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Abstract

The well-known Motzkin numbers were conjectured by Deutsch and Sagan to be
nonzero modulo 8. The conjecture was first proved by Sen-Peng Eu, Shu-chung Liu
and Yeong-Nan Yeh by using the factorial representation of the Catalan numbers.
We present a short proof by finding a recursive formula for Motzkin numbers mod-
ulo 8. Moreover, such a recursion leads to a full classification of Motzkin numbers
modulo 8.
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1 Introduction

Much work has been done in calculating the congruences of various combinatorial numbers
modulo a prime power pr. We begin by introduce some notations. We will use the p-adic
notations [n]p = 〈ndnd−1 · · ·n0〉p to denote the sequence of digits representing n in base p
[15]. The p-adic order or p-adic valuation ωp(n) of n is defined by

ωp(n) = max{t ∈ N : pt|n}.

In words, it is the highest power of p dividing n, or equivalently, the number of 0’s to the
right of the rightmost nonzero digit in [n]p. The value ωp(n) indicates the divisibility by
powers of p, which can be found in many previous studies [5].

Many results have been established for the binomial coefficients. The most famous as
well as age-old one is the Pascal’s fractal which is formed by the parities of the binomial
coefficients

(
n
k

)
[20]. Pascal’s triangle also has versions modulo 4 and 8 [3, 10]. The

behavior of Pascal’s triangle modulo higher powers of p is more complicated. Some rules
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for this behavior are discussed by Granville [9]. Kummer computed the p-adic order of(
m+n
m

)
[13], by counting the number of carries that occur when [m]p and [n]p are added.

The elegant result of Lucas [15] states that
(
n
k

)
≡p
∏

i

(
ni

ki

)
where ni and ki come from

[n]p and [k]p, and ≡p denotes the congruence class modulo p. A generalization of Lucas’
theorem for a prime power was established by Davis and Webb [2].

The most useful combinatorial numbers other than the binomial coefficients are the
well-known Catalan numbers

Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

n!(n+ 1)!
, n ∈ N.

They have more than 200 combinatorial interpretations, as collected by Stanley in [18].
The congruence class of Cn modulo 2r was studied in [6, 11, 14, 21]. Several other com-
binatorial numbers have been studied for their congruences, for example, Apéry numbers
[8, 16], Central Delannoy numbers [7] and weighted Catalan numbers [17].

In this paper we will focus on the well-known Motzkin numbers

M(n) = Mn =
∑
k=0

(
n

2k

)
Ck, n ∈ N. (1)

Their congruences were only studied very recently. Klazar and Luca proved that the
Motzkin numbers are never periodic modulo any prime number [12]. Deutsch and Sagan
[4] studied the congruences of Mn modulo 2, 3 and 5 and made the following two ex-
conjectures.

Conjecture 1 ([4]). We have Mn ≡4 0 if and only if n = (4i + 1)4j+1 − 1 or n =
(4i+ 3)4j+1 − 2, where i and j are nonnegative integers.

Conjecture 2 ([4]). The Motzkin numbers are never congruent to 0 modulo 8.

The two conjectures were first proved by Eu-Liu-Yeh in [6]. They first derived the
congruence class of the Catalan numbers Cn modulo 8 by using their factorial representa-
tions. Then they proved Conjecture 1 by careful analyzing formula (1) modulo 8. Finally
they proved Conjecture 2 by confirming that M(n) ≡8 4 when n belongs to the two cases
in Conjecture 1.

Our main result is the following explicit formula for Mn modulo 8, from which Con-
jectures 1 and 2 clearly follow.

Theorem 3. The congruence class of M(n) modulo 8 can be characterized as follows:

M(4s) ≡8

{
1− 4Z(α)− 2χ(‖α‖ ≡2 1) + 4α, s = 2α,
1− 4Z(α)− 2χ(‖α‖ ≡2 1), s = 2α + 1.

M(4s+ 1) ≡8

{
1− 4Z(α)− 2χ(‖α‖ ≡2 1) + 4α, s = 2α,
1− 4Z(α)− 2χ(‖α‖ ≡2 1) + 4, s = 2α + 1.
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M(4s+ 2) ≡8


4, s = (4α + 3)22j − 1,
2− 4‖α‖, s = (4α + 1)22j − 1,
−1 + 4Z(α) + 2χ(‖α‖ ≡2 1), s = (4α + 3)22j+1 − 1,
3 + 4Z(α) + 2χ(‖α‖ ≡2 1) + 4α, s = (4α + 1)22j+1 − 1.

M(4s+ 3) ≡8


−2 + 4‖α‖, s = (4α + 3)22j − 1,
4, s = (4α + 1)22j − 1,
−1 + 4Z(α) + 2χ(‖α‖ ≡2 1), s = (4α + 3)22j+1 − 1,
−1 + 4Z(α) + 2χ(‖α‖ ≡2 1) + 4α, s = (4α + 1)22j+1 − 1.

Here χ(S) equals 1 if the statement S is true and equals 0 if otherwise, ‖α‖ is the sum
of the digits of [α]2, and Z(α) is the number of zero runs of α as described later in
Proposition 11.

Our approach is along the line of [21], by using the following recursive formula:

Cn+1 =

bn/2c∑
i=0

(
n

2i

)
2n−2iCi.

This formula can be easily proved by using Zeilberger’s creative telescoping method [22],
or by two different combinatorial interpretations of Cn (see [21]). By combining the above
formula with (1), we derive the following recursive formulas for M(n).

M(2k + 2)−M(2k) ≡8 (−1)kM(k) + f(k), (2)

f(k) = 4

((
k + 1

2

)
− (−1)kk

)
M(k − 1)− 4

(
k

2

)
M(k − 2);

M(2k + 1) ≡8 (2k + 1)M(2k) + g(k), (3)

g(k) = −2

(
2k + 1

2

)
M(2k − 1) + 4

(
2k + 1

3

)
M(2k − 2).

By using these recursive formulas, we give a simple way to compute the congruences of
M(n) modulo 2, 4, 8.

The paper is organized as follow. In Section 2, we derive the recurrence formulas
of Mn, which are the staring point of our approach. We also introduce basic tools for
further calculations. In Section 3, we compute the congruences classes of Motzkin numbers
modulo 2 and 4. Finally, we compute the congruences classes of Motzkin numbers modulo
8 in Section 4.

2 Weighted Motzkin paths and the recursion

Let F (x;u) =
∑

n>0Mu(n)xn be the unique power series defined by the functional equa-
tion

F (x;u) =
1

1− ux− x2F (x;u)
.
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Then F (x;u) is the generating function of weighted Motzkin paths (see, e.g. [19]). That
is, Mu(n) counts weighted lattice paths from (0, 0) to (n, 0) that never go below the
horizontal axis and use only steps U = (1, 1) H = (1, 0), or D = (1,−1) and weights
1, u, 1 respectively.

The well-known Motzkin number M(n) is our M1(n), and the Catalan number Cn is
our M0(2n). We also have Cn+1 = M2(n), which is written as

M0(2n) = M2(n− 1), for n > 1. (4)

Lemma 4. For any constants u and v, we have

Mu+v(n) =
n∑
i=0

(
n

i

)
viMu(n− i), (5)

Mu(2k + 1) =
n∑
i=1

(
2k + 1

i

)
(−2)i−1uiMu(2k + 1− i). (6)

Proof. Equation (5) is routine. For (6), we need the easy fact M−u(n) = (−1)nMu(n).
By setting v = −2u in (5), we obtain

M−u(n) = Mu(n) +
n∑
i=1

(
n

i

)
(−2u)iMu(n− i).

Thus for n = 2k + 1, we obtain

Mu(2k + 1) =
n∑
i=1

(
2k + 1

i

)
(−2)i−1uiMu(2k + 1− i).

This is equation (6).

Theorem 5. We have the recursion (2) and (3) with initial condition M(0) = 1.

Proof. Setting u = 1 in (6) and simplifying gives

M(2k + 1) ≡8 (2k + 1)M(2k)− 2

(
2k + 1

2

)
M(2k − 1) + 4

(
2k + 1

3

)
M(2k − 2).

This is (3). Note that no recursion for M(2k) can be obtained in this way.
For (2), we start with

M(2k) =
k∑
i=0

(
2k

2i

)
Ck−i

=
k∑
i=0

i∑
j=0

22j

(
k

2j

)(
k − 2j

i− j

)
Ck−i,
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which can be easily proved using Zeilberger’s creative telescoping method [22]. When
reduced to modulo 8, this gives

M(2k) ≡8

k∑
i=0

(
k

i

)
Ck−i + 4

(
k

2

) k−1∑
i=1

(
k − 2

i− 1

)
Ck−i

≡8 1 +
k−1∑
i=0

( i∑
j=1

(
k − j

i− j + 1

))
M2(k − i− 1) + 4

(
k

2

) k−2∑
i′=0

(
k − 2

i′

)
M2(k − 2− i′)

≡8 1 +
k−1∑
j=1

k−1∑
i=j

(
k − j

i− j + 1

)
M2((k − j)− (i− j + 1)) + 4

(
k

2

)
M3(k − 2)

≡8 1 +
k−1∑
j=1

M3(k − j) + 4

(
k

2

)
M3(k − 2).

(We remark that the computation modulo 2r when r > 4 becomes complicated.) Thus,

M(2k + 2)−M(2k) ≡8 M3(k) + 4

(
k + 1

2

)
M3(k − 1)− 4

(
k

2

)
M3(k − 2)

≡8 M−1(k) + 4

(
k

1

)
M−1(k − 1) + 4

(
k + 1

2

)
M(k − 1)− 4

(
k

2

)
M(k − 2)

≡8 (−1)kM(k) + 4

((
k + 1

2

)
− (−1)kk

)
M(k − 1)− 4

(
k

2

)
M(k − 2).

This is just equation (2).

We derive explicit formulas of M(n) mod 2r successively for r = 1, 2, 3. The idea is
based on the fact that

2r−r
′
M(n) mod 2r = 2r−r

′
(M(n) mod 2r

′
), for r′ < r.

This fact will be frequently used without mentioning.

Lemma 6. We keep the notations from Theorem 5. Assume that we have obtained ex-
plicit formulas for M(n) mod 2r−1. Then there are explicit formulas for f(k) and g(k).
Moreover, the recursion is reduced as follows.

M(2k + 1) ≡8 (2k + 1)M(2k) + g(k), (7)

M(4s) ≡2r M(0) +
2s−1∑
j=2

f(j)−
s−1∑
j=1

(2jM(2j) + g(j)), (8)

M(4s+ 2) ≡2r M(2β − 2) +
a∑
i=0

(
M(β2i+2 − 4) + f(β2i+1 − 2)

)
, (9)

where in (9), s+ 1 = β2a for some odd number β and a > 0.
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Proof. By (7), we can eliminate those M(2k + 1) so that our formulas only involve
f(k), g(k) and M(2k). We have to split by cases k = 2s and k = 2s+ 1 in (2):

M(4s+ 4)−M(4s+ 2) ≡2r −M(2s+ 1) + f(2s+ 1)

≡2r −(2s+ 1)M(2s)− g(s) + f(2s+ 1),

M(4s+ 2)−M(4s) ≡2r M(2s) + f(2s) ≡2r M(2s) + f(2s).

Taking the sum of the above two equations gives the following recursion:

M(4s+ 4)−M(4s) ≡2r −2sM(2s)− g(s) + f(2s) + f(2s+ 1). (8’)

(Note that we have explicit formulas of −2sM(2s) mod 2r by the induction hypothesis.)
This is equivalent to (8).

Next for M(4s+ 2) we rewrite as follows:

M(4(s+ 1)− 2)−M(4s) ≡2r M(2(s+ 1)− 2) + f(2s).

If s = β2a − 1 with β odd and a > 0, then the above equation can be rewritten as

M(β2a+2 − 2)−M(β2a+1 − 2) ≡2r M(β2a+2 − 4) + f(β2a+1 − 2). (9’)

This is equivalent to (9).

We remark that (8’) and (9’) are easier to use than (8) and (9).

3 Motzkin numbers modulo 2, 4

Recall that ω2(n) = a if n = (2α + 1)2a. Note that ω2(0) is not defined. The following
properties are easy to check and will be frequently used without mentioning.

Lemma 7. For nonnegative integer α we have

ω2(2α + 1) = 0, ω2(2α) = ω2(α) + 1, αω2(α) ≡2 0;

ω2(α!) =
α∑
i=1

ω2(i), ω2((2α + 1)!) = ω2((2α)!) = ω2(α!) + α.

Proof. The first, second and fourth formulas follow easily by definition. The third formula
follows from the first two formulas by discussing the parity of α. Finally,

ω2((2α + 1)!) = ω2((2α)!) = ω2((2α)!!)) = ω2(α!) + α,

where in the second equality, we removed all the odd factors to get (2α)!! = 2αα!.
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3.1 Motzkin numbers modulo 2

Proposition 8. We have

M(2k + 1) ≡2 M(2k) ≡2 ω2(2k + 2).

In particular M(4s) ≡2 M(4s+ 1) ≡2 1.

Proof. We apply Theorem 5 and Lemma 6 and follow the notations there. Clearly, we
have f(k) ≡2 0 and g(k) ≡2 0. Thus we have

M(4s) ≡2 M(0) = 1 = ω2(4s+ 2),

M(4s+ 2) ≡2 M(2β − 2) +
a∑
i=0

(
M(β2i+2 − 4)

)
= a+ 2 = ω2(4s+ 4),

where in the second equation, s + 1 = β2a for some odd number β and a > 0. The
proposition then follows.

3.2 Motzkin numbers modulo 4

Lemma 9. We have the following characterization of Motzkin numbers modulo 4.

M(4s) ≡4 1 + 2ω2(s!) ≡4 1 + 2L(s) + 2s,

M(4s+ 1) ≡4 M(4s),

M(4s+ 2) ≡4

{
2α + 2, s=(2α + 1)22a − 1, a > 0,

2α + 2L(α) + 3, s=(2α + 1)22a+1 − 1, a > 0.

M(4s+ 3) ≡4 −M(4s+ 2) + 2,

where L(r) =
∑r−1

i=1 M(2i).
Consequently, M(n) ≡4 0 if and only if n = (4i + 1)4j+1 − 1 or n = (4i + 3)4j+1 − 2

for some nonnegative integers i and j. That is, Conjecture 1 holds true.

Proof. We first show that the second part follows from the first part. Clearly, M(n) ≡4 0
if and only if either i) M(n) = M(4r + 2) ≡4 2α + 2 ≡4 0 for r = (2α + 1)4a − 1.
Hence, α = 2i + 1 for some i and n = (4i + 3)4a+1 − 2; Or ii) M(n) = M(4r + 3) ≡4

−M(4r + 2) + 2 ≡4 2α ≡4 0 for r = (2α + 1)4a − 1. Hence, α = 2i for some i and
n = (4i+ 1)4a+1 − 1.

Now we prove the first part by Theorem 5 and Lemma 6. First, we have

f(k) ≡4 0 and g(k) ≡4 −2k(2k + 1)M(2k − 1) ≡4 2kω2(2k) ≡4 2k,

where we have used Proposition 8. Thus, the recurrence reduces to

M(2k + 2) ≡4 M(2k) + (−1)kM(k), (10)

M(2k + 1) ≡4 (2k + 1)M(2k) + 2k. (11)
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Clearly, the odd case reduces to the even case by (11).
For M(4s) we have

M(4s+ 4)−M(4s) ≡4 −M(2s+ 1) +M(2s) ≡4 −2sM(2s)− 2s

≡4 2χ(s = 2α + 1)(1 + ω2(α + 1) + 1) ≡4 2ω2(s+ 1),

which is equivalent to M(4s) ≡4 1 + 2ω2(s!) ≡4 1 + 2L(s) + 2s.
For M(4s+ 2), we write s = β2a − 1 for a unique odd number β. We have

M(4s+ 2) ≡4 M(2β − 2) +
a∑
i=0

M(β2i+2 − 4)

≡4 M(2β − 2) +
a∑
i=0

(1 + 2L(β2i − 1) + 2(β2i − 1))

≡4 χ(β = 2α + 1)1 + 2L(α) + 2α− (a+ 1) +
a∑
i=0

(2i+ 2L(α) + 2i+1)

≡4 2(a+ 2)L(α) + 2α− a+ a(a+ 1) + 2

≡4 2(a+ 2)L(α) + 2α + a2 − 2

≡4

{
2α + 2, a is even,

2α + 2L(α) + 3, a is odd.

This completes the proof.

Indeed since L(s) appears in computations modulo 8,we summarize its properties as
follows.

Lemma 10. Let L(s) =
∑s−1

i=0 M(2i), with L(0) = 0. Then

L(2s) ≡2 L(s), L(2s+ 1) ≡2 1 + L(s), L(s) = h2(s!) + s,

L(2s) ≡4 1− (−1)s + L(s), L(2s+ 1) ≡4 1− L(s).

Proof. The modulo 2 result is obvious since L(s) ≡2

∑s−1
i=0 ω2(2i+ 2) = ω2(s!) + s.

For the modulo 4 result, we have, by definition,

L(2s) ≡4

2s−1∑
i=0

M(2i) =
s−1∑
i=0

(M(4i+ 2) +M(4i))

(by (10)) ≡4

s−1∑
i=0

(2M(4i) +M(2i))

≡4

s−1∑
i=0

(2 +M(2i))

≡4 2s+ L(s)
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≡4 1− (−1)s + L(s).

By the above formula and Lemma 9, we have

L(2s+ 1) = L(2s) +M(4s) = 2s+ L(s) + 1 + 2s+ 2L(s) = 1− L(s).

This completes the proof.

Let [n]2 = nknk−1 · · ·n1n0 be the binary expansion of n > 1. Then n = nk2
k + · · · +

n1 ·2 +n0. Denote by ‖n‖ = nk + · · ·+n1 +n0, the sum of the binary digits of n. A 0-run
of [n]2 is a maximal 0-subword nini+1 · · ·nj for some 0 6 i < j 6 k, such that nj+1 = 1
and ni−1 6= 0 (including the case i = 0). Denote by Z(n) the number of 0-runs of [n]2.
We have the following explicit result.

Proposition 11. We have

L(n) ≡2 ‖n‖, and L(n) ≡4 2Z(n) + χ(‖n‖ ≡2 1).

Proof. The modulo 2 case is straightforward by Lemma 10.
For the modulo 4 case, we proceed by induction on n. The proposition clearly holds

for the base case n = 1. Assume it holds for all numbers smaller than n. We show that
it holds for n by considering the following two cases.

Case 1: If n = 2s + 1, then [n]2 is obtained from [s]2 by adding a 1 at the end. By
Lemma 10 and the induction hypothesis for s, we have

L(2s+ 1) ≡4 1− L(s) ≡4 1− 2Z(s)− χ(‖s‖ ≡2 1) ≡4 2Z(s) + 1− χ(‖s‖ ≡2 1),

which clearly equals to 2Z(n) + χ(‖n‖ ≡2 1).
Case 2: If n = 2s, then [n]2 is obtained from [s]2 by adding a 0 at the end. i) If s is

odd, then by Lemma 10 and the induction hypothesis for s, we have

L(2s) ≡4 1− (−1)s + L(s) = 2 + L(s) = 2(Z(s) + 1) + χ(‖s‖ ≡2 1),

which clearly equals to 2Z(n) + χ(‖n‖ ≡2 1). ii) Similarly, if s is even, then

L(2s) ≡4 1− (−1)s + L(s) = L(s) = 2Z(s) + χ(‖s‖ ≡2 1).

This also equals to 2Z(n) + χ(‖n‖ ≡2 1).

We remark that the sequence L(n) mod 2 turns out to be the Thue-Morse sequence.
See [1] for a survey on the Thue-Morse sequence.
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4 Motzkin numbers modulo 8

Lemma 12. The recursion from Theorem 5 reduces modulo 8 to

M(2k + 2)−M(2k) ≡8 (−1)kM(k) + f(k), where f(k) = 4χ(k ≡4 3)ω2((k + 1)/2),

M(2k + 1) ≡8 (2k + 1)M(2k) + g(k),

where g(k) = χ(k = 2α + 1)(4α− 2M(4α)).

Proof. By Theorem 5, we have

f(k) ≡8 4

((
k + 1

2

)
− (−1)kk

)
M(k − 1)− 4

(
k

2

)
M(k − 2).

i) When k = 2α, we have

f(2α) ≡8 4(α− 2α)M(2α− 1)− 4αM(2α− 2)

≡8 4α ω2(2α)− 4α ω2(2α) ≡8 0.

ii) When k = 2α + 1, we have

f(2α + 1) ≡8 4(α + 1 + 2α + 1)M(2α)− 4αM(2α− 1)

≡8 4α ω2(2α + 2)− 4α ω2(2α)

≡8 4χ(α ≡2 1)ω2(α + 1) ≡8 4χ(k ≡4 3)ω2((k + 1)/2).

We also have

g(k) ≡8 −2

(
2k + 1

2

)
M(2k − 1) + 4

(
2k + 1

3

)
M(2k − 2).

i) When k = 2α, we have

g(2α) ≡8 −4αM(4α− 1) ≡8 4α ω2(4α) ≡8 0.

ii) When k = 2α + 1, we have

g(2α + 1) ≡8 −2(2α + 3)M(4α + 1) + 4M(4α)

≡8 4αM(4α)− 2M(4α)

≡8 4α− 2M(4α).

This completes the proof.

Now we are ready to prove Theorem 3, which, by Proposition 11, can be restated as
Propositions 13 and 14 blow.

Proposition 13. We have

M(4s) ≡8

{
1− 2L(α) + 4α, s = 2α,
1− 2L(α), s = 2α + 1.

(12)
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Proof. We apply Lemmas 6 and 12 to obtain

M(4s+ 4)−M(4s) ≡8 f(2s) + f(2s+ 1)− 2sM(2s)− g(s)

≡8 −2sM(2s) + χ(s = 2α + 1)(4ω2(2α + 2)− 4α + 2M(4α)).

i) When s = 2α, we have

M(4s+ 4)−M(4s) ≡8 −4αM(4α) ≡8 4α ω2(4α + 2) ≡8 4α.

ii) When s = 2α + 1, we have

M(4s+ 4)−M(4s) ≡8 −2(2α + 1)M(4α + 2) + (4ω2(2α + 2)− 4α + 2M(4α))

≡8 −2(M(4α + 2)−M(4α))− 4α ω2(4α + 4) + 4ω2(2α + 2) + 4α

(by (10)) ≡8 −2(M(2α)) + 4(α + 1)ω2((α + 1)) + 4(α + 1)

≡8 −2M(2α) + 4(α + 1),

where the last step is easily checked by considering the parity of α.
Finally, let M ′(4s) be defined by the right hand side of (12). Then M ′(0) = 1 and

M ′(8α + 4)−M ′(8α) ≡8 4α,

M ′(8α + 8)−M ′(8α + 4) ≡8 1− 2L(α + 1) + 4(α + 1)− 1 + 2L(α)

≡8 4(α + 1)− 2M(2α).

Thus M(4s) = M ′(4s) and the proposition follows.

The next results relies on Proposition 13.

Proposition 14. We have

M(4s+ 1) ≡8

{
1− 2L(α) + 4α, s = 2α,
1− 2L(α) + 4, s = 2α + 1.

M(4s+ 2) ≡8


4, s = (4α + 3)22j − 1,
2− 4L(α), s = (4α + 1)22j − 1,
−1 + 2L(α), s = (4α + 3)22j+1 − 1,
3 + 2L(α) + 4α, s = (4α + 1)22j+1 − 1.

M(4s+ 3) ≡8


−2 + 4L(α), s = (4α + 3)22j − 1,
4, s = (4α + 1)22j − 1,
−1 + 2L(α), s = (4α + 3)22j+1 − 1,
−1 + 2L(α) + 4α, s = (4α + 1)22j+1 − 1.

Proof. By Lemma 12, the odd case is reduced to the even case.
For M(4s+ 1), we have

M(4s+ 1) ≡8 (4s+ 1)M(4s)

≡8 4s+M(4s)
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≡8

{
1− 2L(α) + 4α, s = 2α,
1− 2L(α) + 4, s = 2α + 1.

For M(4s+ 2), let β be odd. We simplify (9’) using Lemma 12 and (12).

M(β2a+2 − 2)−M(β2a+1 − 2) ≡8 M((2α + 1)2a+2 − 4) + f((2α + 1)2a+1 − 2)

≡8

{
1− 2L((β − 1)/2) + 2(β − 1) a = 0,
1− 2L(β2a−1 − 1) a > 0.

(13)

Lemma 10 gives L(2s+ 1) + L(s) ≡4 1. Thus we have

M(β2a+3 − 2)−M(β2a+1 − 2) ≡8 2− 2
(
L(β2a−1 − 1) + L(β2a − 1)

)
≡8 0, a > 0.

This reduces M(β2a+1 − 2) to the a = 0 and a = 1 case.
Moreover, setting a = 1 in (13) gives

M(8β − 2) ≡8 M(4β − 2) + 1− 2L(β − 1);

Setting a = 0 in (13) gives

M(4β − 2) ≡8 M(2β − 2) + 1− 2L((β − 1)/2) + 2(β − 1).

i) When β = 4α + 1, we have

M((4α + 1)22a+2 − 2) ≡8 M(4(4α + 1)− 2) ≡8 M(8α) + 1− 2L(2α)

≡8 1− 2L(α) + 4α + 1− 2(2α + L(α))

≡8 2− 4L(α).

Consequently,

M((4α + 1)22a+3 − 2) ≡8 M(8(4α + 1)− 2) ≡8 2− 4L(α) + 1− 2L(4α)

≡8 3− 4L(α)− 2(4α + 2α + L(α))

≡8 3 + 2L(α) + 4α.

ii) When β = 4α + 3, we obtain

M((4α + 3)22a+2 − 2) ≡8 M(4(4α + 3)− 2) ≡8 M(8α + 4) + 1− 2L(2α + 1) + 4(2α + 1)

= 1− 2L(α) + 1− 2(1− L(α)) + 4

= 4.

Consequently,

M((4α + 3)22a+3 − 2) ≡8 M(8(4α + 3)− 2) ≡8 4 + 1− 2L(4α + 2)

≡8 5− 2(4α + 2) + L(2α + 1)

≡8 1− 2(1− L(α))
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≡8 −1 + 2L(α).

Finally, we compute M(4s+ 3). By Lemma 12, we have

M(4s+ 3) ≡8 (4s+ 3)M(4s+ 2) + g(2s+ 1)

≡8 −M(4s+ 2) + 4s− 2M(4s)

≡8 −M(4s+ 2) + 4s− 2(1 + 2s+ 2L(s))

≡8 −M(4s+ 2)− 2− 4L(s).

i) When β = 4α + 1, we obtain

M((4α + 1)22a+2 − 1) ≡8 −M((4α + 1)22a+2 − 2)− 2− 4L((4α + 1)22a − 1)

≡8 −2 + 4L(α)− 2− 4L(α)

≡8 4.

In the same way,

M((4α + 1)22a+3 − 1) ≡8 −M((4α + 1)22a+3 − 2)− 2− 4L((4α + 1)22a+1 − 1)

≡8 −3− 2L(α)− 4α− 2− 4L(α) + 4

≡8 −1 + 4α + 2L(α).

ii) When β = 4α + 3, we have

M((4α + 3)22a+2 − 1) ≡8 −M((4α + 3)22a+2 − 2)− 2− 4L((4α + 3)22a − 1)

≡8 −4− 2− 4L(α) + 4

≡8 −2 + 4L(α).

In the same way,

M((4α + 3)22a+3 − 1) ≡8 −M((4α + 3)22a+3 − 2)− 2− 4L((4α + 3)22a+1 − 1)

≡8 1− 2L(α)− 2− 4L(α)

≡8 −1 + 2L(α).
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Addendum added April 3, 2018.

The main result of this paper has been also obtained, in a slightly different formulation,
by Christian Krattenthaler and Thomas Müller in Theorem 11 of “Motzkin numbers and
related sequences modulo powers of 2” (arXiv:1608.05657) using completely different
methods.
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