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Abstract

We consider a circular version of the famous Hadwiger-Nelson problem. It is
known that 4 colors are necessary and 7 colors suffice to color the Euclidean plane
so that points at distance one get different colors. In an r-circular coloring we
assign to points arcs of length one of a circle whose circumference is equal to r so
that points at distance one get disjoint arcs. No r-circular coloring of the plane
with r < 7 was known so far. In this paper we show the existence of an r-circular

coloring of the plane for r = 4 + 4
√
3

3 ≈ 6.30. We also prove existence of a variant
of the r-circular coloring of the plane with r < 7 in which we require that the arcs
assigned to points at distance belonging to the interval [0.9327, 1.0673] are disjoint.

Keywords: circular coloring, Hadwiger-Nelson problem, coloring of the plane.

1 Introduction

The Hadwiger-Nelson problem asks about the minimum number of colors required to
color the Euclidean plane so that no two points at distance 1 receive the same color. This
number is called the chromatic number of the plane and its exact value is not known. We
know that at least 4 colors are needed [5] and that 7 colors suffice [3]. For a comprehensive
history of the Hadwiger-Nelson problem see the monograph [7].

An r-circular coloring of a graph G = (V,E) is a function c : V → [0, r) such that
1 6 |c(u)− c(v)| 6 r − 1 holds for every edge uv of G. Notice that an r-circular coloring
can be seen as an assignment of arcs of length 1 of a circle with circumference r to vertices
of G so that adjacent vertices get disjoint arcs. The circular chromatic number of G is
the number χc(G) = inf{r ∈ R : there exists an r-circular coloring of G}. A circular
coloring was first introduced by Vince [8]. For a survey on this subject see Zhu [9]. The
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circular coloring finds applications in scheduling theory, to minimize the average time of
a process that is repeated many times. It is known (see [8]) that the circular chromatic
number χc(G) of a graph G does not exceed its chromatic number but it is bigger than
the chromatic number minus one, formally

χ(G)− 1 < χc(G) 6 χ(G). (1)

In this paper we consider the circular coloring of the Euclidean plane. More precisely,
let G0 be an infinite graph with the set of all points of the plane as its vertex set and
the set of all pairs of points at distance one as its edge set. Clearly, the Hadwiger-Nelson
problem concerns finding the chromatic number of G0. If we combine known bounds for
the chromatic number of G0 with with the inequalities (1), we obtain 3 < χc(G0) 6 7.
The lower bound can be improved by applying some results on the fractional chromatic
number of the graph G0.

Let us consider a j-fold coloring of a graph G which is an assignment of j-element sets
of natural numbers to the vertices of G so that adjacent vertices get disjoint sets. The
fractional chromatic number of G is defined by

χf (G) = inf

{
k

j
: there exists a j-fold coloring of G using k colors

}
.

It is known [9] that χf (G) 6 χc(G) for any graph G. The best known lower bound
for the fractional chromatic number of G0 is 32

9
≈ 3.55 (see Scheinerman and Ullman [6]).

Hence χc(G) > 32
9

. DeVos, Ebrahimi, Ghebleh, Goddyn, Mohar, Naserasr [1] improved
this bound by showing that χc(G) > 4. In this paper we give the first non-trivial upper
bound on the circular chromatic number of the plane: χc(G0) 6 6.3095.

Exoo [2] considered a more restricted coloring of the plane. He asked for the minimum
number of colors to color the plane so that any points at distance belonging to a given
interval [1− ε, 1 + ε] get different colors. For ε = 0 the problem reduces to the Hadwiger-
Nelson problem. A fractional and a j-fold Exoo type colorings were studied in [4]. The
approach to circular coloring of the plane presented in this paper can be adapted to Exoo
type colorings of the plane.

2 Main results

For x ∈ R and ` ∈ R+ we define bxc` = bx
`
c · ` and (x)` = x − bxc`. Notice that for

` = 1 the function bxc` is the standard floor function bxc. For a pair of points p1, p2 ∈ R2,
d(p1, p2) denotes the ordinary Euclidean distance. Let Gε be a graph with the vertex set
R2 and the edge set {p1p2 : d(p1, p2) ∈ [1− ε, 1 + ε]}. Here is our main result.

Theorem 1.

χc(G0) 6 4 +
4
√

3

3
≈ 6.3095
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Proof. We construct a (4 + 4
√
3

3
)-circular coloring of the plane. Let ` = 2 + 2

√
3 and let

r = 2
√
3

3
` = 4 + 4

√
3

3
. We denote by R the rectangle [0, `)× [0, 1

2
). We define a coloring c of

the points of R by c(x, y) = 2
√
3

3
x (where (x, y) ∈ R). Then, we extend this coloring in a

“circular way” on the strip S = R× [0, 1
2
). More precisely, we join copies of the rectangle

R along their vertical sides so that they form a strip S. Each copy of R is colored in the
same way as the original rectangle R. Then we take copies of the strip S and join them
along the horizontal sides. Each strip S is colored the same way, but when we move up,
we shift each next copy of S to the right by (1 +

√
3
2

) (see Figures 1-3).

Figure 1: A partition of the plane into copies of the rectangle R

Figure 2 may give some intuition about the numbers r and `.

0     1     2      3      4     5     6 0  
0.5 1

1
1

1
1

1
0.5

0.5

Figure 2: An ilustration of the coloring

Formally, the coloring of G0 is defined by the formula:

c(x, y) =
2
√

3

3

(
x− (2 +

√
3)byc 1

2

)
`
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Figure 3: A (4 + 4
√
3

3
)-circular coloring of the plane, black and white

To prove that c is an r-circular coloring of G0 we show that for any pair of points
(x1, y1) and (x2, y2) at distance 1 the condition 1 6 |c(x1, y1)−c(x2, y2)| 6 r−1 is satisfied.
Without loss of generality we assume c(x1, y1) > c(x2, y2), i.e. (x1 − (2 +

√
3)by1c 1

2
)` >

(x2 − (2 +
√

3)by2c 1
2
)`. Let (x′1, y

′
1) = (x1 − x2, y1 − by2c 1

2
) and (x′2, y

′
2) = (0, y2 − by2c 1

2
).

Notice that d((x′1, y
′
1), (x

′
2, y
′
2)) = d((x1, y1), (x2, y2)).

Moreover, using the equalities by1−by2c 1
2
c 1

2
= by1c 1

2
−by2c 1

2
and (a− b)` = (a)`− (b)`

for (a)` > (b)` we obtain:

|c(x′1, y′1)− c(x′2, y′2)| =
2
√

3

3

∣∣∣(x1 − x2 − (2 +
√

3)by1 − by2c 1
2
c 1

2
)` − 0

∣∣∣ =

=
2
√

3

3

∣∣∣(x1 − x2 − (2 +
√

3)(by1c 1
2
− by2c 1

2
))`

∣∣∣ =

=
2
√

3

3

∣∣∣(x1 − (2 +
√

3)by1c 1
2
− (x2 − (2 +

√
3))by2c 1

2
))`

∣∣∣ =

=
2
√

3

3

∣∣∣(x1 − (2 +
√

3)by1c 1
2
))` − (x2 − (2 +

√
3)by2c 1

2
)`

∣∣∣ = |c(x1, y1)− c(x2, y2)| .

Therefore, without loss of generality, we may assume that x2 = 0 and y2 ∈ [0, 1
2
).

Recall that d((x1, y1), (x2, y2)) = 1.

It remains to prove that |c(x1, y1)− c(x2, y2)| = |c(x1, y1)| ∈ [1, 3 + 4
√
3

3
]. Consider the

following cases:
Case 1: by1c 1

2
= 0, x1 > 0. In this case x1 ∈ (

√
3
2
, 1] and c(x1, y1) ∈ (1, 2

√
3

3
] ⊆

[1, 3 + 4
√
3

3
].
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Figure 4: A (4 + 4
√
3

3
)-circular coloring of the plane, color

Case 2: by1c 1
2

= 0, x1 < 0. In this case x1 ∈ [−1,−
√
3
2

) and c(x1, y1) ∈ [4 + 2
√
3

3
, 3 +

4
√
3

3
) ⊆ [1, 3 + 4

√
3

3
].

Case 3: by1c 1
2

= 1
2
. In this case x1 ∈ (−1, 1) and c(x1, y1) ∈ (3, 3+ 4

√
3

3
) ⊆ ([1, 3+ 4

√
3

3
].

Case 4: by1c 1
2

= 1. In this case x1 ∈ (−
√
3
2
,
√
3
2

) and c(x1, y1) ∈ (1, 3) ⊆ [1, 3 + 4
√
3

3
].

Case 5: by1c 1
2

= −1
2
. In this case x1 ∈ (−1, 1) and c(x1, y1) ∈ (1, 1+ 4

√
3

3
) ⊆ [1, 3+ 4

√
3

3
].

Case 6: by1c 1
2

= −1. In this case x1 ∈ (−
√
3
2
,
√
3
2

) and c(x1, y1) ∈ (1 + 4
√
3

3
, 3 + 4

√
3

3
) ⊆

[1, 3 + 4
√
3

3
].

The approach described in the proof of Theorem 1 can also be used to color Gε in the
“circular way”. In Theorem 2 we show that for small values of ε the number χc(Gε) is
strictly smaller than the known bound on the classic chromatic number of Gε.

Theorem 2. For ε ∈ [0, 0.0673),

χc(Gε) 6 3 +
(4 +

√
3)(1 + ε)√

3ε2 − 10ε+ 3
< 7.

Proof. The proof is analogous to the proof of Theorem 1. We partition the plane into
copies of a rectangle, and color each copy in the same way. The difference is in the size
of the rectangle and in the definition of the coloring function. Figure 5 may give some

intuition about the number 3 + (4+
√
3)(1+ε)√

3ε2−10ε+3
< 7.

Let ` = 3
2

√
3ε2 − 10ε+ 3 + (2 +

√
3
2

)(1 + ε) and r = 3 + (4+
√
3)(1+ε)√

3ε2−10ε+3
. To prove the

theorem we define an r-circular coloring of Gε by:

the electronic journal of combinatorics 25(1) (2018), #P1.53 5



1-ε

0     1     2      3        

1-ε

1-ε

1+ε
1+ε

1+ε

0.5+ε/2

0.5+ε/2

0.5+ε/2

Figure 5: A coloring of Gε

c(x, y) =
2√

3ε2 − 10ε+ 3

(
x−

(
2 +

√
3ε2 − 10ε+ 3

1 + ε

)
byc 1+ε

2

)
`

.

To make formulas shorter, we define a = 1
2

√
3ε2 − 10ε+ 3. Then r = 3 +

(2+
√
3
2
)(1+ε)

a

and

c(x, y) =
1

a

(
x− (1 + ε+ a)

2

1 + ε
byc 1+ε

2

)
`

.

To prove that c is an r-circular coloring ofGε we show that for any pair of points (x1, y1)
and (x2, y2) at distance in the interval [1−ε, 1+ε] the condition 1 6 |c(x1, y1)−c(x2, y2)| 6
r − 1 holds. Without loss of generality we assume that c(x1, y1) > c(x2, y2), i.e.(

x1 − (1 + ε+ a)
2

1 + ε
by1c 1+ε

2

)
`

>

(
x2 − (1 + ε+ a)

2

1 + ε
by2c 1+ε

2

)
`

Let (x′1, y
′
1) = (x1 − x2, y1 − by2c 1+ε

2
) and (x′2, y

′
2) = (0, y2 − by2c 1+ε

2
). Notice that

d((x′1, y
′
1), (x

′
2, y
′
2)) = d((x1, y1), (x2, y2)).

Moreover, similarly as in the proof of Theorem 1, one can prove that |c(x′1, y′1) −
c(x′2, y

′
2)| = |c(x1, y1)− c(x2, y2)|. Therefore, without loss of generality, we may assume

that x2 = 0 and y2 ∈ [0, 1+ε
2

).
Recall that d((x1, y1), (x2, y2)) ∈ [1 − ε, 1 + ε]. It remains to prove that |c(x1, y1) −

c(x2, y2)| = |c(x1, y1)| ⊆ [1, r − 1]. Consider the following cases:
Case 1: by1c 1+ε

2
= 0, x1 > 0. In this case x1 ∈ (a, 1 + ε] and c(x1, y1) ∈ (1, 1+ε

a
] ⊆

[1, r − 1].
Case 2: by1c 1+ε

2
= 0, x1 < 0. In this case x1 ∈ [−1−ε,−a) and c(x1, y1) ∈ [r− 1+ε

a
, r−

1) ⊆ [1, r − 1].
Case 3: by1c 1+ε

2
= 1+ε

2
. In this case x1 ∈ (−(1 + ε), 1 + ε) and c(x1, y1) ∈ (2 +

√
3 1+ε√

3ε2−10ε+3
, r − 1) ⊆ [1, r − 1].

Case 4: by1c 1+ε
2

= 1 + ε. In this case x1 ∈ (−
√
3
2

(1 + ε),
√
3
2

(1 + ε)) and c(x1, y1) ∈
(1, 1 + 2

√
3 1+ε√

3ε2−10ε+3
) ⊆ [1, r − 1].

Case 5: by1c 1+ε
2

= −1+ε
2

. In this case x1 ∈ (−(1 + ε), 1 + ε) and c(x1, y1) ∈ (1, 1 +

4 1+ε√
3ε2−10ε+3

) ⊆ [1, r − 1].
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Case 6: by1c 1+ε
2

= −(1 + ε). In this case x1 ∈ (−
√
3
2

(1 + ε),
√
3
2

(1 + ε)) and c(x1, y1) ∈
(2 + (4−

√
3) 1+ε√

3ε2−10ε+3
, 2 + (4 +

√
3) 1+ε√

3ε2−10ε+3
) ⊆ [1, r − 1].
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oring of the plane, Discrete Comput. Geom. 55 (3), 594–609, 2016.

[5] L. Moser, W. Moser, Problems for Solution, Canadian Bulletin of Mathematics, (4):
187–189, 1961.

[6] E. R. Scheinerman, D.H. Ullman, Fractional Graph Theory, John Wiley and Sons,
2008.

[7] A. Soifer, The Mathematical Coloring Book, Springer, 2008.

[8] A. Vince, Star chromatic number. J. Graph Theory, (12): 551–559, 1988.

[9] X. Zhu, Circular chromatic number: a survey. Discrete Math., (229): 371–410, 2001.

the electronic journal of combinatorics 25(1) (2018), #P1.53 7


	Introduction
	Main results

