 an having an separating edge set of size k. Let G be an arbitrary graph. By an *edge cut* of G we mean a triple (X, Y, F) such that X is a non-empty proper subset of $V(G), Y = V(G) \setminus X$, and $F = \partial_G(X) = \partial_G(Y)$. If (X, Y, F) is an edge cut of G, then we denote by X_F (respectively Y_F) the set of vertices of X (respectively, Y) which are incident to some edge of F. An edge cut (X, Y, F) of G is non-trivial if $|X_F| \ge 2$ and $|Y_F| \ge 2$. The following decomposition result was proved independently by T. Gallai and Toft [13].

Theorem 8 (Toft 1970). Let G be a critical graph with chromatic number k + 1 for an integer $k \ge 3$, and let $F \subseteq E(G)$ be a separating edge set of G with $|F| \le k$. Then |F| = k and there is an edge cut (X, Y, F) of G satisfying the following properties:

- (a) Every coloring $f \in \mathcal{CO}_k(G[X])$ satisfies $|f(X_F)| = 1$ and every coloring $f \in \mathcal{CO}_k(G[Y])$ satisfies $|f(Y_F)| = k$.
- (b) The subgraph G_1 obtained from $G[X \cup Y_F]$ by adding all edges between the vertices of Y_F , so that Y_F becomes a clique of G_1 , is critical and has chromatic number k + 1.
- (c) The subgraph G_2 obtained from G[Y] by adding a new vertex v and joining v to all vertices of Y_F is critical and has chromatic number k + 1.

A particular nice proof of this result is due to T. Gallai (oral communication to the second author). Recall that the *clique number* of a graph G, denoted by $\omega(G)$, is the largest cardinality of a clique in G. A graph G is *perfect* if every induced subgraph H of G satisfies $\chi(H) = \omega(H)$. For the proof of the next lemma, due to Gallai, we use the fact that complements of bipartite graphs are perfect.

Lemma 9. Let H be a graph and let $k \ge 3$ be an integer. Suppose that (A, B, F') is an edge cut of H such that $|F'| \le k$ and A as well as B are cliques of H with |A| = |B| = k. If $\chi(H) \ge k + 1$, then |F'| = k and $F' = \partial_H(\{v\})$ for some vertex v of H.

Proof. The graph H is perfect and so $\omega(H) = \chi(H) \ge k + 1$. Consequently, H contains a clique X with |X| = k + 1. Let $s = |A \cap X|$ and hence $k + 1 - s = |B \cap X|$. Since |A| = |B| = k, this implies that $s \ge 1$ and $k + 1 - s \ge 1$. Since X is a clique of H, the set E' of edges of H joining a vertex of $A \cap X$ with a vertex of $B \cap X$ satisfies $E' \subseteq F'$ and |E'| = s(k + 1 - s). The function g(s) = s(k + 1 - s) is strictly concave on the real interval [1, k] as g''(s) = -2. Since g(1) = g(k) = k, we conclude that g(s) > k for all $s \in (1, k)$. Since $g(s) = |E'| \le |F'| \le k$, this implies that s = 1 or s = k. In both cases we obtain that |E'| = |F'| = k, and hence $E' = F' = \partial_H(\{v\})$ for some vertex v of H. \Box

Based on Lemma 9 it is easy to give a proof of Theorem 8, see also the paper by Dirac, Sørensen, and Toft [7]. Theorem 8 is a reformulation of a result by Toft [13, Chapter 4] in his Ph.D thesis. Toft gave a complete characterization of the class of critical graphs, having chromatic number k + 1 and containing a separating edge set of size k. The characterization involves critical hypergraphs.

3 Proof of the main result

Theorem 10. Let $k \ge 0$ be an integer. Then the two graph classes C_k and \mathcal{H}_k coincide.

Proof. That the two classes C_k and \mathcal{H}_k coincide if $0 \leq k \leq 2$ follows from Theorem 3(b). In this case both classes consists of all critical graphs with chromatic number k + 1. In what follows we therefore assume that $k \geq 3$. The proof of the following claim is straightforward and left to the reader.

Claim 1. The odd wheels belong to the class C_3 and the complete graphs of order k + 1 belong to the class C_k .

Claim 2. Let $k \ge 3$ be an integer, and let $G = G_1 \triangle G_2$ the Hajós join of two graphs G_1 and G_2 . Then G belongs to the class C_k if and only if both G_1 and G_2 belong to the class C_k .

Proof: We may assume that $G = (G_1, v_1, w_1) \triangle (G_2, v_2, w_2)$ and v is the vertex of G obtained by identifying v_1 and v_2 . First suppose that $G_1, G_2 \in \mathcal{C}_k$. From Theorem 6 it follows that G is critical and has chromatic number k + 1. So it suffices to prove that $\lambda(G) \leq k$. To this end let u and u' be distinct vertices of G and let $p = \lambda_G(u, u')$. Then there is a system \mathcal{P} of p edge disjoint u-u' paths in G. If u and u' belong both to G_1 , then only one path P of \mathcal{P} may contain vertices not in G_1 . In this case P contains the vertex v and the edge w_1w_2 . If we replace in P the subpath vPw_1 by the edge v_1w_1 , we obtain a system of p edge disjoint u-u' paths in G_1 , and hence $p \leq \lambda_{G_1}(u, u') \leq k$. If u and u' belong to G_2 , a similar argument shows that $p \leq k$. It remains to consider the case that one vertex, say u, belongs to G_1 and the other vertex u' belongs to G_2 . By symmetry we may assume that $u \neq v$. Again at most one path P of \mathcal{P} uses the edge w_1w_2 and the remaining paths of \mathcal{P} all uses the vertex $v(=v_1 = v_2)$. If we replace P by the path $uPw_1 + w_1v_1$, then we obtain p edge disjoint u- v_1 path in G_1 , and hence $p \leq \lambda_{G_1}(u, v_1) \leq k$. This shows that $\lambda(G) \leq k$ and so $G \in \mathcal{C}_k$.

Suppose conversely that $G \in \mathcal{C}_k$. From Theorem 6 it follows that G_1 and G_2 are critical graphs, both with chromatic number k + 1. So it suffices to show that $\lambda(G_i) \leq k$ for i = 1, 2. By symmetry it suffices to show that $\lambda(G_1) \leq k$. To this end let u and u' be distinct vertices of G_1 and let $p = \lambda_{G_1}(u, u')$. Then there is a system \mathcal{P} of p edge disjoint u-u' paths in G_1 . At most one path P of \mathcal{P} can contain the edge v_1w_1 . Since $k \geq 3$, there is a v_2 - w_2 path P' in G_2 not containing the edge v_2w_2 . So if we replace the edge v_1w_1 of P by the path $P' + w_2w_1$, we get p edge disjoint u-u' paths of G, and hence $p \leq \lambda_G(u, u') \leq k$. This shows that $\lambda(G_1) \leq k$ and by symmetry $\lambda(G_2) \leq k$. Hence $G_1, G_2 \in \mathcal{C}_k$.

As a consequence of Claim 1 and Claim 2 and the definition of the class \mathcal{H}_k we obtain the following claim.

Claim 3. Let $k \ge 3$ be an integer. Then the class \mathcal{H}_k is a subclass of \mathcal{C}_k .

Claim 4. Let $k \ge 3$ be an integer, and let G be a graph belonging to the class C_k . If G is 3-connected, then either k = 3 and G is an odd wheel, or $k \ge 4$ and G is a complete graph of order k + 1.

Proof: The proof is by contradiction, where we consider a counterexample G whose order |G| is minimum. Then $G \in \mathcal{C}_k$ is a 3-connected graph, and either k = 3 and G is not an odd wheel, or $k \ge 4$ and G is not a complete graph of order k + 1. First we claim that $|G_H| \ge 2$. If $G_H = \emptyset$, then Theorem 4(b) implies that G is a complete graph of order k + 1, a contradiction. If $|G_H| = 1$, then Theorem 4(c) implies that k = 3 and G is an odd wheel, a contradiction. This proves the claim that $|G_H| \ge 2$. Then let u and v be distinct high vertices of G. Since $G \in \mathcal{C}_k$, Theorem 3(d) implies that $\lambda_G(u, v) = k$ and, therefore, G contains a separating edge set F of size k which separates u and v. From Theorem 8 it then follows that there is an edge cut (X, Y, F) satisfying the three properties of that theorem. Since F separates u and v, we may assume that $u \in X$ and $v \in Y$. By Theorem 8(a), $|Y_F| = k$ and hence each vertex of Y_F is incident to exactly one edge of F. Since Y contains the high vertex v, we conclude that $|Y_F| < |Y|$. Now we consider the graph G' obtained from $G[X \cup Y_F]$ by adding all edges between the vertices of Y_F , so that Y_F becomes a clique of G'. By Theorem 8(b), G' is a critical graph with chromatic number k+1. Clearly, every vertex of Y_F is a low vertex of G' and every vertex of X has in G' the same degree as in G. Since X contains the high vertex u of G, this implies that $|X_F| < |X|$. Since G is 3-connected, we conclude that $|X_F| \ge 3$ and that G' is 3-connected.

Now we claim that $\lambda(G') \leq k$. To prove this, let x and y be distinct vertices of G'. If x or y is a low vertex of G', then $\lambda_{G'}(x, y) \leq k$ and there is nothing to prove. So assume that both x and y are high vertices of G'. Then both vertices x and y belong to X. Let $p = \lambda_{G'}(x, y)$ and let \mathcal{P} be a system of p edge disjoint x-y paths in G'. We may choose \mathcal{P} such that the number of edges in \mathcal{P} is minimum. Let \mathcal{P}_1 be the paths in \mathcal{P} which uses edges of F. Since $|Y_F| = k$ and each vertex of Y_F is incident with exactly one edge of F, this implies that each path P in \mathcal{P}_1 contains exactly two edges of F. Since $|X_F| < |X|$ and $|Y_F| < |Y|$, there are vertices $u' \in X \setminus X_F$ and $v' \in Y \setminus Y_F$. By Theorem 3(d) it follows that $\lambda_G(u', v') = k$ and, therefore, there are k edge disjoint u' - v' paths in G. Since $|Y_F| = k$, for each vertex $z \in Y_F$, there is a v'-z path P_z in G[Y] such that these paths are edge disjoint. Now let P be an arbitrary path in \mathcal{P}_1 . Then P contains exactly two vertices of Y_F , say z and z', and we can replace the edge zz' of the path P by a z-z' path contained in $P_z \cup P_{z'}$. In this way we obtain a system of p edge disjoint x-y paths in G, which implies that $p \leq \lambda_G(x, y) \leq k$. This proves the claim that $\lambda(G') \leq k$. Consequently $G' \in \mathcal{C}_k$. Clearly, |G'| < |G| and either k = 3 and G' is not an odd wheel, or $k \ge 4$ and G is not a complete graph of order k + 1. This, however, is a contradiction to the choice of G. Thus the claim is proved. Δ

Claim 5. Let $k \ge 3$ be an integer, and let G be a graph belonging to the class C_k . If G has a separating vertex set of size 2, then $G = G_1 \triangle G_2$ is the Hajós sum of two graphs G_1 and G_2 , which both belong to C_k .

Proof: If G has a separating set consisting of one edge and one vertex, then Theorem 7 implies that G is the Hajoś join of two graphs G_1 and G_2 . By Claim 2 it then follows that both G_1 and G_2 belong to C_k and we are done. It remains to consider the case that G does not contain a separating set consisting of one edge and one vertex. By assumption,

there is a separating vertex set of size 2, say $S = \{u, v\}$. Then Theorem 5 implies that G - S has exactly two components H_1 and H_2 such that the graphs $G_i = G[V(H_i) \cup S]$ with $i \in \{1, 2\}$ satisfies the three properties of that theorem. In particular, we have that $G'_1 = G_1 + uv$ is critical and has chromatic number k+1. By Theorem 3(d), it then follows that $\lambda_{G'_1}(u, v) \ge k$ implying that $\lambda_{G_1}(u, v) \ge k - 1$. Since $G \in \mathcal{C}_k$, we then conclude that $\lambda_{G_2}(u, v) \le 1$. Since G_2 is connected, this implies that G_2 has a bridge e. Since $k \ge 3$, we conclude that $\{u, e\}$ or $\{v, e\}$ is a separating set of G, a contradiction.

As a consequence of Claim 4 and Claim 5, we conclude that the class C_k is a subclass of the class \mathcal{H}_k . Together with Claim 3 this yields $\mathcal{H}_k = C_k$ as wanted.

Proof of of Theorem 2: For the proof of this theorem let G be a non-empty graph with $\lambda(G) = k$. By inequality (1) we obtain that $\chi(G) \leq k + 1$. If one block H of G belongs to \mathcal{H}_k , then $H \in \mathcal{C}_k$ (by Theorem 10) and hence $\chi(G) = k + 1$ (by (2)).

Assume conversely that $\chi(G) = k+1$. Then G contains a subgraph H which is critical and has chromatic number k + 1. Clearly, $\lambda(H) \leq \lambda(G) \leq k$, and, therefore, $H \in \mathcal{C}_k$. By Theorem 3(c), H contains no separating vertex. We claim that H is a block of G. For otherwise, H would be a proper subgraph of a block G' of G. This implies that there are distinct vertices u and v in H which are joined by a path P of G with $E(P) \cap E(H) = \emptyset$. Since $\lambda_H(u, v) \geq k$ (by Theorem 3(c)), this implies that $\lambda_G(u, v) \geq k + 1$, which is impossible. This proves the claim that H is a block of G. By Theorem 10, $\mathcal{C}_k = \mathcal{H}_k$ implying that $H \in \mathcal{H}_k$. This completes the proof of the theorem

The case $\lambda = 3$ of Theorem 2 was obtained earlier by Aboulker, Brettell, Havet, Marx, and Trotignon [1]; their proof is similar to our proof. Let \mathcal{L}_k denote the class of graphs Gsatisfying $\lambda(G) \leq k$. It is well known that membership in \mathcal{L}_k can be tested in polynomial time. It is also easy to show that there is a polynomial-time algorithm that, given a graph $G \in \mathcal{L}_k$, decides whether G or one of its blocks belong to \mathcal{H}_k . So it can be tested in polynomial time whether a graph $G \in \mathcal{L}_k$ satisfies $\chi(G) \leq k$. Moreover, the proof of Theorem 2 yields a polynomial-time algorithm that, given a graph $G \in \mathcal{L}_k$, finds a coloring of $\mathcal{CO}_k(G)$ when such a coloring exists. This result provides a positive answer to a conjecture made by Aboulker *et al.* [1, Conjecture 1.8]. The case k = 3 was solved by Aboulker *et al.* [1].

Theorem 11. For fixed $k \ge 1$, there is a polynomial-time algorithm that, given a graph $G \in \mathcal{L}_k$, finds a coloring in $\mathcal{CO}_k(G)$ or a block of G belonging to \mathcal{H}_k .

Sketch of Proof: The Theorem is evident if $k \in \{1, 2\}$; and the case k = 3 was solved by Alboulker *et al.* [1]. Hence we assume that $k \ge 4$ and $G \in \mathcal{L}_k$. If we find for each block H of G a coloring in $\mathcal{CO}_k(H)$, we can piece these colorings together by permuting colors to obtain a coloring in $\mathcal{CO}_k(G)$. Hence we may assume that G is a block. Since $\lambda(G) \le k$ and $\lambda(H) = k$ for every graph $H \in \mathcal{H}_k$, it then follows that no proper subgraph of G belongs to \mathcal{H}_k .

First, we check whether G has a separating set S consisting of one vertex and one edge. If we find such a set, say $S = \{v, e\}$ with $v \in V(G)$ and $e \in E(G)$, then G - e is the union of two connected graphs G_1 and G_2 having only vertex v in common where $e = w_1 w_2$ and $w_i \in V(G_i)$ for i = 1, 2. Both blocks $G'_1 = G_1 + vw_1$ and $G'_2 = G_2 + vw_2$ belong to \mathcal{L}_k . Now we check whether these blocks belong to \mathcal{H}_k . If both blocks G'_1 and G'_2 belong to \mathcal{H}_k , then $vw_i \notin E(G_i)$ for i = 1, 2, and hence G belongs to \mathcal{H}_k and we are done. If one of the blocks, say G'_1 does not belong to \mathcal{H}_k , we can construct a coloring $f_1 \in \mathcal{CO}_k(G'_1)$. Since no block of G_2 belongs to \mathcal{H}_k , we can construct a coloring $f_2 \in \mathcal{CO}_k(G_2)$. Then $f_1 \in \mathcal{CO}_k(G_1)$ and $f_1(v) \neq f_1(w_1)$. Since $k \ge 4$, we can permute colors in f_2 such that $f_1(v) = f_2(v)$ and $f_1(w_1) \neq f_2(w_2)$. Consequently, $f = f_1 \cup f_2$ belongs to $\mathcal{CO}_k(G)$ and we are done.

It remains to consider the case that G contains no separating set consisting of one vertex and one edge. Then let p denote the number of vertices of G whose degree is greater that k. If $p \leq 1$, then let v be a vertex of maximum degree in G. Color v with color 1 and let L be a list assignment for H = G - v satisfying $L(u) = \{2, 3, \ldots, k\}$ if $vu \in E(G)$ and $L(u) = \{1, 2, \ldots, k\}$ otherwise. Then H is connected and $|L(u)| \geq d_H(u)$ for all $u \in V(H)$. Now we can use the degree version of Brooks' theorem, see [12, Theorem 2.1]. Either we find a coloring f of H such that $f(u) \in L(u)$ for all $u \in V(H)$, yielding a coloring of $\mathcal{CO}_k(G)$, or $|L(u)| = d_H(u)$ for all $u \in V(H)$ and each block of H is a complete graph or an odd cycle. In this case, $d_H(u) \in \{k, k-1\}$ for all $u \in V(H)$ and, since $k \geq 4$, each block of H is a K_k or a K_2 . Since G contains no separating set consisting of one vertex and one edge, this implies that $H = K_k$ and so $G = K_{k+1} \in \mathcal{H}_k$ and we are done.

If $p \ge 2$, then we choose two vertices u and u' whose degrees are greater that k. Then we construct an edge cut (X, Y, F) with $u \in X$, $u' \in Y$, and $|F| = \lambda_G(u, u')$. We may assume that $a = |X_F|$ and $b = |Y_F|$ satisfies $a \le b \le k$.

If $b \leq k - 1$, then both graphs G[X] and G[Y] belong to \mathcal{L}_k and there are colorings $f_X \in \mathcal{CO}_k(G[X])$ and $f_Y \in \mathcal{CO}_k(G[Y])$. Note that no block of these two graphs can belong to \mathcal{H}_k . By permuting colors in f_Y , we can combine the two colorings f_X and f_Y to obtain a coloring $f \in \mathcal{CO}_k(G)$. To see this, we apply Lemma 9 to the auxiliary graph $H = H(f_X, f_Y)$ obtained from two disjoint complete graphs of order k, one with vertex set $A = \{a_1, a_2, \ldots, a_k\}$ and the other one with vertex set $B = \{b_1, b_2, \ldots, b_k\}$, by adding all edges of the form $a_i b_j$ for which there exists an edge $e = vv' \in F$ such that $f_X(v) = i$ and $f_Y(v') = j$. By the assumption on the edge cut (X, Y, F) it follows from Lemma 9 that $\chi(H) \leq k$, which leads to to the desired coloring f.

If a < b = k, then we consider the graph G_1 obtained from $G[X \cup Y_F]$ by adding all edges between the vertices of Y_F , so that Y_F becomes a clique of G_1 . Then G_1 belongs to \mathcal{L}_k (see the proof of Claim 4) and, since G contains no separating set consisting of one vertex and one edge, the block G_1 does not belongs to \mathcal{H}_k . Hence there are colorings $f_1 \in \mathcal{CO}_k(G_1)$ and $f_Y \in \mathcal{CO}_k(G[Y])$. Then the restriction of f_1 to X yields a coloring $f_X \in \mathcal{CO}_k(G[X])$ such that $|f_X(X_F)| \ge 2$. By permuting colors in f_Y , we can combine the two colorings f_X and f_Y to obtain a coloring $f \in \mathcal{CO}_k(G)$ (by applying Lemma 9 to the auxiliary graph $H = H(f_X, f_Y)$ as in the former case).

It remains to consider the case a = b = k. Then let G_2 be the graph obtained from $G[Y \cup X_F]$ by adding all edges between the vertices of X_F , so that X_F becomes a clique of G_2 . Then we find colorings $f_1 \in \mathcal{CO}_k(G_1)$ and $f_2 \in \mathcal{CO}_k(G_2)$ and, hence, colorings $f_X \in \mathcal{CO}_k(G[X])$ and $f_Y \in \mathcal{CO}_k(G[Y])$ such that $|f_X(X_F)| \ge 2$ and $|f_Y(Y_F)| \ge 2$. By

permuting colors in f_Y , we can combine the two colorings f_X and f_Y to obtain a coloring $f \in \mathcal{CO}_k(G)$ (by using Lemma 9).

References

- P. Aboulker, N. Brettell, F. Havet, D. Marx, and N. Trotignon. Colouring graphs with constraints on connectivity. J. Graph Theory, 85(4):814–838, 2017.
- [2] R. L. Brooks. On colouring the nodes of a network. Proc. Cambridge Philos. Soc., 37:194–197, 1941.
- G. A. Dirac. A property of 4-chromatic graphs and some remarks on critical graphs. J. London Math. Soc., 27:85–92, 1951.
- [4] G. A. Dirac. The structure of k-chromatic graphs. Fund. Math., 40:42–55, 1953.
- [5] G. A. Dirac. A theorem of R. L. Brooks and a conjecture of H. Hadwiger. Proc. London Math. Soc., 7(3):161–195, 1957.
- [6] G. A. Dirac. On the structure of 5- and 6-chromatic graphs. J. Reine Angew. Math., 214/215:43-52, 1974.
- [7] G. A. Dirac, B. A. Sørensen, and B. Toft. An extremal result for graphs with an application to their colorings. J. Reine Angew. Math., 268/269:216–221, 1974.
- [8] T. Gallai. Kritische Graphen I. Publ. Math. Inst. Hungar. Acad. Sci., 8:165–192, 1963.
- [9] G. Hajós. Uber eine Konstruktion nicht n-färbbarer Graphen. Wiss. Z. Martin Luther Univ. Halle-Wittenberg, Math.-Natur. Reihe, 10:116–117, 1961.
- [10] T. Jensen and B. Toft. Choosability versus chromaticity. *Geombinatorics*, 5:45–64, 1995.
- [11] W. Mader. Grad und lokaler Zusammenhang in endlichen Graphen. Math. Ann., 205:9–11, 1973.
- [12] M. Stiebitz and B. Toft. Brooks's theorem. In L. W. Beineke and R. Wilson, eds., *Topics in Chromatic Graph Theory* volume 165 of *Encyyclopedia of Mathematics and Its Application*, pages 36–55, Cambridge Press, 2015.
- [13] B. Toft. Some contribution to the theory of colour-critical graphs. Ph.D thesis, University of London 1970. Published as No. 14 in Various Publication Series, Matematisk Institut, Aarhus Universitet 1970.
- B. Toft. Colour-critical graphs and hypergraphs. J. Combin. Theory (B), 16:145–161, 1974.
- [15] B. Toft. Critical subgraphs of colour critical graphs. Discrete Math., 7:377–392, 1974.