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Abstract

A nonplanar graph G is called almost-planar if for every edge e of G, at least one
of G\e and G/e is planar. In 1990, Gubser characterized 3-connected almost-planar
graphs in his dissertation. However, his proof is so long that only a small portion
of it was published. The main purpose of this paper is to provide a short proof
of this result. We also discuss the structure of almost-planar graphs that are not
3-connected.

1 Introduction

A nonplanar graph G is called almost-planar if for every edge e of G, at least one of
G\e and G/e is planar. The following is an equivalent definition. For any specified set
S of graphs, let us call a graph S-free if it does not contain any graph in S as a minor.
Using this terminology, we can say that a graph G is almost-planar if and only if G is not
{K5, K3,3}-free but for every edge e of G, at least one of G\e and G/e is {K5, K3,3}-free.

This notion of almost-planar is in fact a special case of a concept in matroid theory.
Given a set S of matroids, we say a matroid M is S-free if no matroid in S is a minor of
M . If M denotes the class of all S-free matroids, then a matroid M is called S-fragile
or almost-M if M is not S-free but for every element e of M , at least one of M\e and
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M/e is S-free. Fragility has recently received significant attention since it plays a crucial
role in proving Rota’s Conjecture [5], and it is an effective stepping stone for determining
excluded minors. Classes of S-fragile matroids have been determined for several choices
of S, and one of the first of these results is a characterization of {K5, K3,3}-fragile 3-
connected graphic matroids. In purely graph-theoretic terms, this is a characterization of
3-connected almost-planar graphs. This result was obtained by Gubser in his dissertation
[2] and Kingan and Lemos used this result to determine all almost-graphic matroids [3].

Gubser’s result is important beyond simply being one of the first results on fragility.
In terms of explicit graph structures, very few excluded-minor characterizations of minor-
closed classes of graphs are known beyond that of planar graphs. For instance, the com-
plete list of forbidden minors is not known for the class of toroidal graphs, or for apex
graphs, the class {G : G\v is planar for some v ∈ V (G)}, or for the class {G : G\e is
planar for some e ∈ E(G)} (these are special toroidal graphs). This disappointing situa-
tion motivates careful examination of graphs that are, in some meaningful sense, close to
being planar because these graphs could bring new insight to our understanding of non-
planarity. Almost-planar graphs are a family of such graphs and examining this family is
one of the main motivations of this paper. In this vein, Wagner proved in a recent paper
[8] that almost-planar graphs, as well as several other classes of graphs, can be Delta-wye
reduced to certain small graphs. Since there are other graphs that admit such a reduction,
Wagner’s result only provides a necessary condition for being almost-planar; it does not
imply Gubser’s result. However, it seems that Wagner’s result does follow from Gubser’s
characterization.

We remark that loops and parallel edges can be ignored in the study of almost-planar
graphs. Certainly no almost-planar graphs have loops. If e and f are parallel edges in
a nonplanar graph G, then certainly neither G\e nor G\f is planar. If, however, G/e is
planar, then G′ = G\f is nonplanar and G′/e is planar. This implies that non-simple
almost-planar graphs are precisely those obtained from simple almost-planar graphs G by
adding edges parallel to edges e of G for which G/e is planar. For this reason we assume
that all graphs in this paper are simple. We also assume that after any graph operation
the resulting graph is automatically simplified so we only need to handle simple graphs.

To state the characterization of Gubser we need to define a few families of graphs.
Let n > 3 be an integer. A wheel of size n, denoted by Wn, is the graph obtained from
a cycle of length n (called the rim of the wheel) by adding a hub vertex and joining
it to all vertices of the cycle with spokes. A double wheel of size n, denoted by DWn,
is the graph obtained from Wn by adding a second hub, a new vertex adjacent to all
vertices of the wheel. The edge between the hubs is the axle of DWn. A Möbius ladder
of length n, denoted by Mn, is obtained from a cycle of length 2n (called the rim of
the ladder) by joining opposite pairs of vertices on the cycle. Let W denote the set of
all graphs constructed by identifying three triangles from three wheels. In other words,
each graph G ∈ W admits a partition (V0, V1, V2, V3) of its vertex set such that G[V0] is a
triangle, G[V0 ∪Vi] is a wheel for i = 1, 2, 3, and G has no edges other than those in these
three wheels (G[X] is the subgraph of G induced by the vertices of X). Finally, for each
G ∈ {K5, K3,3}, let G+ be obtained from G by adding a new vertex v and a new edge e
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between v and a vertex of G, and let Gh be obtained from G by subdividing two adjacent
edges and then joining the two new vertices with a new edge called a handle edge.

Theorem 1 (Gubser [1]). Let G be a 3-connected nonplanar graph. Then the following
are equivalent.

(i) G is almost-planar;
(ii) G is a minor of a double wheel, a Möbius ladder, or a graph in W;
(iii) G is F-free, where F = {EX1, EX2, EX3, EX6, EX8} shown in Figure 1.
(iv) G is {K+

5 , K
+
3,3, K

h
5 , K

h
3,3}-free.

Figure 1: Forbidden graphs EX1, EX2, EX3, EX6, and EX8

We remark that terminology EX1, EX2, . . . , EX8 is inherited from [1], and that our
formulation of this theorem is slightly different from that given in [1]. First, we modified
the definition of graphs in W to better illustrate the structure of these graphs. Second,
set F given in [1] consists of eight graphs, instead of five graphs. These eight include the
five listed in Figure 1 and another three graphs, which were denoted by EX4, EX5, and
EX7. Since each of these three extra graphs contains EX8 as a minor, they are removed
from our statement. Finally, the theorem as presented in [1] does not include statement
(iv). We remark that graphs EX3 and EX6 are isomorphic to Kh

3,3 and Kh
5 , respectively.

Seymour’s Splitter Theorem [7] implies every almost-planar graph can be generated
from K5 or K3,3 by repeated application of two extensions : addition of an edge or splitting
a vertex, although not every graph constructed this way has to be almost-planar. There-
fore, to prove that every almost-planar graph must be one of the three types listed in (ii),
one only needs to show that any extension of any graph of those three types either results
in another graph of one of the three types or contains a member of F as a minor. The
proof in [2] took this approach and was divided into analysis of fifteen cases, depending
on which graph is extended and by what sequence of extensions. Since the case checking
is lengthy, only two of the fifteen cases are published in [1].

In addition to being quite long, Gubser’s proof focuses only on local operations, losing
sight of the global structure of almost-planar graphs. For instance, graphs in W are
defined descriptively in [1] (by naming the vertices and edges) while our definition is
constructive, revealing the structure of these graphs. In addition, in our constructive
proof, each step of the construction (stated as lemmas) is interesting in its own right and
is potentially useful elsewhere.

In Sections 2 and 3 we provide a short proof of Theorem 1. We conclude in Section
4 with a discussion of the structure of almost-planar graphs that are not 3-connected,
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correcting a few flaws appearing in [1].
We close this section by making two more remarks. Notice that graphs in W can

be naturally divided into three groups, depending on how the three wheels’ hubs are
distributed on the common triangle. In the case that each hub is a distinct vertex of the
triangle, the resulting graph is in fact a minor of a Möbius ladder, as illustrated in Figure
2. We could therefore defineW differently so that these graphs are not included inW but
we leave them in W since it makes the definition more concise. This is another difference
between our formulation of Theorem 1 and the formulation given in [2].

1
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Figure 2: Some graphs in W are minors of a Möbius ladder

For G ∈ {K5, K3,3}, let e be the edge added to obtain G+. Since both G+\e and
G+/e are nonplanar, G+ is not almost-planar. Notice that EX2 contains K+

5 , while
EX1 and EX8 contain K+

3,3. Hence EX1, EX2, and EX8 are not minimal in the set
of non-almost-planar nonplanar graphs. However, by Theorem 1, within the universe of
3-connected graphs, these three graphs are minimal and in fact, the only five minimal
graphs are precisely the members of F . In Section 4, we determine all minimal graphs
without imposing any connectivity.

2 A few lemmas

In this section we present a few lemmas that will be used in our main proof. As usual,
let |G| := |V (G)|. Since we restrict our discussion to simple graphs, we use the following
definition of separation. For any integer k > 0, a k-separation of a graph G is an unordered
pair {G1, G2} of proper induced subgraphs of G such that G1∪G2 = G and |G1∩G2| = k.
A graph on more than k vertices is k-connected if it has no k′-separation for any k′ < k.
Our first lemma is (2.4) of [6], which we state using our terminology. We remark that our
G is obtained from G of (2.4) by adding a new vertex x and joining x to all vertices of Ω̄.

Lemma 2. Let x be a vertex of a graph G and let σ be a circular permutation of Ex, the
set of edges incident with x. Suppose G has no k-separation {G1, G2} with k 6 2 and
Ex ⊆ E(Gi) for some i. Then either G admits a planar drawing such that σ is the local
rotation at x or G has a subgraph G′ such that either G′ is a subdivision of K3,3 with
degG′(x) = 3 or G′ is a union of two cycles C,D with V (C ∩D) = {x} and under σ the
four edges of Ex ∩ E(C ∪D) alternate between C and D.
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The next result we need follows immediately from Lemma 2.

Lemma 3. Let x be a cubic vertex of a nonplanar graph G. Suppose G has no k-separation
{G1, G2} with k 6 2 such that some Gi contains x and all its three neighbors. Then G
has a subgraph G′ such that G′ is a subdivision of K3,3 and x is cubic in G′.

A 3-connected graph G with |G| > 5 is called internally 4-connected if for every
3-separation {G1, G2} of G, exactly one of G1, G2 is K1,3. We point out that no cubic
vertex belongs to a triangle in an internally 4-connected graph, as we will use this property
repeatedly. Let C2

n be the graph obtained from a cycle of length n by joining all pairs of
vertices of distance two on the cycle.

Lemma 4. Let G be an internally 4-connected nonplanar minor of a Möbius ladder. Then
G = Mn or C2

2n−1 for some integer n > 3.

Proof. Let k > 3 be the smallest integer such that G is a minor of Mk. Let Mk consist
of a Hamilton cycle C and pairwise crossing chords. The minimality of k implies that
no chord is deleted in obtaining G. Moreover, since G is nonplanar, no chord of C is
contracted and no edge of C is deleted. So G is obtained by contracting some edges of C.
Since no cubic vertex of G belongs to a triangle and contraction of an edge of C creates
two cubic vertices in a triangle, either the triangle edge in C must be contracted, implying
G is a minor of Mk−1 (and contradicting the minimality of k), or the two edges incident
to these cubic vertices and outside the triangle must be contracted. In this case, new
cubic vertices in a triangle will be created and the process must be iterated. If k is even,
then this process leads to the contraction of all of C so k is not even. If k is odd, then
the process terminates with C2

k .

We remark that the lemma holds even if we drop the nonplanarity assumption.
The next is a theorem of Maharry and Robertson [4] on M4-free graphs. An alternating

double wheel of length 2n (n > 2), denoted by AW2n, is obtained from a cycle v1v2 . . . v2nv1

by adding two new adjacent vertices u1, u2 such that ui is adjacent to v2j+i for all i = 1, 2
and j = 0, 1, . . . , n− 1.

Lemma 5 (Maharry and Robertson [4]). If an internally 4-connected graph G is M4-free
then at least one of the following holds.

(i) G is planar;
(ii) |G| > 8 and G\{v1, v2, v3, v4} is edgeless, for some distinct v1, v2, v3, v4 ∈ V (G);
(iii) G = DWn+3 or AW2n for some n > 3;
(iv) G is L(K3,3), the line graph of K3,3;
(v) G has fewer than eight vertices.

To concisely state the next result and its proof, we introduce some structural termi-
nology and notation. For any two vertices x, y of a path P , let P [x, y] denote the subpath
of P between x and y. If G is a subdivision of a graph H, then branch vertices of G
are vertices of G that correspond to vertices of H, and arcs of G are paths of G that
correspond to edges of H. A triad addition of H is obtained by adding a new vertex v to
H and joining v to three distinct vertices of H.

the electronic journal of combinatorics 25(1) (2018), #P1.55 5



Lemma 6. Let H be a graph with |H| > 3. If a 3-connected graph G has a subgraph H ′

such that H ′ is a subdivision of H and |H ′| < |G|, then G contains a triad addition of H
as a minor.

Proof. Let G′ be a subgraph of G such that G′ is a subdivision of H and |G′| < |G|. Let
v ∈ V (G) \ V (G′) and let P1, P2, P3 be three paths of G from v to G′ that are disjoint
except for v. For i = 1, 2, 3 let vi be the endvertex of Pi in G′. We first prove that
G′, P1, P2, P3 can be chosen so that v1, v2, v3 are not contained in a single arc of G′.

Suppose v1, v2, v3 are contained in an arc A of G′. Let x, y be the two ends of A and
let x, v1, v2, v3, y be the order in which these vertices appear along A. Choose P1, P2, P3

and A such that |A[x, v1]∪A[y, v3]| is minimized. Since G is 3-connected, G\{v1, v3} has a
path Q with one endvertex s in (P1∪P2∪P3∪A[v1, v3])\{v1, v3} and the other endvertex
t in G′\V (A[v1, v3]). By the minimality of |A[x, v1]∪A[y, v3]|, t must belong to G′\V (A).
It follows that G′ ∪ P1 ∪ P2 ∪ P3 ∪Q contains a subdivision of a triad addition of H.

Now we assume that v1, v2, v3 are not contained in a single arc. Since this property
can be preserved when we contract G′ to H, we obtain in this case a triad addition of H
as a minor.

3 A proof of Theorem 1

Before proving Theorem 1 we establish a few lemmas, which are the main parts of our
proof. We begin with some definitions. A 3-sum of two disjoint graphs G1, G2 is obtained
by identifying a triangle T1 of G1 with a triangle T2 of G2, and then deleting 0, 1, 2, or 3
of the three identified edges. We call Ti the summing triangle of Gi (i = 1, 2). Observe
that 3-sums are not uniquely determined by G1, G2; rather, they depend on both which
vertices are identified and which edges of the summing triangles remain. For disjoint
graphs G0, . . . , Gk (k > 0), let S(G0) = G0 and let S(G0, . . . , Gk) (k > 1) denote a graph
obtained by iteratively 3-summing G1, . . . , Gk to G0 over distinct summing triangles of
G0. In other words, we define S(G0, . . . ., Gk) inductively as a 3-sum of S(G0, . . . , Gk−1)
and Gk, such that the summing triangle of S(G0, . . . , Gk−1) is contained in G0 and is
different from all previous summing triangles.

A 3-connected graph G is called 3+-connected if G\X has at most two components
for every set X of three vertices. Given a 3-separation {G1, G2} of G, for i = 1, 2, let G∆

i

be obtained from Gi by adding all missing edges among vertices of G1 ∩ G2; let GY
i be

obtained from Gi by adding a new vertex vi adjacent to all three vertices of G1 ∩G2.

Lemma 7. Every 3+-connected nonplanar graph G can be expressed as S(G0, . . . , Gk)
(k > 0), where G0 is an internally 4-connected nonplanar minor of G. Moreover, for any
1 6 i1 < . . . < it 6 k, there is a minor of G that can be expressed as S(G0, Gi1 , . . . , Git).

Proof. We begin with the first assertion of the lemma. Suppose the assertion is false, and
consider a counterexample G with |G| as small as possible. Clearly, G is not internally
4-connected since G0 = G would trivially satisfy the lemma. Thus G must have a 3-
separation {H1, H2} such that neither part is K1,3. Let V (H1 ∩H2) = {x, y, z}. Since G
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is nonplanar, at least one of HY
1 and HY

2 is nonplanar. Without loss of generality, suppose
HY

1 is nonplanar. Let us choose such a 3-separation with |H1| as small as possible. Since
H2 6= K1,3, H∆

1 is a 3-connected minor of G. Notice that H∆
1 is also 3+-connected, because

any 3-cut of H∆
1 leaving more than two components would do the same to G. Moreover,

H∆
1 is nonplanar, because otherwise, since HY

1 is nonplanar, triangle xyz would not be a
facial triangle of H∆

1 , which implies G\{x, y, z} would have more than two components,
contradicting the 3+-connectivity of G. Therefore, H∆

1 satisfies the assumptions of the
lemma. Since |H∆

1 | < |G|, H∆
1 can be expressed as S(G0, . . . , Gk) for an internally 4-

connected minor G0 of H∆
1 . By the minimality of H1, triangle xyz must be contained

in G0 and G can be expressed as S(G0, . . . , Gk, H
∆
2 ). This contradiction proves the first

assertion of the lemma.
To prove the second assertion, let G = S(G0, . . . , Gk) and for i = 1, . . . , k let Ti ⊆ G0

be the triangle over which G0 and Gi are 3-summed. To simplify our notation in the rest
of this proof, let us slightly abuse our terminology by assuming each Vi := V (Gi) is a
subset of V (G). Then for each i = 1, . . . , k, the summing triangle of Gi is also Ti and the
only difference between Gi and G[Vi] is that Ti is a triangle of Gi but not all edges of Ti
are necessarily in G[Vi]. The difference between G0 and G[V0] is similar. For i = 0, . . . , k,
let Si = S(G0, . . . , Gi). From the last paragraph we deduce that Si[Vi] can be contracted
to Ti (i = 1, . . . , k). Equivalently, Si[Vi] contains a cycle. Note that even when Si[Vi]
contains a cycle, G[Vi] may be a tree, and in such a case G[Vi] = K1,3. The discrepancy
occurs because 3-summing Gi+1, . . . ., Gk to Si removed some edges of Si[Vi]. Therefore,
if G[Vi] = K1,3 then Ti has a common edge with Tj for some j > i. We use this property
in the remaining proof and refer to it as property (*).

Let G be expressed as S(G0, . . . , Gk) with property (*). To prove the second assertion
we only need to show: for each i = 1, . . . , k, G has a minor that can be expressed as
S(G0, . . . , Gi−1, Gi+1, . . . , Gk) with property (*). If G[Vi] 6= K1,3, let G′ be obtained from
G by contracting G[Vi] to Ti. Then G′ is a required minor. On the other hand, if G[Vi] =
K1,3, by property (*), there exists j > i such that |Ti ∩ Tj| = 2. Let Vi = {w, x, y, z},
where y, z are in Tj. Then G/wx is a required minor.

Lemma 8. Let G be 3-connected and {K+
3,3, K

h
3,3}-free. If {G1, G2} is a 3-separation of

G such that GY
1 is nonplanar, then G∆

2 is a wheel.

Proof. Let V (G1∩G2) = {v1, v2, v3} and let x be the only vertex of GY
1 \V (G1). Since GY

1

is nonplanar and G is 3-connected, by Lemma 3, GY
1 has a subgraph G′ such that G′ is a

subdivision of K3,3 and degG′(x) = 3. Let u ∈ V (G2)\{v1, v2, v3}. Since G is 3-connected,
G2 contains three induced paths P1, P2, P3 from u to each of v1, v2, v3, respectively, such
that the three paths are disjoint except for u. Then (G′\x) ∪ P1 ∪ P2 ∪ P3 ⊆ G is a
subdivision of K3,3. Since G is K+

3,3-free, G2 contains no vertex outside P1∪P2∪P3; since
G is Kh

3,3-free, G2\{v1, v2, v3} contains no edge outside P1 ∪ P2 ∪ P3.
If P1, P2, P3 are all single edges, then G∆

2 is a wheel W3. Otherwise, suppose without
loss of generality that P1 is not a single edge and let w be any internal vertex of P1. Since
P1 is an induced path and G is 3-connected, w must be incident with an edge outside
P1. As observed above, the only possible neighbors of w outside P1 are v2 and v3. If w is
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adjacent to both v2 and v3 then G has a K+
3,3 minor. So w is adjacent to exactly one of

v2, v3. If w,w′ are distinct internal vertices of P1 such that both wv2 and w′v3 are edges
of G, then G again has a K+

3,3 minor. Therefore, all internal vertices of P1 are cubic and
they have a common neighbor outside P1, which we may assume to be v2.

Since G is K+
3,3-free, we deduce that P2 = uv2 and no internal vertex of P3 is adjacent

to v1. All vertices of P3\v3 are therefore cubic and adjacent to v2, so G2 consists of path
P1 ∪ P3, all edges from v2 to (P1\v1) ∪ (P3\v3), and possibly edges between v1, v2, v3,
implying G∆

2 is a wheel.

Lemma 9. Let G be connected and {K+
3,3, K

h
5 }-free. If G contains an M4 minor then G

is a minor of Mn for some n > 4.

Proof. Since M4 is cubic (and a minor of G), G necessarily has a subgraph H isomorphic
to a subdivision of M4. Since G is K+

3,3-free, H must be a spanning subgraph and no
chord of M4 is subdivided. It follows that the rim of H is a Hamilton cycle C of G. Let
v0, . . . , v7 be the branch vertices of H, listed in the order they appear on C. We denote
the path of C from vi to vi+1 by Ai, where i = 0, . . . , 7. (In this proof the indices are
taken modulo 8.)

Let e ∈ E(G)\E(H). We prove the endvertices of e are in Ai and Ai+4 for some i.
First, observe that no Ai contains both ends of e because then H + e contains a K+

3,3

minor. Next, assume one end of e is an internal vertex of some Ai. If the other end of e
does not belong to Ai+4, it is straightforward to verify that H + e can be contracted to
M4 + vjvj+2, for some j, and thus G contains a K+

3,3 minor. So both ends of e are cubic
vertices of H, implying e = vivi+t (t = 3, 5), which satisfies the requirement.

To finish the proof, we only need to show that any two non-adjacent chords e, f of
C must cross. The previous discussion makes this clear if the four ends of e, f are not
contained in Ai∪Ai+4 for any i. If all ends of e, f are contained in Ai∪Ai+4 for some i and
if e, f do not cross each other, then H+ e+f can be contracted to M4 + vivi+5 + vi+1vi+4,
which contains a Kh

5 minor. Therefore, e, f must cross and that completes our proof.

Lemma 10. Let G be internally 4-connected, nonplanar, and {K+
5 , K

+
3,3, K

h
5 , K

h
3,3}-free.

Then G is Mn or C2
2n+1 or DWn or AW2n for some n > 3.

Proof. If G has an M4 minor then the result follows immediately from Lemmas 9 and 4.
So we assume G is M4-free and observe nonplanarity implies one of (ii)-(v) of Lemma 5.
Case (iv) does not hold since L(K3,3) contains a Kh

3,3 minor, as shown in Figure 3, and
case (iii) is one of the results of the current lemma.

Suppose (ii) holds. Let V (G)\{v1, v2, v3, v4} = {u1, . . . , uk}. Note that each ui has
degree either 3 or 4. If two or more of them are of degree 4 then K+

3,3 is a minor of G.
If every ui is cubic, since no two of them have the same set of neighbors, it follows that
k = 4 and G is the cube, contradicting the nonplanarity of G. We may therefore assume
u1 has degree 4 and all other ui are cubic. As a result, k = 4 or 5. If k = 4 then G is
AW6. If k = 5 then G\u1 is the cube and G has a K+

3,3 minor, as shown in Figure 3.
It remains to consider case (v). If |G| 6 5, then since G is nonplanar we have G =

K5 = DW3. If |G| = 6, then G contains a K3,3 subgraph, as every 3-connected nonplanar
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Figure 3: Kh
3,3 is a minor of L(K3,3), and K+

3,3 is a minor of Cube+v

graph with more than five vertices contains a K3,3 minor. Since no cubic vertex of G
belongs to a triangle, it follows that either G = K3,3 = M3, or for each color class of K3,3,
G contains at least two edges with both endvertices in that color class. If G contains no
other edges then G = DW4; if G contains at least one other edge then G contains K+

5 .
If |G| = 7, we may assume G contains a subgraph H obtained from K3,3 by subdividing

an edge exactly once. Let B = {b1, b2, b3} and R = {r1, r2, r3} be a partition of the cubic
vertices of H corresponding to the two color classes of K3,3 and let v be the vertex
subdividing edge b1r1. Since v belongs to a triangle of G, we deduce that v has degree at
least 4 in G. If v is adjacent to both b2 and b3 or both r2 and r3, then G contains K+

3,3.
Thus we see the degree of v is 4 and v has one additional neighbor in each of B and R,
say b2 and r2. Since b1 and r1 are in triangles, they must have degree at least 4. If G
contains the edge b1r1, then G contains K+

3,3, so b1 must be adjacent to b2 or b3, and r1

must be adjacent to r2 or r3. It follows that b3 and r3 are in triangles and thus they must
also have degree at least 4. Let H ′ be the graph obtained from H by adding edges vb2

and vr2, and observe that H ′ + b1b3 + r1r2
∼= H + b1b3 + r2r3, which contains Kh

5 . This
implies G is obtained from H ′ either by adding edges b1b3 and r1r3, so G = C2

7 , or by
adding paths b1b2b3 and r1r2r3, in which case G = DW5.

Lemma 11. Suppose that a {K+
5 , K

+
3,3, K

h
5 , K

h
3,3}-free graph G can be expressed as

S(G0, . . . , Gk),

where G0 = K5 and each Gi (i > 0) is a wheel. Then G is a minor of some Mn or DWn.

Proof. Let V (G0) = {1, 2, 3, 4, 5} and let T be the set of summing triangles of G0 used
to obtain G. We first determine T and then determine how wheels are 3-summed to each
member of T . We assume G is M4-free because otherwise the result holds by Lemma 9.

Let T1 = {123, 124, 134} and T2 = {123, 234, 145}. We claim that, up to permutation
of vertex labels, either T = T1 or T ⊆ T2. For any triangle xyz, we can turn it into
a triad by deleting all three edges between x, y, and z and adding a degree 3 vertex
adjacent to x, y and z. First we observe that turning triangles 123, 124, 125 into triads in
G0 results in Kh

3,3, and turning 123, 134, 145 into triads results in M4. Thus, by the second
half of Lemma 7 neither {123, 124, 125} nor {123, 134, 145} is a subset of T . Similarly,
{123, 124, 134, 234} 6⊆ T because otherwise G contains a K+

3,3 minor (deleting any of the
triads still leaves a nonplanar graph). Now it is straightforward to verify that either some
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vertex i belongs to at least three summing triangles, in which case T = T1, or every vertex
i belongs to at most two summing triangles, in which case T ⊆ T2.

Suppose a wheel Wt is 3-summed to G0 over xyz ∈ T . If t = 3 then at least one of
the three edges of xyz is not in G, because otherwise G contains a K+

5 minor. If t > 3
and the hub of Wt is identified with x then yz 6∈ E(G) because otherwise G contains a
Kh

5 minor (Figure 4(i)).

x

y z x

y

z

w x

y

z

u

v

x

y

z

w x

y

z

u

v

Figure 4: G contains Kh
5 , K+

3,3, or Kh
3,3

We call x a hub of xyz if either t > 3 and the hub of Wt is identified with x, or t = 3
and yz 6∈ E(G). The above observations imply that every summing triangle has a hub,
and if x is a hub then yz 6∈ E(G). To complete the proof we need three observations
about xyz ∈ T .

(a) If yz 6∈ E(G) then either xyz has only one hub or x is a hub of xyz.
(b) If yzw ∈ T then either y or z is a hub of xyz, where we assume w 6= x.
(c) If xuv ∈ T then either y or z is a hub of xyz, where we assume {y, z}∩{u, v} = ∅.

Statement (a) is clear since if t > 3 then xyz has only one hub and if t = 3 then x is a
hub. To prove (b) and (c) we assume that neither y nor z is a hub of xyz. Then either
t > 3 and the hub of Wt is identified with x, or t = 3 and both xy and xz are edges of
G. In both cases (b) and (c), if t = 3 then G contains a K+

3,3 minor (Figure 4(ii-iii)), and
if t > 3 then G contains a Kh

3,3 minor (Figure 4(iv-v)). These contradictions prove both
(b) and (c).

Suppose T = T1. Then none of the edges 23, 24, 34 are in G, because otherwise G
contains a K+

3,3 minor. This observation, together with (a) and (b), implies that 1 is a
hub for all three summing triangles. As a result, G\{1, 5} is a cycle and G is a minor of
some DWn.

Suppose T = T2. We first note that 14 6∈ E(G) because otherwise G contains a Kh
3,3

minor. This and observations (a)-(c) imply that 5 is a hub of 145 and that {2, 3} contains
a hub of 123 and a hub of 234. If 2 (or 3) is a hub for both 123 and 234, then G is a
minor of a double wheel (Figure 5(i)); if 2 is a hub of 123 and 3 is a hub of 234, then G
is a minor of a Möbius ladder (Figure 5(ii)).

Finally, suppose T ⊂ T2. Up to symmetry there are four possible choices for T : ∅,
{123}, {123, 234}, and {123, 145}. All these are degenerate forms of the last case. It is
routine to verify using (b) and (c) that G is a minor of a double wheel, except when 2 is
a hub of 123 and 3 is a hub of 234, in which case G is a minor of a Möbius ladder.

Now we are ready to prove Theorem 1.
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Figure 5: G is a minor of a double wheel or a Möbius ladder

Proof of Theorem 1. We prove implications (ii) ⇒ (i) ⇒ (iii) ⇒ (iv) ⇒ (ii).
(ii) ⇒ (i): Note that, if P is the class of all planar and almost-planar graphs, then

P is closed under taking minors. Therefore, we only need to verify that each Möbius
ladder, each double wheel, and each graph in W is almost-planar. In Mn, deleting a rim
edge or contracting a chord results in a planar graph, so Mn is almost-planar. In DWn,
deleting the axle or a rim edge or contracting a spoke results in a planar graph, so DWn

is almost-planar. In any G ∈ W , contracting a spoke or an edge in the common triangle
or deleting a rim edge results in a planar graph, so G is almost-planar.

(i) ⇒ (iii): Since P is closed under taking minors, we only need to show that each
H ∈ F is not in P . To do this, we only need to find an edge e such that both H\e
and H/e are nonplanar. In EX1 every edge satisfies the requirement. In EX2 and EX8,
any edge incident with the top cubic vertex (of the drawing shown in Figure 1) has the
required property. In Kh

3,3 and Kh
5 (EX3 and EX6, respectively), the handle edge meets

the requirement.
(iii)⇒ (iv): Since {Kh

5 , K
h
3,3} ⊆ F , we only need to show that F -free G is {K+

5 , K
+
3,3}-

free. Suppose G has a minor in {K+
5 , K

+
3,3}. Then G has a vertex v such that G\v is

nonplanar, which implies that G has a non-spanning subgraph G′ that is a subdivision of
K5 or K3,3. By Lemma 6, G contains a triad addition of K5 or K3,3 as a minor. Since
EX2 is the only triad addition of K5, and EX1, EX8 are the only triad additions of K3,3,
by contrapositive (iii) ⇒ (iv).

(iv) ⇒ (ii): Assume G is 3-connected, nonplanar, and {K+
5 , K

+
3,3, K

h
5 , K

h
3,3}-free. We

need to show G is a minor of a double wheel, a Möbius ladder, or a graph in W . If G
is not 3+-connected, then there exists V0 ⊆ V (G) such that |V0| = 3 and G\V0 has more
than two components. Since G is K+

3,3-free, G\V0 must have exactly three components.
Let V1, V2, V3 be the vertex sets of these three components and let Gi (i = 1, 2, 3) be
obtained from G[V0 ∪ Vi] by adding all missing edges between vertices of V0. By applying
Lemma 8 to each 3-separation {G\Vi, G[V0 ∪ Vi]} of G (i = 1, 2, 3), we conclude that Gi

is a wheel, which implies G is a subgraph of a member of W . We may therefore assume
G is 3+-connected.

By Lemma 7, G can be expressed as S(G0, . . . , Gk) for an internally 4-connected
nonplanar minor G0 of G. We deduce from Lemma 10 that G0 = Mn or C2

2n+1 or DWn

or AW2n for some n > 3. We also deduce from Lemma 8 that each Gi (i > 0) is a wheel.
Note that (ii) holds if k = 0 because C2

2n+1 is a minor of M2n+1 and AW2n is a minor of
DW2n. So we assume k > 1. Since Mn and AW2n do not have any triangles, it follows
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that G0 = C2
2n+1 or DWn for some n > 3.

Suppose G0 = C2
2n+1 (n > 3). Observe that a 3-sum of G0 and a wheel is a graph with

an M4 minor, so by Lemma 9 G is a minor of a Möbius ladder.
The case G0 = DW3 = K5 is covered by Lemma 11. So we assume G0 = DWn (n > 4).

Let G0 have hubs u1, u2 and rim cycle C = v0v1 . . . vn−1 (indices are taken modulo n in
this case). Let H be a 3-sum of G0 and a wheel Wt over a triangle T . If T is u1u2vi
then H contains a K+

3,3 minor since H\vi+2 contains a K3,3 minor. There is only one
other type of triangle in G0, so suppose T is u1v1v2. If v1v2 is an edge of H then H
contains a Kh

5 minor, which can be seen by contracting paths v3 . . . vn−1 and Wt\V (T ).
An almost identical configuration also shows if t > 4 then the hub of Wt is not identified
with v1 or v2. The effect of 3-summing Wt to G0 is therefore to subdivide an edge vivi+1

and join all the subdividing vertices with some uj, creating a subgraph of a larger double
wheel obtained by deleting some spokes. Many wheels can be added to DWn in the same
fashion. Thus 3-summing wheels to DWn either creates a K+

3,3 or Kh
5 minor or results in

a minor of a double wheel. The proof of Theorem 1 is complete.

4 Graphs of low connectivity

In the published version [1] of [2], graphs of low connectivity are also considered. Some of
the statements in [1] are not accurate. Its second main theorem (Theorem 2.2) states: A
graph is neither planar nor almost-planar if and only if it has a {EXi : 1 6 i 6 8}-minor.
As we pointed out in the introduction, K+

3,3 is a counterexample to this statement. In this
section we prove a corrected version of this theorem.

For any graphG, letG⊕e be obtained fromG by adding two adjacent new vertices, and
let G∗ be obtained from G by deleting all its isolated vertices (assuming that E(G) 6= ∅).
Let D(G) be the set of edges e of G such that G\e is planar.

Theorem 12. The following are equivalent for any nonplanar graph G.
(i) G is almost-planar;
(ii) G∗ is obtained from a 3-connected almost-planar H by subdividing edges in D(H);
(iii) G is F ′-free, where F ′ = {K+

5 , K
+
3,3, K

h
5 , K

h
3,3, K5⊕ e,K3,3⊕ e}.

One possible sharpening of (ii) is to describe D(H) explicitly. If H is a Möbius ladder
or a double wheel or a graph inW , then we have determined D(H) in the proof of Theorem
1. For each nonplanar minor H ′ of H, one could also describe D(H ′) because the structure
of H is simple enough. However, we choose not to include such a description here since
its derivation, although straightforward, is tedious. Statement (ii) is also touched on in
[1], but the treatment is not rigorous. We include here the treatment of statement (ii) as
presented in [1].

Two corollaries of Theorem 2.1 characterize those almost-planar graphs that are not 3-
connected. The elementary proofs are omitted.
Corollary 2.4. If G is a connected, almost-planar graph, then G is a series-parallel
extension of a simple, 3-connected, almost-planar graph.
Corollary 2.5. If G is a disconnected, almost-planar graph, then G is the union of a
connected, almost-planar graph and a set of isolated vertices.
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In particular, both corollaries are not “if and only if” type of statements, and (2.4) cannot
be turned into such a statement. Our (ii) corrects both problems.

Proof of Theorem 12. We prove implications (ii) ⇒ (i) ⇒ (iii) ⇒ (ii).
(ii)⇒ (i): Since adding isolated vertices to an almost-planar graph results in an almost-

planar graph, we only need to show that G∗ is almost-planar. This is clear because for
each edge e of G∗, G∗\e is planar if e is an edge obtained by subdividing an edge of D(H),
while G∗/e is planar if e belongs to E(H)\D(H).

(i) ⇒ (iii): As in the proof of (i) ⇒ (iii) of Theorem 1, we only need to find, for each
H ∈ F ′, an edge e of H such that both H\e and H/e are nonplanar. The case H = Kh

5

or Kh
3,3 was settled in the proof of Theorem 1. If H = K+

5 , K+
3,3, K5⊕ e, or K3,3⊕ e, then

the edge outside K5 or K3,3 satisfies the requirement.
(iii) ⇒ (ii): Suppose the implication does not hold. We choose a counterexample

G with |G| as small as possible. We first prove G is connected. If G is disconnected,
then since G is nonplanar one component of G contains a K5 or K3,3 minor. If another
component of G contains an edge, then G contains K5⊕ e or K3,3⊕ e as a minor. So G
must have an isolated vertex v. By the minimality of G, G\v satisfies (ii), implying G
satisfies (ii), which is a contradiction. Thus G must be connected.

If G has a 1-separation {G1, G2}, then since G is nonplanar at least one Gi contains
K5 or K3,3 as a minor. Since each Gi has at least one edge, this implies G contains K+

5

or K+
3,3 as a minor. This contradicts (iii), so G must be 2-connected.

Since 3-connected {K+
5 , K

+
3,3, K

h
5 , K

h
3,3}-free nonplanar graphs are almost-planar, as

shown in the proof of Theorem 1 (implications (iv)⇒ (ii)⇒ (i)), G cannot be 3-connected
and thus G must have a 2-separation {G1, G2}. Let V (G1∩G2) = {x, y} and, for i = 1, 2,
let Hi = Gi (or Gi + xy, if xy /∈ E(G). Since G is nonplanar, we may assume without
loss of generality that H1 is nonplanar. If G1 is nonplanar, then G contains a K+

5 or K+
3,3

minor. So xy 6∈ E(G) and G1 is planar.
Let P be an induced xy-path of G2. Since G1 ∪ P is a subdivision of nonplanar H1,

G2 cannot have a vertex outside P , for then G contains a K+
5 or K+

3,3 minor. Therefore,
G2 = P and G is obtained from H1 by subdividing edge xy. By the minimality of G,
H1 must satisfy (ii). Let H1 be obtained from a 3-connected almost-planar graph H by
subdividing edges in D(H). Each edge of E(H)\D(H) is not subdivided in the formation
of H1 and deleting such an edge in H1 leaves a nonplanar graph. Therefore, xy is not such
an edge since H1\xy = G1 is planar. It follows that there is an edge e ∈ D(H) such that
xy belongs to a path (of H1) obtained by subdividing e. Now it is clear that G is obtained
by repeatedly subdividing e, and thus G satisfies (ii), which contradicts the assumption
that G is a counterexample. This contradiction completes our proof.
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