
On bipartite Q-polynomial distance-regular graphs

with diameter 9, 10, or 11
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Abstract

Let Γ denote a bipartite distance-regular graph with diameter D. In [J. S.
Caughman, Bipartite Q-polynomial distance-regular graphs, Graphs Combin. 20
(2004), 47–57], Caughman showed that if D > 12, then Γ is Q-polynomial if and
only if one of the following (i)-(iv) holds: (i) Γ is the ordinary 2D-cycle, (ii) Γ
is the Hamming cube H(D, 2), (iii) Γ is the antipodal quotient of the Hamming
cube H(2D, 2), (iv) the intersection numbers of Γ satisfy ci = (qi − 1)/(q− 1), bi =
(qD − qi)/(q − 1) (0 6 i 6 D), where q is an integer at least 2. In this paper we
show that the above result is true also for bipartite distance-regular graphs with
D ∈ {9, 10, 11}.

Keywords: bipartite distance-regular graph; Q-polynomial property

1 Introduction

As a classification of all distance-regular graphs is currently beyond our reach, classifica-
tions of some subclasses of distance-regular graphs are also very important projects. One
such subclass is the class of Q-polynomial bipartite distance-regular graphs. This paper
is part of an effort to understand and classify Q-polynomial bipartite distance-regular
graphs (see [3, 4, 5, 6, 7] for relevant literature). A crucial step towards a classification of
this class was made by Caughman, who proved the following result.

∗This work is supported in part by the Slovenian Research Agency (research program P1-0285 and
research projects N1-0032, N1-0038, N1-0062, J1-6720, and J1-7051).
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Theorem 1.1 ([7, Theorem 1.1]) Let Γ denote a bipartite distance-regular graph with
diameter D > 12. Then Γ is Q-polynomial if and only if one of the following (i)-(iv)
holds:

(i) Γ is the ordinary 2D-cycle.

(ii) Γ is the Hamming cube H(D, 2).

(iii) Γ is the antipodal quotient of the Hamming cube H(2D, 2).

(iv) The intersection numbers of Γ satisfy

ci =
qi − 1

q − 1
, bi =

qD − qi

q − 1
(0 6 i 6 D),

where q is an integer at least 2.

In this paper we prove an analogue of Theorem 1.1 for bipartite distance-regular
graphs with diameter D ∈ {9, 10, 11}. We follow the ideas of Caughman [7] and use the
Terwilliger algebra of Γ to prove our result. Generalization of Theorem 1.1 to bipartite
distance-regular graphs with diameter less than 12 is also mentioned as an open problem
in the recent survey paper Distance-regular graphs by van Dam, Koolen and Tanaka, see
[10, Section 18.3].

The paper is organized as follows. In Sections 2, 3, 4 we review some basic definitions
and results about distance-regular graphs, the Q-polynomial property of distance-regular
graphs, and the Terwilliger algebra of distance-regular graphs. In Section 5 we review
and prove some results concerning multiplicities of irreducible modules of the Terwilliger
algebra. In Sections 6 and 7 we prove our main result.

2 Preliminaries

In this section we review some definitions and basic concepts. See the book of Brouwer,
Cohen and Neumaier [2] for more background information.

Throughout this paper, Γ = (X,R) will denote a finite, undirected, connected graph,
without loops or multiple edges, with vertex set X, edge set R, path length distance
function ∂, and diameter D := max{∂(x, y)|x, y ∈ X}. For a vertex x ∈ X define Γi(x)
to be the set of vertices at distance i from x. We abbreviate Γ(x) := Γ1(x). Let k denote
a nonnegative integer. Then Γ is said to be regular with valency k whenever |Γ(x)| = k
for all x ∈ X. The graph Γ is said to be distance-regular whenever for all integers h, i, j
(0 6 h, i, j 6 D), and all x, y ∈ X with ∂(x, y) = h, the number

phij := |{z | z ∈ X, ∂(x, z) = i, ∂(y, z) = j}| (1)

is independent of x, y. The constants phij are known as the intersection numbers of Γ.
For convenience, set ci := pi1i−1 for 1 6 i 6 D, ai := pi1i for 0 6 i 6 D, bi := pi1i+1 for
0 6 i 6 D − 1, ki := p0ii for 0 6 i 6 D, and c0 = bD = 0. We observe a0 = 0, c1 = 1.
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Moreover, Γ is regular with valency k = b0, and ci + ai + bi = k for 0 6 i 6 D. It is
well-known that

ki =
b0 · · · bi−1
c1 · · · ci

(0 6 i 6 D). (2)

Observe that Γ is bipartite if and only if ai = 0 for 0 6 i 6 D. In this case bi + ci = k for
0 6 i 6 D.

From now on we assume Γ is distance-regular with diameter D > 3 and valency k > 3.
We recall the Bose-Mesner algebra of Γ. Let MatX(C) denote the C-algebra consisting of
the matrices over C which have rows and columns indexed by X. For 0 6 i 6 D let Ai

denote the matrix in MatX(C) with x, y entry

(Ai)xy =


1 if ∂(x, y) = i,

(x, y ∈ X).
0 if ∂(x, y) 6= i

(3)

We call Ai the i-th distance matrix of Γ. We abbreviate A = A1 and call A the adjacency
matrix of Γ. The matrices A0, A1, . . . , AD form a basis for a commutative semi-simple
C-algebra M , known as the Bose-Mesner algebra, see for example [11, Lemma 11.2.2].
The algebra M has a second basis E0, E1, . . . , ED such that EiEj = δijEi (0 6 i, j 6 D),
see [2, Theorem 2.6.1]. The E0, E1, . . . , ED are known as the primitive idempotents of Γ,
and E0 is the trivial idempotent.

For 0 6 i 6 D define a real number θi by A =
∑D

i=0 θiEi. Then AEi = EiA = θiEi for
0 6 i 6 D. The scalars θ0, θ1, . . . , θD are distinct, since A generates M [1, p. 197]. The
θ0, θ1, . . . , θD are known as the eigenvalues of Γ. We remark k > θi > −k for 0 6 i 6 D,
and θ0 = k [2, p. 45].

Let θ denote an eigenvalue of Γ, and let E denote the associated primitive idempotent.
For 0 6 i 6 D define a real number θ∗i by E = |X|−1

∑D
i=0 θ

∗
iAi. We call the sequence

θ∗0, θ
∗
1, . . . , θ

∗
D the dual eigenvalue sequence associated with θ, E.

3 The Q-polynomial property

In this section we recall the Q-polynomial property of distance-regular graphs. Let Γ
denote a distance-regular graph with diameter D > 3 and valency k > 3, and let
A0, A1, . . . , AD denote the distance matrices of Γ. Observe that Ai ◦ Aj = δijAi (0 6
i, j 6 D), where ◦ denotes entrywise multiplication, and so algebra M is closed under
◦. Let E0, E1, . . . , ED denote the primitive idempotents of Γ. The Krein parameters
qhij (0 6 h, i, j 6 D) of Γ are defined by

Ei ◦ Ej = |X|−1
D∑

h=0

qhijEh (0 6 i, j 6 D). (4)

We say Γ is Q-polynomial (with respect to the given ordering E0, E1, . . . , ED of the prim-
itive idempotents), whenever for all distinct integers i, j (0 6 i, j 6 D) the following
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holds: q1ij 6= 0 if and only if |i − j| = 1. Let E denote a nontrivial primitive idempo-
tent of Γ. We say Γ is Q-polynomial with respect to E whenever there exists an ordering
E0, E1 = E, . . . , ED of the primitive idempotents of Γ, with respect to which Γ is Q-
polynomial.

We have the following important result about bipartite Q-polynomial distance-regular
graphs, see [7, Lemma 3.2, Lemma 3.3].

Lemma 3.1 Let Γ denote a bipartite distance-regular graph with diameter D > 4, valency
k > 3, and intersection numbers bi, ci (0 6 i 6 D). We assume Γ is Q-polynomial with
respect to E0, E1, . . . , ED. For 0 6 i 6 D let θi denote the eigenvalue associated with Ei.
Let θ∗0, θ

∗
1, . . . , θ

∗
D denote the dual eigenvalue sequence associated with E1. Assume Γ is not

the D-cube or the antipodal quotient of the 2D-cube. Then there exist scalars q, s∗ ∈ R
such that (i)–(iii) hold below.

(i) |q| > 1, s∗qi 6= 1 (2 6 i 6 2D + 1);

(ii) θi = h(qD−i − qi), θ∗i = θ∗0 + h∗(1− qi)(1− s∗qi+1)q−i for 0 6 i 6 D, where

h =
1− s∗q3

(q − 1)(1− s∗qD+2)
, h∗ =

(qD + q2)(qD + q)

q(q2 − 1)(1− s∗q2D)
, θ∗0 =

h∗(qD − 1)(1− s∗q2)
q(qD−1 + 1)

;

(iii) k = cD = h(qD − 1), and

ci =
h(qi − 1)(1− s∗qD+i+1)

1− s∗q2i+1
, bi =

h(qD − qi)(1− s∗qi+1)

1− s∗q2i+1
(1 6 i 6 D − 1).

4 The Terwilliger algebra

In this section we recall the Terwilliger algebra of a distance-regular graph. Let Γ denote
a distance-regular graph with diameter D > 3, valency k > 3, and distance matrices
A0, A1, . . . , AD. Fix any vertex x ∈ X. For 0 6 i 6 D let E∗i = E∗i (x) denote the
diagonal matrix in MatX(C) with y, y entry (Ai)xy (y ∈ X). Let T = T (x) denote the
subalgebra of MatX(C) generated by A and E∗0 , . . . , E

∗
d . We call T the Terwilliger algebra

of Γ with respect to x. We remark that T is finite dimensional and semisimple.

Let V denote the C-vector space consisting of the column vectors over C which have rows
indexed by X. Observe that MatX(C) acts on V by left multiplication. We refer to V as
the standard module of T . By a T -module we mean a subspace W of the standard module
V such that BW ⊆ W for all B ∈ T . Let W denote a T -module. Then W is said to be
irreducible whenever W is nonzero and W contains no T -modules other than zero and W .

Let W and W ′ denote T -modules. By a T -isomorphism from W to W ′, we mean a vector
space isomorphism σ : W → W ′ such that (σB −Bσ)W = 0 for all B ∈ T . The modules
W and W ′ are said to be isomorphic whenever there exists a T -isomorphism from W to
W ′.
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Let W denote a T -module and let W ′ denote a T -module contained in W . Then the
orthogonal complement of W ′ in W is a T -module. From this we find W is an orthogonal
direct sum of irreducible T -modules. Taking W = V we find V is an orthogonal direct
sum of irreducible T -modules. Let W denote an irreducible T -module. By the multiplicity
with which W appears in V , we mean the number of irreducible T -modules in this sum
which are isomorphic to W . It is known that the multiplicity of W is independent of the
decomposition of V .

Let W denote an irreducible T -module. We define the endpoint r and the diameter d of
W by r = min{i | 0 6 i 6 D, E∗iW 6= 0} and d = |{i | 0 6 i 6 D, E∗iW 6= 0}| − 1.
Similarly, the dual endpoint t and dual diameter d∗of W are defined by t = min{i | 0 6
i 6 D, EiW 6= 0} and d∗ := |{i | 0 6 i 6 D, EiW 6= 0}|−1. We say W is thin, whenever
dim(E∗iW ) 6 1 for every 0 6 i 6 D.
Assume now that our distance-regular graph Γ is Q-polynomial. Let W denote an irre-
ducible T -module with endpoint r, dual endpoint t, diameter d and dual diameter d∗.
Then W is thin by [4, Theorem 9.3]. We comment on r, t, d and d∗. By [4, Lemma 5.1(ii)]
we have 2r + d∗ > D, and by [4, Lemma 9.2(ii)] we have that d = d∗. It follows that
(D − d)/2 6 r. It is also clear that r + d 6 D, and so we have that

D − d
2

6 r 6 D − d.

We have 2t+ d = D by [4, Theorem 9.4(ii)], and so D− d is even. By [4, Theorem 13.1],
the isomorphism class of W is determined by r and d. For the rest of the paper we will
consider the following situation.

Notation 4.1 Let Γ = (X,R) denote a bipartite distance-regular graph with diameter
D > 4, valency k > 3, intersection numbers bi, ci, and distance matrices Ai (0 6 i 6 D).
We fix x ∈ X and let E∗i = E∗i (x) (0 6 i 6 D) and T = T (x) denote the dual idempotents
and the Terwilliger algebra of Γ with respect to x, respectively. Let V denote the standard
module for Γ. Let H(D, 2) denote the D-dimensional hypercube, and let H(2D, 2) denote
the antipodal quotient of H(2D, 2).

5 Multiplicities of the irreducible T -modules

With reference to Notation 4.1, assume that Γ is Q-polynomial. In this section we review
and prove some results about the multiplicities of irreducible T -modules (see also [4,
Section 14]).

Fix a decomposition of the standard module V into an orthogonal direct sum of irre-
ducible T -modules. Let W denote an irreducible T -module. Recall that the multiplicity
of W equals the number of irreducible T -modules in this sum which are isomorphic to W .
As the isomorphism class of W is determined by its endpoint and diameter, we introduce
the following notation. For any integers r, d (0 6 r, d 6 D), we define mult(r, d) to be
the number of irreducible T -modules in this decomposition which have endpoint r and
diameter d. If no such modules exist, then we set mult(r, d) = 0. Note that if W has
endpoint r and diameter d, then the multiplicity of W equals mult(r, d).
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Definition 5.1 ([4, Definition 14.2]) With reference to Notation 4.1, assume that Γ is
Q-polynomial. Define a set Υ by

Υ := {(r, d) ∈ Z2 | 0 6 d 6 D,D − d even ,
D − d

2
6 r 6 D − d}.

Observe that mult(r, d) = 0 for all integers r, d such that (r, d) 6∈ Υ. We define a
partial order 4 on Υ by

(r′, d′) 4 (r, d) if and only if r′ 6 r and r + d 6 r′ + d′.

To further describe mult(r, d), we need a definition. Let (r, d) ∈ Υ. Following [4, pp.
87-88] we define scalars ci(r, d) (1 6 i 6 d) and bi(r, d) (0 6 i 6 d− 1) by

ci(r, d) =
θt(θ

∗
r+i+1 − θ∗r+1)− θt+1(θ

∗
r+i − θ∗r)

θ∗r+i+1 − θ∗r+i−1
(1 6 i 6 d− 1), (5)

bi(r, d) =
θt(θ

∗
r+1 − θ∗r+i−1) + θt+1(θ

∗
r+i − θ∗r)

θ∗r+i+1 − θ∗r+i−1
(1 6 i 6 d− 1), (6)

where t = (D − d)/2. We also set b0(r, d) = cd(r, d) = θt, bd(r, d) = c0(r, d) = 0. Assume
now that Γ is not H(D, 2) or H(2D, 2). Then using Lemma 3.1(ii) we get that

ci(r, d) =
h(qi − 1)(1− s∗q2r+d+i+1)

qd+t(1− s∗q2r+2i+1)
(1 6 i 6 d− 1), (7)

bi(r, d) =
h(qd − qi)(1− s∗q2r+i+1)

qd+t(1− s∗q2r+2i+1)
(1 6 i 6 d− 1), (8)

and b0(r, d) = cd(r, d) = h(q−t − qt−D), bd(r, d) = c0(r, d) = 0.

Theorem 5.2 ([4, Theorem 14.7]) With reference to Definition 5.1, fix any (r, d) ∈ Υ.
Then

kr

r+d−1∏
i=r

bicr+d−i =
∑

(r′,d′)∈Υ

(r′,d′)4(r,d)

mult(r′, d′)
r+d−r′−1∏
i=r−r′

bi(r
′, d′)ci+1(r

′, d′).

Corollary 5.3 With reference to Definition 5.1, fix any (r, d) ∈ Υ such that r + d =
D (1 6 r 6 D − 1). Then r is even and

kr

D−1∏
i=r

bicD−i =

r/2∑
`=0

mult(2`,D − 2`)
D−2`−1∏
i=r−2`

bi(2`,D − 2`)ci+1(2`,D − 2`).

Proof. Recall that r = D − d is even by definition of the set Υ. As r + d = D, it
follows from the definition of 4 that the only pairs (r′, d′) ∈ Υ such that (r′, d′) 4 (r, d)
are pairs with r′ 6 r and r′+ d′ = D. Note that r′+ d′ = D implies r′ is even, and so the
result follows from Theorem 5.2.
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Lemma 5.4 With reference to Definition 5.1, fix any (r, d) ∈ Υ such that r+d = D (1 6
r 6 D − 1). Assume that Γ is not H(D, 2) or H(2D, 2). If there exists an irreducible
T -module with endpoint r and diameter d, then

D−r−1∏
i=0

bi(r,D − r)ci+1(r,D − r) 6= 0.

Proof. Let q, s∗ be as in Lemma 3.1. Recall that |q| > 1 and s∗qi 6= 1 for 2 6 i 6
2D+ 1. Using this, equations (7), (8) and b0(r, d) = cd(r, d) = h(q−t− qt−D), we find that
bi(r,D − r) 6= 0 and ci+1(r,D − r) 6= 0 for 0 6 i 6 D − r − 1. The result follows.

Corollary 5.5 With reference to Definition 5.1, fix any (r, d) ∈ Υ such that r + d =
D (1 6 r 6 D− 1). Assume that Γ is not H(D, 2) or H(2D, 2). Then mult(r, d) is equal
to the quantity

kr

D−1∏
i=r

bicD−i −
r/2−1∑
`=0

mult(2`,D − 2`)
D−2`−1∏
i=r−2`

bi(2`,D − 2`)ci+1(2`,D − 2`),

divided by the quantity
D−r−1∏
i=0

bi(r,D − r)ci+1(r,D − r).

Proof. Immediately from Corollary 5.3 and Lemma 5.4.

We now give explicit formulae for mult(r, d) for some specific values of r, d. To do this
we need the following definition. For a, b ∈ R and for a non-negative integer n we set

(a; b)n =
n∏

i=1

(1− abi−1).

Theorem 5.6 With reference to Definition 5.1 assume Γ is not H(D, 2) or H(2D, 2).
Let parameters q, s∗ be as in Lemma 3.1. Then the following (i)–(iii) hold.

(i) mult(0, D) = 1.

(ii) If r ∈ {2, 4}, then

mult(r,D − r) =
(−1)tqt(t−1)(1− s∗q2r)(qd+1; q)r(−s∗qD+1; q)t(s

∗q2; q2)t−1
(q2; q2)t(s∗qD+t+1; q)t(s∗qD+d+2; q2)t

;

where d = D − r and t = (D − d)/2 = r/2.

(iii) If r ∈ {6, 8} and D ∈ {9, 10, 11}, then

mult(r,D − r) =
(−1)tqt(t−1)(1− s∗q2r)(qd+1; q)r(−s∗qD+1; q)t(s

∗q2; q2)t−1
(q2; q2)t(s∗qD+t+1; q)t(s∗qD+d+2; q2)t

;

where d = D − r and t = (D − d)/2 = r/2.
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Proof. (i), (ii) This is [4, Theorem 15.6 (i),(iii),(vii)].
(iii) The proof (although a bit tedious and lengthy) follows straightforward from Corollary
5.5 using (7), (8). We omit the details.

Remark 5.7 With reference to Definition 5.1 assume Γ is not H(D, 2) or H(2D, 2).
We conjecture that the formula for mult(r,D − r) given in Theorem 5.6 holds for any
diameter D and for any even number r 6 D. See also [4, Conjecture 15.8] for an extended
conjecture about the multiplicities of irreducible T -modules of Γ. However, for the purpose
of this paper, Theorem 5.6 suffices.

6 Some results about parameter s∗

With reference to Notation 4.1 assume Γ is Q-polynomial, and let parameters q, s∗ be as
in Lemma 3.1. In this section we derive some restrictions on parameter s∗. We first recall
some results of Caughman.

Theorem 6.1 ([7, Theorem 4.1, Lemma 5.1, Lemma 6.6]) With reference to Notation 4.1
assume Γ is Q-polynomial and assume that Γ is not H(D, 2) or H(2D, 2). Let parameters
q, s∗ be as in Lemma 3.1. Then the following (i)–(iii) hold.

(i) If D > 6, then q > 1.

(ii) If q > 1, then −q−D−1 6 s∗ < q−2D−1.

(iii) If D > 7 and −q−13 6 s∗ 6 q−13, then s∗ = 0.

Lemma 6.2 With reference to Notation 4.1 assume Γ is Q-polynomial and assume that
Γ is not H(D, 2) or H(2D, 2). Let parameters q, s∗ be as in Lemma 3.1. Set β = q+ 1/q.
If D > 5, then β is a rational number.

Proof. Assume that Γ is Q-polynomial with respect to E0, E1, . . . , ED and let θ1 denote
the eigenvalue of Γ corresponding to E1. By [6, Lemma 3.2] we have that θ1 6= −1 and

β =
θ21 + c2θ1 + b2(k − 2)

b2(θ1 + 1)
.

If D > 5 then θ1 is integer by [9, Theorem 8.1.3], see also [6, Lemma 3.3(i)]. The result
follows.

We note that it is easy to see that q2 + q−2 = β2 − 2, q3 + q−3 = β3 − 3β and
q4 + q−4 = β4 − 4β2 + 2. Also, if D > 6, then q > 1 by Theorem 6.1(i), and so β > 2 in
this case.

The following result was proved by Lang.

Proposition 6.3 ([12, Lemma 9.3]) With reference to Notation 4.1 assume Γ is Q-
polynomial and assume that Γ is not H(D, 2) or H(2D, 2). Let parameters q, s∗ be as
in Lemma 3.1. If D > 5, then s∗ 6= −q−D−3.
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Proposition 6.4 With reference to Notation 4.1 assume Γ is Q-polynomial and assume
that Γ is not H(D, 2) or H(2D, 2). Let parameters q, s∗ be as in Lemma 3.1. If D > 9,
then s∗ 6= −q−D−2.

Proof. Assume on contrary that D > 9 and s∗ = −q−D−2. Observe that this implies
s∗ < 0 as q > 1 by Theorem 6.1(i). If D > 11, then s∗ = −q−D−2 implies −q−13 6 s∗ 6
q−13. But then s∗ = 0 by Theorem 6.1(iii), a contradiction.

If D ∈ {9, 10} then the proof is similar to the proof of Proposition 6.3 for the case
D = 9. Let β be as in Lemma 6.2. Assume first that D = 10. In this case we have

2c2 = β2 + 2β − 1− 2β2 − β − 3

β3 − β2 − 2β + 1
,

which shows that β is an algebraic integer. As β is rational by Lemma 6.2, this implies
that β is an integer, and so (2β2 − β − 3)/(β3 − β2 − 2β + 1) is an integer. Observe that
2β2−β−3 and β3−β2−2β+1 are both positive for β > 2, so 2β2−β−3 > β3−β2−2β+1.
But this implies β = 2, a contradiction (recall that β > 2).

Assume now D = 9. In this case we have

2c2 = β2 + 2β − 1− 2β2 + β − 4

β(β2 − 3)
,

which again shows that β is an algebraic integer. As β is rational by Lemma 6.2, this
implies that β is an integer, and so (2β2 + β − 4)/(β(β2 − 3)) is an integer. Observe that
2β2 + β − 4 and β(β2 − 3) are both positive for β > 2, so 2β2 + β − 4 > β(β2 − 3). But
this implies β = 2, a contradiction. This shows that s∗ 6= −q−D−2.

Proposition 6.5 With reference to Notation 4.1 assume Γ is Q-polynomial and assume
that Γ is not H(D, 2) or H(2D, 2). Let parameters q, s∗ be as in Lemma 3.1. If D > 6,
then s∗ 6= −q−D−1.

Proof. We assume s∗ = −q−D−1 and derive a contradiction. By Theorem 5.6(ii) we
find that mult(2, D − 2) = 0. But now Γ has, up to isomorphism, a unique irreducible
T -module with endpoint 2, and this module has diameter D − 4. By [8, Theorem 3.12],
Γ is 2-homogeneous in the sense of Nomura [13]. However, as D > 6 we have that Γ is
H(D, 2) by [14, Theorem 1.2] (see also [8, Theorem 4.1]), a contradiction. This shows
that s∗ 6= −q−D−1.

7 Proof of the main theorem

In this section we prove our main theorem. To do this we first need the following result.

Theorem 7.1 With reference to Notation 4.1 assume Γ is Q-polynomial and assume that
Γ is not H(D, 2) or H(2D, 2). Let parameters q, s∗ be as in Lemma 3.1. Assume further
that D ∈ {9, 10, 11}. Then s∗ > −q−D−4.
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Proof. The result obviously holds if s∗ > 0 (recall that q > 1 by Theorem 6.1(i)), so
assume that s∗ < 0. Consider mult(2, D− 2) and recall that this number is non-negative.
It follows from Theorem 5.6(ii) that

(1 + s∗qD+1) > 0.

As s∗ 6= −1/qD+1 by Proposition 6.5, we have that s∗ > −q−D−1.
Consider now mult(4, D − 4) and recall that this number is non-negative. It follows

from Theorem 5.6(ii) that

(1 + s∗qD+1)(1 + s∗qD+2) > 0.

We have just proved that s∗ > −q−D−1 and so 1+s∗qD+1 > 0, implying that 1+s∗qD+2 > 0.
As s∗ 6= −q−D−2 by Proposition 6.4, this shows that s∗ > −q−D−2.

Consider now mult(6, D − 6) and recall that this number is non-negative. It follows
from Theorem 5.6(iii) that

(1 + s∗qD+1)(1 + s∗qD+2)(1 + s∗qD+3) > 0.

We have just proved that s∗ > −q−D−2 and so (1 + s∗qD+1)(1 + s∗qD+2) > 0, implying
that 1 + s∗qD+3 > 0. As s∗ 6= −q−D−3 by Proposition 6.3, this shows that s∗ > −q−D−3.

Finally, consider mult(8, D−8) and recall that this number is non-negative. It follows
from Theorem 5.6(iii) that

(1 + s∗qD+1)(1 + s∗qD+2)(1 + s∗qD+3)(1 + s∗qD+4) > 0.

We have just proved that s∗ > −q−D−3 and so (1 + s∗qD+1)(1 + s∗qD+2)(1 + s∗qD+3) > 0,
implying that 1 + s∗qD+4 > 0. This shows that s∗ > −q−D−4.

We are now ready to prove our main result.

Theorem 7.2 Let Γ denote a bipartite distance-regular graph with diameter D > 9. Then
Γ is Q-polynomial if and only if one of the following (i)–(iv) holds:

(i) Γ is the ordinary 2D-cycle.

(ii) Γ is the Hamming cube H(D, 2).

(iii) Γ is the antipodal quotient of the Hamming cube H(2D, 2).

(iv) The intersection numbers of Γ satisfy

ci =
qi − 1

q − 1
, bi =

qD − qi

q − 1
(0 6 i 6 D), (9)

where q is an integer at least 2.
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Proof. If D > 12 then this is [7, Theorem 1.1], therefore we assume D ∈ {9, 10, 11}.
Assume first that Γ is Q-polynomial and that Γ is not a 2D-cycle, H(D, 2) or H(2D, 2).
Let parameters q, s∗ be as in Lemma 3.1. By Theorem 7.1 we have s∗ > −q−D−4. Together
with Theorem 6.1(ii) this implies that −q−13 6 s∗ 6 q−13, and so s∗ = 0 by Theorem
6.1(iii). It follows from Lemma 3.1 that

ci =
qi − 1

q − 1
, bi =

qD − qi

q − 1
(0 6 i 6 D).

But now c2 = q + 1, and so q is an integer. As q > 1 we have that q > 2.
Concerning the converse, assume that one of the cases (i)-(iv) holds. If (i) or (iii)

holds, then Γ is Q-polynomial by [2, Corollary 8.5.3(i),(iii)]. If (ii) or (iv) holds, then Γ
has classical parameters and it is Q-polynomial by [2, Corollary 8.4.2].
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