A classification of Motzkin numbers modulo 8

Ying Wang
School of Mathematical Sciences
Capital Normal University
Beijing 100048, PR China
wangying. cnu@gmail.com

Guoce Xin*
School of Mathematical Sciences
Capital Normal University
Beijing 100048, PR China
guoce.xin@gmail.com

Submitted: Jun 10, 2017; Accepted: Dec 9, 2017; Published: Mar 16, 2018
Mathematics Subject Classifications: 05A10, 11B50

Abstract

The well-known Motzkin numbers were conjectured by Deutsch and Sagan to be nonzero modulo 8. The conjecture was first proved by Sen-Peng Eu, Shu-chung Liu and Yeong-Nan Yeh by using the factorial representation of the Catalan numbers. We present a short proof by finding a recursive formula for Motzkin numbers modulo 8. Moreover, such a recursion leads to a full classification of Motzkin numbers modulo 8.

Keywords: Motzkin numbers, congruence classes

1 Introduction

Much work has been done in calculating the congruences of various combinatorial numbers modulo a prime power p^{r}. We begin by introduce some notations. We will use the p-adic notations $[n]_{p}=\left\langle n_{d} n_{d-1} \cdots n_{0}\right\rangle_{p}$ to denote the sequence of digits representing n in base p [15]. The p-adic order or p-adic valuation $\omega_{p}(n)$ of n is defined by

$$
\omega_{p}(n)=\max \left\{t \in \mathbb{N}: p^{t} \mid n\right\}
$$

In words, it is the highest power of p dividing n, or equivalently, the number of 0 's to the right of the rightmost nonzero digit in $[n]_{p}$. The value $\omega_{p}(n)$ indicates the divisibility by powers of p, which can be found in many previous studies [5].

Many results have been established for the binomial coefficients. The most famous as well as age-old one is the Pascal's fractal which is formed by the parities of the binomial coefficients $\binom{n}{k}$ [20]. Pascal's triangle also has versions modulo 4 and 8 [3, 10]. The behavior of Pascal's triangle modulo higher powers of p is more complicated. Some rules

[^0]for this behavior are discussed by Granville [9]. Kummer computed the p-adic order of $\binom{m+n}{m}$ [13], by counting the number of carries that occur when $[m]_{p}$ and $[n]_{p}$ are added. The elegant result of Lucas [15] states that $\binom{n}{k} \equiv{ }_{p} \prod_{i}\binom{n_{i}}{k_{i}}$ where n_{i} and k_{i} come from $[n]_{p}$ and $[k]_{p}$, and \equiv_{p} denotes the congruence class modulo p. A generalization of Lucas' theorem for a prime power was established by Davis and Webb [2].

The most useful combinatorial numbers other than the binomial coefficients are the well-known Catalan numbers

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\frac{(2 n)!}{n!(n+1)!}, \quad n \in \mathbb{N} .
$$

They have more than 200 combinatorial interpretations, as collected by Stanley in [18]. The congruence class of C_{n} modulo 2^{r} was studied in $[6,11,14,21]$. Several other combinatorial numbers have been studied for their congruences, for example, Apéry numbers $[8,16]$, Central Delannoy numbers [7] and weighted Catalan numbers [17].

In this paper we will focus on the well-known Motzkin numbers

$$
\begin{equation*}
M(n)=M_{n}=\sum_{k \geqq 0}\binom{n}{2 k} C_{k}, \quad n \in \mathbb{N} . \tag{1}
\end{equation*}
$$

Their congruences were only studied very recently. Klazar and Luca proved that the Motzkin numbers are never periodic modulo any prime number [12]. Deutsch and Sagan [4] studied the congruences of M_{n} modulo 2,3 and 5 and made the following two exconjectures.

Conjecture 1 ([4]). We have $M_{n} \equiv_{4} 0$ if and only if $n=(4 i+1) 4^{j+1}-1$ or $n=$ $(4 i+3) 4^{j+1}-2$, where i and j are nonnegative integers.

Conjecture 2 ([4]). The Motzkin numbers are never congruent to 0 modulo 8.
The two conjectures were first proved by Eu-Liu-Yeh in [6]. They first derived the congruence class of the Catalan numbers C_{n} modulo 8 by using their factorial representations. Then they proved Conjecture 1 by careful analyzing formula (1) modulo 8. Finally they proved Conjecture 2 by confirming that $M(n) \equiv_{8} 4$ when n belongs to the two cases in Conjecture 1.

Our main result is the following explicit formula for M_{n} modulo 8, from which Conjectures 1 and 2 clearly follow.

Theorem 3. The congruence class of $M(n)$ modulo 8 can be characterized as follows:

$$
\begin{aligned}
M(4 s) & \equiv_{8} \begin{cases}1-4 \mathcal{Z}(\alpha)-2 \chi\left(\|\alpha\| \equiv_{2} 1\right)+4 \alpha, & s=2 \alpha, \\
1-4 \mathcal{Z}(\alpha)-2 \chi\left(\|\alpha\| \equiv_{2} 1\right), & s=2 \alpha+1 .\end{cases} \\
M(4 s+1) & \equiv_{8} \begin{cases}1-4 \mathcal{Z}(\alpha)-2 \chi\left(\|\alpha\| \equiv_{2} 1\right)+4 \alpha, & s=2 \alpha, \\
1-4 \mathcal{Z}(\alpha)-2 \chi\left(\|\alpha\| \equiv_{2} 1\right)+4, & s=2 \alpha+1 .\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& M(4 s+2) \equiv_{8} \begin{cases}4, & s=(4 \alpha+3) 2^{2 j}-1, \\
2-4\|\alpha\|, & s=(4 \alpha+1) 2^{2 j}-1, \\
-1+4 \mathcal{Z}(\alpha)+2 \chi\left(\|\alpha\| \equiv_{2} 1\right), & s=(4 \alpha+3) 2^{2 j+1}-1, \\
3+4 \mathcal{Z}(\alpha)+2 \chi\left(\|\alpha\| \equiv_{2} 1\right)+4 \alpha, & s=(4 \alpha+1) 2^{2 j+1}-1 .\end{cases} \\
& M(4 s+3) \equiv_{8} \begin{cases}-2+4\|\alpha\|, & s=(4 \alpha+3) 2^{2 j}-1, \\
4, & s=(4 \alpha+1) 2^{2 j}-1, \\
-1+4 \mathcal{Z}(\alpha)+2 \chi\left(\|\alpha\| \equiv_{2} 1\right), & s=(4 \alpha+3) 2^{2 j+1}-1, \\
-1+4 \mathcal{Z}(\alpha)+2 \chi\left(\|\alpha\| \equiv_{2} 1\right)+4 \alpha, & s=(4 \alpha+1) 2^{2 j+1}-1 .\end{cases}
\end{aligned}
$$

Here $\chi(S)$ equals 1 if the statement S is true and equals 0 if otherwise, $\|\alpha\|$ is the sum of the digits of $[\alpha]_{2}$, and $\mathcal{Z}(\alpha)$ is the number of zero runs of α as described later in Proposition 11.

Our approach is along the line of [21], by using the following recursive formula:

$$
C_{n+1}=\sum_{i=0}^{\lfloor n / 2\rfloor}\binom{n}{2 i} 2^{n-2 i} C_{i} .
$$

This formula can be easily proved by using Zeilberger's creative telescoping method [22], or by two different combinatorial interpretations of C_{n} (see [21]). By combining the above formula with (1), we derive the following recursive formulas for $M(n)$.

$$
\begin{align*}
M(2 k+2)-M(2 k) & \equiv_{8}(-1)^{k} M(k)+f(k), \tag{2}\\
f(k) & =4\left(\binom{k+1}{2}-(-1)^{k} k\right) M(k-1)-4\binom{k}{2} M(k-2) ; \\
M(2 k+1) & \equiv_{8}(2 k+1) M(2 k)+g(k), \tag{3}\\
g(k) & =-2\binom{2 k+1}{2} M(2 k-1)+4\binom{2 k+1}{3} M(2 k-2) .
\end{align*}
$$

By using these recursive formulas, we give a simple way to compute the congruences of $M(n)$ modulo $2,4,8$.

The paper is organized as follow. In Section 2, we derive the recurrence formulas of M_{n}, which are the staring point of our approach. We also introduce basic tools for further calculations. In Section 3, we compute the congruences classes of Motzkin numbers modulo 2 and 4. Finally, we compute the congruences classes of Motzkin numbers modulo 8 in Section 4.

2 Weighted Motzkin paths and the recursion

Let $F(x ; u)=\sum_{n \geqslant 0} M_{u}(n) x^{n}$ be the unique power series defined by the functional equation

$$
F(x ; u)=\frac{1}{1-u x-x^{2} F(x ; u)}
$$

Then $F(x ; u)$ is the generating function of weighted Motzkin paths (see, e.g. [19]). That is, $M_{u}(n)$ counts weighted lattice paths from $(0,0)$ to $(n, 0)$ that never go below the horizontal axis and use only steps $U=(1,1) H=(1,0)$, or $D=(1,-1)$ and weights $1, u, 1$ respectively.

The well-known Motzkin number $M(n)$ is our $M_{1}(n)$, and the Catalan number C_{n} is our $M_{0}(2 n)$. We also have $C_{n+1}=M_{2}(n)$, which is written as

$$
\begin{equation*}
M_{0}(2 n)=M_{2}(n-1), \quad \text { for } n \geqslant 1 . \tag{4}
\end{equation*}
$$

Lemma 4. For any constants u and v, we have

$$
\begin{align*}
M_{u+v}(n) & =\sum_{i=0}^{n}\binom{n}{i} v^{i} M_{u}(n-i), \tag{5}\\
M_{u}(2 k+1) & =\sum_{i=1}^{n}\binom{2 k+1}{i}(-2)^{i-1} u^{i} M_{u}(2 k+1-i) . \tag{6}
\end{align*}
$$

Proof. Equation (5) is routine. For (6), we need the easy fact $M_{-u}(n)=(-1)^{n} M_{u}(n)$. By setting $v=-2 u$ in (5), we obtain

$$
M_{-u}(n)=M_{u}(n)+\sum_{i=1}^{n}\binom{n}{i}(-2 u)^{i} M_{u}(n-i) .
$$

Thus for $n=2 k+1$, we obtain

$$
M_{u}(2 k+1)=\sum_{i=1}^{n}\binom{2 k+1}{i}(-2)^{i-1} u^{i} M_{u}(2 k+1-i) .
$$

This is equation (6).
Theorem 5. We have the recursion (2) and (3) with initial condition $M(0)=1$.
Proof. Setting $u=1$ in (6) and simplifying gives

$$
M(2 k+1) \equiv_{8}(2 k+1) M(2 k)-2\binom{2 k+1}{2} M(2 k-1)+4\binom{2 k+1}{3} M(2 k-2)
$$

This is (3). Note that no recursion for $M(2 k)$ can be obtained in this way.
For (2), we start with

$$
\begin{aligned}
M(2 k) & =\sum_{i=0}^{k}\binom{2 k}{2 i} C_{k-i} \\
& =\sum_{i=0}^{k} \sum_{j=0}^{i} 2^{2 j}\binom{k}{2 j}\binom{k-2 j}{i-j} C_{k-i},
\end{aligned}
$$

which can be easily proved using Zeilberger's creative telescoping method [22]. When reduced to modulo 8, this gives

$$
\begin{aligned}
M(2 k) & \equiv \sum_{8} \sum_{i=0}^{k}\binom{k}{i} C_{k-i}+4\binom{k}{2} \sum_{i=1}^{k-1}\binom{k-2}{i-1} C_{k-i} \\
& \equiv_{8} 1+\sum_{i=0}^{k-1}\left(\sum_{j=1}^{i}\binom{k-j}{i-j+1}\right) M_{2}(k-i-1)+4\binom{k}{2} \sum_{i^{\prime}=0}^{k-2}\binom{k-2}{i^{\prime}} M_{2}\left(k-2-i^{\prime}\right) \\
& \equiv{ }_{8} 1+\sum_{j=1}^{k-1} \sum_{i=j}^{k-1}\binom{k-j}{i-j+1} M_{2}((k-j)-(i-j+1))+4\binom{k}{2} M_{3}(k-2) \\
& \equiv{ }_{8} 1+\sum_{j=1}^{k-1} M_{3}(k-j)+4\binom{k}{2} M_{3}(k-2) .
\end{aligned}
$$

(We remark that the computation modulo 2^{r} when $r \geqslant 4$ becomes complicated.) Thus,

$$
\begin{aligned}
M(2 k+2) & -M(2 k) \equiv_{8} M_{3}(k)+4\binom{k+1}{2} M_{3}(k-1)-4\binom{k}{2} M_{3}(k-2) \\
& \equiv_{8} M_{-1}(k)+4\binom{k}{1} M_{-1}(k-1)+4\binom{k+1}{2} M(k-1)-4\binom{k}{2} M(k-2) \\
& \equiv_{8}(-1)^{k} M(k)+4\left(\binom{k+1}{2}-(-1)^{k} k\right) M(k-1)-4\binom{k}{2} M(k-2) .
\end{aligned}
$$

This is just equation (2).
We derive explicit formulas of $M(n) \bmod 2^{r}$ successively for $r=1,2,3$. The idea is based on the fact that

$$
2^{r-r^{\prime}} M(n) \bmod 2^{r}=2^{r-r^{\prime}}\left(M(n) \bmod 2^{r^{\prime}}\right), \quad \text { for } r^{\prime}<r .
$$

This fact will be frequently used without mentioning.
Lemma 6. We keep the notations from Theorem 5. Assume that we have obtained explicit formulas for $M(n) \bmod 2^{r-1}$. Then there are explicit formulas for $f(k)$ and $g(k)$. Moreover, the recursion is reduced as follows.

$$
\begin{align*}
M(2 k+1) & \equiv_{8}(2 k+1) M(2 k)+g(k), \tag{7}\\
M(4 s) & \equiv_{2^{r}} M(0)+\sum_{j=2}^{2 s-1} f(j)-\sum_{j=1}^{s-1}(2 j M(2 j)+g(j)), \tag{8}\\
M(4 s+2) & \equiv_{2^{r}} M(2 \beta-2)+\sum_{i=0}^{a}\left(M\left(\beta 2^{i+2}-4\right)+f\left(\beta 2^{i+1}-2\right)\right), \tag{9}
\end{align*}
$$

where in (9), $s+1=\beta 2^{a}$ for some odd number β and $a \geqslant 0$.

Proof. By (7), we can eliminate those $M(2 k+1)$ so that our formulas only involve $f(k), g(k)$ and $M(2 k)$. We have to split by cases $k=2 s$ and $k=2 s+1$ in (2):

$$
\begin{aligned}
M(4 s+4)-M(4 s+2) & \equiv_{2^{r}}-M(2 s+1)+f(2 s+1) \\
& \equiv_{2^{r}}-(2 s+1) M(2 s)-g(s)+f(2 s+1), \\
M(4 s+2)-M(4 s) & \equiv_{2^{r}} M(2 s)+f(2 s) \equiv_{2^{r}} M(2 s)+f(2 s) .
\end{aligned}
$$

Taking the sum of the above two equations gives the following recursion:

$$
M(4 s+4)-M(4 s) \equiv_{2^{r}}-2 s M(2 s)-g(s)+f(2 s)+f(2 s+1) .
$$

(Note that we have explicit formulas of $-2 s M(2 s) \bmod 2^{r}$ by the induction hypothesis.) This is equivalent to (8).

Next for $M(4 s+2)$ we rewrite as follows:

$$
M(4(s+1)-2)-M(4 s) \equiv_{2^{r}} M(2(s+1)-2)+f(2 s) .
$$

If $s=\beta 2^{a}-1$ with β odd and $a \geqslant 0$, then the above equation can be rewritten as

$$
M\left(\beta 2^{a+2}-2\right)-M\left(\beta 2^{a+1}-2\right) \equiv_{2^{r}} M\left(\beta 2^{a+2}-4\right)+f\left(\beta 2^{a+1}-2\right) .
$$

This is equivalent to (9).
We remark that $\left(8^{\prime}\right)$ and $\left(9^{\prime}\right)$ are easier to use than (8) and (9).

3 Motzkin numbers modulo 2, 4

Recall that $\omega_{2}(n)=a$ if $n=(2 \alpha+1) 2^{a}$. Note that $\omega_{2}(0)$ is not defined. The following properties are easy to check and will be frequently used without mentioning.

Lemma 7. For nonnegative integer α we have

$$
\begin{gathered}
\omega_{2}(2 \alpha+1)=0, \quad \omega_{2}(2 \alpha)=\omega_{2}(\alpha)+1, \quad \alpha \omega_{2}(\alpha) \equiv_{2} 0 ; \\
\omega_{2}(\alpha!)=\sum_{i=1}^{\alpha} \omega_{2}(i), \quad \omega_{2}((2 \alpha+1)!)=\omega_{2}((2 \alpha)!)=\omega_{2}(\alpha!)+\alpha .
\end{gathered}
$$

Proof. The first, second and fourth formulas follow easily by definition. The third formula follows from the first two formulas by discussing the parity of α. Finally,

$$
\left.\omega_{2}((2 \alpha+1)!)=\omega_{2}((2 \alpha)!)=\omega_{2}((2 \alpha)!!)\right)=\omega_{2}(\alpha!)+\alpha,
$$

where in the second equality, we removed all the odd factors to get $(2 \alpha)!!=2^{\alpha} \alpha!$.

3.1 Motzkin numbers modulo 2

Proposition 8. We have

$$
M(2 k+1) \equiv_{2} M(2 k) \equiv_{2} \omega_{2}(2 k+2) .
$$

In particular $M(4 s) \equiv_{2} M(4 s+1) \equiv_{2} 1$.
Proof. We apply Theorem 5 and Lemma 6 and follow the notations there. Clearly, we have $f(k) \equiv_{2} 0$ and $g(k) \equiv_{2} 0$. Thus we have

$$
\begin{aligned}
M(4 s) & \equiv \equiv_{2} M(0)=1=\omega_{2}(4 s+2), \\
M(4 s+2) & \equiv{ }_{2} M(2 \beta-2)+\sum_{i=0}^{a}\left(M\left(\beta 2^{i+2}-4\right)\right)=a+2=\omega_{2}(4 s+4),
\end{aligned}
$$

where in the second equation, $s+1=\beta 2^{a}$ for some odd number β and $a \geqslant 0$. The proposition then follows.

3.2 Motzkin numbers modulo 4

Lemma 9. We have the following characterization of Motzkin numbers modulo 4.

$$
\begin{aligned}
M(4 s) & \equiv{ }_{4} 1+2 \omega_{2}(s!) \equiv_{4} 1+2 L(s)+2 s, \\
M(4 s+1) & \equiv{ }_{4} M(4 s), \\
M(4 s+2) & \equiv_{4}\left\{\begin{array}{cc}
2 \alpha+2, & s=(2 \alpha+1) 2^{2 a}-1, a \geqslant 0, \\
2 \alpha+2 L(\alpha)+3, & s=(2 \alpha+1) 2^{2 a+1}-1, a \geqslant 0 .
\end{array}\right. \\
M(4 s+3) & \equiv_{4}-M(4 s+2)+2,
\end{aligned}
$$

where $L(r)=\sum_{i=1}^{r-1} M(2 i)$.
Consequently, $M(n) \equiv_{4} 0$ if and only if $n=(4 i+1) 4^{j+1}-1$ or $n=(4 i+3) 4^{j+1}-2$ for some nonnegative integers i and j. That is, Conjecture 1 holds true.

Proof. We first show that the second part follows from the first part. Clearly, $M(n) \equiv{ }_{4} 0$ if and only if either i) $M(n)=M(4 r+2) \equiv_{4} 2 \alpha+2 \equiv_{4} 0$ for $r=(2 \alpha+1) 4^{a}-1$. Hence, $\alpha=2 i+1$ for some i and $n=(4 i+3) 4^{a+1}-2$; Or ii) $M(n)=M(4 r+3) \equiv_{4}$ $-M(4 r+2)+2 \equiv_{4} 2 \alpha \equiv_{4} 0$ for $r=(2 \alpha+1) 4^{a}-1$. Hence, $\alpha=2 i$ for some i and $n=(4 i+1) 4^{a+1}-1$.

Now we prove the first part by Theorem 5 and Lemma 6. First, we have

$$
f(k) \equiv_{4} 0 \quad \text { and } g(k) \equiv_{4}-2 k(2 k+1) M(2 k-1) \equiv_{4} 2 k \omega_{2}(2 k) \equiv_{4} 2 k,
$$

where we have used Proposition 8. Thus, the recurrence reduces to

$$
\begin{align*}
& M(2 k+2) \equiv{ }_{4} M(2 k)+(-1)^{k} M(k), \tag{10}\\
& M(2 k+1) \equiv_{4}(2 k+1) M(2 k)+2 k . \tag{11}
\end{align*}
$$

Clearly, the odd case reduces to the even case by (11).
For $M(4 s)$ we have

$$
\begin{aligned}
M(4 s+4)-M(4 s) & \equiv_{4}-M(2 s+1)+M(2 s) \equiv_{4}-2 s M(2 s)-2 s \\
& \equiv_{4} 2 \chi(s=2 \alpha+1)\left(1+\omega_{2}(\alpha+1)+1\right) \equiv_{4} 2 \omega_{2}(s+1),
\end{aligned}
$$

which is equivalent to $M(4 s) \equiv_{4} 1+2 \omega_{2}(s!) \equiv_{4} 1+2 L(s)+2 s$.
For $M(4 s+2)$, we write $s=\beta 2^{a}-1$ for a unique odd number β. We have

$$
\begin{aligned}
M(4 s+2) & \equiv{ }_{4} M(2 \beta-2)+\sum_{i=0}^{a} M\left(\beta 2^{i+2}-4\right) \\
& \equiv{ }_{4} M(2 \beta-2)+\sum_{i=0}^{a}\left(1+2 L\left(\beta 2^{i}-1\right)+2\left(\beta 2^{i}-1\right)\right) \\
& \equiv_{4} \chi(\beta=2 \alpha+1) 1+2 L(\alpha)+2 \alpha-(a+1)+\sum_{i=0}^{a}\left(2 i+2 L(\alpha)+2^{i+1}\right) \\
& \equiv_{4} 2(a+2) L(\alpha)+2 \alpha-a+a(a+1)+2 \\
& \equiv{ }_{4} 2(a+2) L(\alpha)+2 \alpha+a^{2}-2 \\
& \equiv_{4}\left\{\begin{array}{cc}
2 \alpha+2, & a \text { is even }, \\
2 \alpha+2 L(\alpha)+3, & a \text { is odd. } .
\end{array}\right.
\end{aligned}
$$

This completes the proof.
Indeed since $L(s)$ appears in computations modulo 8, we summarize its properties as follows.

Lemma 10. Let $L(s)=\sum_{i=0}^{s-1} M(2 i)$, with $L(0)=0$. Then

$$
\begin{gathered}
L(2 s) \equiv_{2} L(s), \quad L(2 s+1) \equiv_{2} 1+L(s), \quad L(s)=h_{2}(s!)+s, \\
L(2 s) \equiv_{4} 1-(-1)^{s}+L(s), \quad L(2 s+1) \equiv_{4} 1-L(s) .
\end{gathered}
$$

Proof. The modulo 2 result is obvious since $L(s) \equiv \equiv_{2} \sum_{i=0}^{s-1} \omega_{2}(2 i+2)=\omega_{2}(s!)+s$.
For the modulo 4 result, we have, by definition,

$$
\begin{aligned}
L(2 s) & \equiv{ }_{4} \sum_{i=0}^{2 s-1} M(2 i)=\sum_{i=0}^{s-1}(M(4 i+2)+M(4 i)) \\
(\text { by }(10)) & \equiv_{4} \sum_{i=0}^{s-1}(2 M(4 i)+M(2 i)) \\
& \equiv_{4} \sum_{i=0}^{s-1}(2+M(2 i)) \\
& \equiv_{4} 2 s+L(s)
\end{aligned}
$$

$$
\equiv_{4} 1-(-1)^{s}+L(s) .
$$

By the above formula and Lemma 9, we have

$$
L(2 s+1)=L(2 s)+M(4 s)=2 s+L(s)+1+2 s+2 L(s)=1-L(s)
$$

This completes the proof.
Let $[n]_{2}=n_{k} n_{k-1} \cdots n_{1} n_{0}$ be the binary expansion of $n \geqslant 1$. Then $n=n_{k} 2^{k}+\cdots+$ $n_{1} \cdot 2+n_{0}$. Denote by $\|n\|=n_{k}+\cdots+n_{1}+n_{0}$, the sum of the binary digits of n. A 0 -run of $[n]_{2}$ is a maximal 0 -subword $n_{i} n_{i+1} \cdots n_{j}$ for some $0 \leqslant i<j \leqslant k$, such that $n_{j+1}=1$ and $n_{i-1} \neq 0$ (including the case $i=0$). Denote by $\mathcal{Z}(n)$ the number of 0 -runs of $[n]_{2}$. We have the following explicit result.

Proposition 11. We have

$$
L(n) \equiv_{2}\|n\|, \quad \text { and } L(n) \equiv_{4} 2 \mathcal{Z}(n)+\chi\left(\|n\| \equiv_{2} 1\right) .
$$

Proof. The modulo 2 case is straightforward by Lemma 10.
For the modulo 4 case, we proceed by induction on n. The proposition clearly holds for the base case $n=1$. Assume it holds for all numbers smaller than n. We show that it holds for n by considering the following two cases.

Case 1: If $n=2 s+1$, then $[n]_{2}$ is obtained from $[s]_{2}$ by adding a 1 at the end. By Lemma 10 and the induction hypothesis for s, we have

$$
L(2 s+1) \equiv_{4} 1-L(s) \equiv_{4} 1-2 \mathcal{Z}(s)-\chi\left(\|s\| \equiv_{2} 1\right) \equiv_{4} 2 \mathcal{Z}(s)+1-\chi\left(\|s\| \equiv_{2} 1\right)
$$

which clearly equals to $2 \mathcal{Z}(n)+\chi\left(\|n\| \equiv_{2} 1\right)$.
Case 2: If $n=2 s$, then $[n]_{2}$ is obtained from $[s]_{2}$ by adding a 0 at the end. i) If s is odd, then by Lemma 10 and the induction hypothesis for s, we have

$$
L(2 s) \equiv_{4} 1-(-1)^{s}+L(s)=2+L(s)=2(\mathcal{Z}(s)+1)+\chi\left(\|s\| \equiv_{2} 1\right),
$$

which clearly equals to $2 \mathcal{Z}(n)+\chi\left(\|n\| \equiv_{2} 1\right)$. ii) Similarly, if s is even, then

$$
L(2 s) \equiv_{4} 1-(-1)^{s}+L(s)=L(s)=2 \mathcal{Z}(s)+\chi\left(\|s\| \equiv_{2} 1\right) .
$$

This also equals to $2 \mathcal{Z}(n)+\chi\left(\|n\| \equiv_{2} 1\right)$.
We remark that the sequence $L(n) \bmod 2$ turns out to be the Thue-Morse sequence. See [1] for a survey on the Thue-Morse sequence.

4 Motzkin numbers modulo 8

Lemma 12. The recursion from Theorem 5 reduces modulo 8 to

$$
\begin{aligned}
& M(2 k+2)-M(2 k) \equiv_{8}(-1)^{k} M(k)+f(k), \text { where } f(k)=4 \chi\left(k \equiv_{4} 3\right) \omega_{2}((k+1) / 2), \\
& M(2 k+1) \equiv_{8}(2 k+1) M(2 k)+g(k), \\
& \text { where } g(k)=\chi(k=2 \alpha+1)(4 \alpha-2 M(4 \alpha)) .
\end{aligned}
$$

Proof. By Theorem 5, we have

$$
f(k) \equiv_{8} 4\left(\binom{k+1}{2}-(-1)^{k} k\right) M(k-1)-4\binom{k}{2} M(k-2) .
$$

i) When $k=2 \alpha$, we have

$$
\begin{aligned}
f(2 \alpha) & \equiv_{8} 4(\alpha-2 \alpha) M(2 \alpha-1)-4 \alpha M(2 \alpha-2) \\
& \equiv{ }_{8} 4 \alpha \omega_{2}(2 \alpha)-4 \alpha \omega_{2}(2 \alpha) \equiv_{8} 0 .
\end{aligned}
$$

ii) When $k=2 \alpha+1$, we have

$$
\begin{aligned}
f(2 \alpha+1) & \equiv_{8} 4(\alpha+1+2 \alpha+1) M(2 \alpha)-4 \alpha M(2 \alpha-1) \\
& \equiv_{8} 4 \alpha \omega_{2}(2 \alpha+2)-4 \alpha \omega_{2}(2 \alpha) \\
& \equiv_{8} 4 \chi\left(\alpha \equiv_{2} 1\right) \omega_{2}(\alpha+1) \equiv_{8} 4 \chi\left(k \equiv_{4} 3\right) \omega_{2}((k+1) / 2) .
\end{aligned}
$$

We also have

$$
g(k) \equiv_{8}-2\binom{2 k+1}{2} M(2 k-1)+4\binom{2 k+1}{3} M(2 k-2) .
$$

i) When $k=2 \alpha$, we have

$$
g(2 \alpha) \equiv_{8}-4 \alpha M(4 \alpha-1) \equiv_{8} 4 \alpha \omega_{2}(4 \alpha) \equiv_{8} 0 .
$$

ii) When $k=2 \alpha+1$, we have

$$
\begin{aligned}
g(2 \alpha+1) & \equiv_{8}-2(2 \alpha+3) M(4 \alpha+1)+4 M(4 \alpha) \\
& \equiv_{8} 4 \alpha M(4 \alpha)-2 M(4 \alpha) \\
& \equiv_{8} 4 \alpha-2 M(4 \alpha) .
\end{aligned}
$$

This completes the proof.
Now we are ready to prove Theorem 3, which, by Proposition 11, can be restated as Propositions 13 and 14 blow.

Proposition 13. We have

$$
M(4 s) \equiv_{8} \begin{cases}1-2 L(\alpha)+4 \alpha, & s=2 \alpha, \tag{12}\\ 1-2 L(\alpha), & s=2 \alpha+1 .\end{cases}
$$

Proof. We apply Lemmas 6 and 12 to obtain

$$
\begin{aligned}
M(4 s+4)-M(4 s) & \equiv_{8} f(2 s)+f(2 s+1)-2 s M(2 s)-g(s) \\
& \equiv_{8}-2 s M(2 s)+\chi(s=2 \alpha+1)\left(4 \omega_{2}(2 \alpha+2)-4 \alpha+2 M(4 \alpha)\right)
\end{aligned}
$$

i) When $s=2 \alpha$, we have

$$
M(4 s+4)-M(4 s) \equiv_{8}-4 \alpha M(4 \alpha) \equiv_{8} 4 \alpha \omega_{2}(4 \alpha+2) \equiv_{8} 4 \alpha
$$

ii) When $s=2 \alpha+1$, we have

$$
\begin{aligned}
M(4 s+4)-M(4 s) & \equiv_{8}-2(2 \alpha+1) M(4 \alpha+2)+\left(4 \omega_{2}(2 \alpha+2)-4 \alpha+2 M(4 \alpha)\right) \\
& \equiv_{8}-2(M(4 \alpha+2)-M(4 \alpha))-4 \alpha \omega_{2}(4 \alpha+4)+4 \omega_{2}(2 \alpha+2)+4 \alpha \\
(\text { by }(10)) & \equiv_{8}-2(M(2 \alpha))+4(\alpha+1) \omega_{2}((\alpha+1))+4(\alpha+1) \\
& \equiv_{8}-2 M(2 \alpha)+4(\alpha+1),
\end{aligned}
$$

where the last step is easily checked by considering the parity of α.
Finally, let $M^{\prime}(4 s)$ be defined by the right hand side of (12). Then $M^{\prime}(0)=1$ and

$$
\begin{aligned}
M^{\prime}(8 \alpha+4)-M^{\prime}(8 \alpha) & \equiv_{8} 4 \alpha, \\
M^{\prime}(8 \alpha+8)-M^{\prime}(8 \alpha+4) & \equiv \equiv_{8} 1-2 L(\alpha+1)+4(\alpha+1)-1+2 L(\alpha) \\
& \equiv_{8} 4(\alpha+1)-2 M(2 \alpha) .
\end{aligned}
$$

Thus $M(4 s)=M^{\prime}(4 s)$ and the proposition follows.
The next results relies on Proposition 13.
Proposition 14. We have

$$
\begin{aligned}
& M(4 s+1) \equiv_{8} \begin{cases}1-2 L(\alpha)+4 \alpha, & s=2 \alpha, \\
1-2 L(\alpha)+4, & s=2 \alpha+1 .\end{cases} \\
& M(4 s+2) \equiv_{8} \begin{cases}4, & s=(4 \alpha+3) 2^{2 j}-1, \\
2-4 L(\alpha), & s=(4 \alpha+1) 2^{2 j}-1, \\
-1+2 L(\alpha), & s=(4 \alpha+3) 2^{2 j+1}-1, \\
3+2 L(\alpha)+4 \alpha, & s=(4 \alpha+1) 2^{2 j+1}-1 .\end{cases} \\
& M(4 s+3) \equiv_{8} \begin{cases}-2+4 L(\alpha), & s=(4 \alpha+3) 2^{2 j}-1, \\
4, & s=(4 \alpha+1) 2^{2 j}-1, \\
-1+2 L(\alpha), & s=(4 \alpha+3) 2^{2 j+1}-1, \\
-1+2 L(\alpha)+4 \alpha, & s=(4 \alpha+1) 2^{2 j+1}-1 .\end{cases}
\end{aligned}
$$

Proof. By Lemma 12, the odd case is reduced to the even case.
For $M(4 s+1)$, we have

$$
\begin{aligned}
M(4 s+1) & \equiv_{8}(4 s+1) M(4 s) \\
& \equiv_{8} 4 s+M(4 s)
\end{aligned}
$$

$$
\equiv_{8} \begin{cases}1-2 L(\alpha)+4 \alpha, & s=2 \alpha, \\ 1-2 L(\alpha)+4, & s=2 \alpha+1 .\end{cases}
$$

For $M(4 s+2)$, let β be odd. We simplify (9^{\prime}) using Lemma 12 and (12).

$$
\begin{align*}
M\left(\beta 2^{a+2}-2\right)-M\left(\beta 2^{a+1}-2\right) & \equiv_{8} M\left((2 \alpha+1) 2^{a+2}-4\right)+f\left((2 \alpha+1) 2^{a+1}-2\right) \\
& \equiv_{8} \begin{cases}1-2 L((\beta-1) / 2)+2(\beta-1) & a=0, \\
1-2 L\left(\beta 2^{a-1}-1\right) & a>0 .\end{cases} \tag{13}
\end{align*}
$$

Lemma 10 gives $L(2 s+1)+L(s) \equiv_{4} 1$. Thus we have

$$
M\left(\beta 2^{a+3}-2\right)-M\left(\beta 2^{a+1}-2\right) \equiv_{8} 2-2\left(L\left(\beta 2^{a-1}-1\right)+L\left(\beta 2^{a}-1\right)\right) \equiv_{8} 0, \quad a>0 .
$$

This reduces $M\left(\beta 2^{a+1}-2\right)$ to the $a=0$ and $a=1$ case.
Moreover, setting $a=1$ in (13) gives

$$
M(8 \beta-2) \equiv_{8} M(4 \beta-2)+1-2 L(\beta-1)
$$

Setting $a=0$ in (13) gives

$$
M(4 \beta-2) \equiv_{8} M(2 \beta-2)+1-2 L((\beta-1) / 2)+2(\beta-1) .
$$

i) When $\beta=4 \alpha+1$, we have

$$
\begin{aligned}
M\left((4 \alpha+1) 2^{2 a+2}-2\right) \equiv_{8} M(4(4 \alpha+1)-2) & \equiv_{8} M(8 \alpha)+1-2 L(2 \alpha) \\
& \equiv_{8} 1-2 L(\alpha)+4 \alpha+1-2(2 \alpha+L(\alpha)) \\
& \equiv_{8} 2-4 L(\alpha) .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
M\left((4 \alpha+1) 2^{2 a+3}-2\right) \equiv_{8} M(8(4 \alpha+1)-2) & \equiv_{8} 2-4 L(\alpha)+1-2 L(4 \alpha) \\
& \equiv_{8} 3-4 L(\alpha)-2(4 \alpha+2 \alpha+L(\alpha)) \\
& \equiv_{8} 3+2 L(\alpha)+4 \alpha
\end{aligned}
$$

ii) When $\beta=4 \alpha+3$, we obtain

$$
\begin{aligned}
M\left((4 \alpha+3) 2^{2 a+2}-2\right) \equiv_{8} M(4(4 \alpha+3)-2) & \equiv_{8} M(8 \alpha+4)+1-2 L(2 \alpha+1)+4(2 \alpha+1) \\
& =1-2 L(\alpha)+1-2(1-L(\alpha))+4 \\
& =4 .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
M\left((4 \alpha+3) 2^{2 a+3}-2\right) \equiv_{8} M(8(4 \alpha+3)-2) & \equiv_{8} 4+1-2 L(4 \alpha+2) \\
& \equiv_{8} 5-2(4 \alpha+2)+L(2 \alpha+1) \\
& \equiv_{8} 1-2(1-L(\alpha))
\end{aligned}
$$

$$
\equiv_{8}-1+2 L(\alpha) .
$$

Finally, we compute $M(4 s+3)$. By Lemma 12, we have

$$
\begin{aligned}
M(4 s+3) & \equiv_{8}(4 s+3) M(4 s+2)+g(2 s+1) \\
& \equiv_{8}-M(4 s+2)+4 s-2 M(4 s) \\
& \equiv_{8}-M(4 s+2)+4 s-2(1+2 s+2 L(s)) \\
& \equiv_{8}-M(4 s+2)-2-4 L(s) .
\end{aligned}
$$

i) When $\beta=4 \alpha+1$, we obtain

$$
\begin{aligned}
M\left((4 \alpha+1) 2^{2 a+2}-1\right) & \equiv_{8}-M\left((4 \alpha+1) 2^{2 a+2}-2\right)-2-4 L\left((4 \alpha+1) 2^{2 a}-1\right) \\
& \equiv_{8}-2+4 L(\alpha)-2-4 L(\alpha) \\
& \equiv_{8} 4
\end{aligned}
$$

In the same way,

$$
\begin{aligned}
M\left((4 \alpha+1) 2^{2 a+3}-1\right) & \equiv_{8}-M\left((4 \alpha+1) 2^{2 a+3}-2\right)-2-4 L\left((4 \alpha+1) 2^{2 a+1}-1\right) \\
& \equiv_{8}-3-2 L(\alpha)-4 \alpha-2-4 L(\alpha)+4 \\
& \equiv_{8}-1+4 \alpha+2 L(\alpha) .
\end{aligned}
$$

ii) When $\beta=4 \alpha+3$, we have

$$
\begin{aligned}
M\left((4 \alpha+3) 2^{2 a+2}-1\right) & \equiv_{8}-M\left((4 \alpha+3) 2^{2 a+2}-2\right)-2-4 L\left((4 \alpha+3) 2^{2 a}-1\right) \\
& \equiv_{8}-4-2-4 L(\alpha)+4 \\
& \equiv_{8}-2+4 L(\alpha) .
\end{aligned}
$$

In the same way,

$$
\begin{aligned}
M\left((4 \alpha+3) 2^{2 a+3}-1\right) & \equiv_{8}-M\left((4 \alpha+3) 2^{2 a+3}-2\right)-2-4 L\left((4 \alpha+3) 2^{2 a+1}-1\right) \\
& \equiv_{8} 1-2 L(\alpha)-2-4 L(\alpha) \\
& \equiv_{8}-1+2 L(\alpha) .
\end{aligned}
$$

References

[1] J.-P. Allouche, J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, in: C. Ding, T. Helleseth, H. Niederreiter (Eds.), Sequences and Their Applications, Proceedings of SETA'98, Springer, New York, 1999, pp. 1-16.
[2] K. S. Davis and W. A. Webb, Lucas' theorem for prime powers, European J. Combin. 11 (1990), 229-233.
[3] K. S. Davis and W. A. Webb, Pascal's triangle modulo 4, Fibonacci Quart. 29 (1991), 79-83.
[4] E. Deutsch and B. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Number Theory 117 (2006), 191-215.
[5] L. E. Dickson, History of the Theory of Numbers, Vol. I, Chelsea, 1919 (Chapter XI).
[6] S.-P. Eu, S.-C. Liu, and Y.-N. Yeh, Catalan and Motzkin numbers modulo 4 and 8, European J. Combin. 29 (2008), 1449-1466.
[7] S.-P. Eu, S.-C. Liu,and Y.-N. Yeh, On the congruences of some combinatorial numbers, Stud. Appl. Math. 116 (2006), 135-144.
[8] I. M. Gessel, Some congruences for Apéry numbers, J. Number Theory 14 (1982), 362-368.
[9] A. Granville, Zaphod Beeblebrox's brain and the fifty-ninth row of Pascal's Triangle, Amer. Math. Monthly 99 (1992), 318-381.
[10] J. G. Huard, B. K. Spearman, and K. S. Williams, Pascal's triangle (mod 8), European J. Combin. 19 (1998), 45-62.
[11] M. Kauers, C. Krattenthaler, and T.W. Muüller, A method for determining the mod -2^{k} behaviour of recursive sequences, with applications to subgroup counting, Electron. J. Combin. 18(2) (2011), \#P37.
[12] M. Klazar and F. Luca, On integrality and perioudicity of the Motzkin numbers, Aequationes Math. 69 (2005), 68-75.
[13] E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146.
[14] S.-C. Liu and J. C.-C. Yeh, Catalan numbers modulo 2^{k}, J. Integer Sequences 13 (2010), Art. 10.5.4, 26 pp.
[15] E. Lucas, Sur les congruences des nombres eulériens et des coeffcients différentiels des fonctions trigonométriques suivant un module premier, Bull. Soc. Math. France, 6 (1878), 49-54.
[16] Y. Mimura, Congruence properties of Apery numbers, J. Number Theory 16 (1983), 138-146.
[17] A. Postnikov and B. Sagan, Note: What power of two divides a weighted Catalan number, J. Combin. Theory Ser. A 114 (2007), 970-977.
[18] R. P. Stanley, Catalan addendum. New problems for Enumerative Combinatorics. Vol. 2, available at http://math.mit.edu/~rstan/ec/catadd.pdf.
[19] R. Sulanke and G. Xin, Hankel determinants for some common lattice paths, Adv. in Appl. Math., 40 (2008), 149-167.
[20] S. Wolfram, A New Kind of Science, Wolfram Media, 2002.
[21] Guoce Xin and Jing-Feng Xu, A short approach to Catalan numbers modulo 2^{r}, Electron. J. Combin. 18(1) (2011), \#P177.
[22] D. Zeilberger, The method of creative telescoping, J. Symbolic Comput. 11 (1991), 195-204.

Addendum added April 3, 2018.

The main result of this paper has been also obtained, in a slightly different formulation, by Christian Krattenthaler and Thomas Müller in Theorem 11 of "Motzkin numbers and related sequences modulo powers of 2" (arXiv:1608.05657) using completely different methods.

[^0]: *This work is partially supported by National Natural Science Foundation of China (11171231).

