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Abstract

Simultaneous core partitions have attracted much attention since Anderson’s
work on the number of (t1, t2)-core partitions. In this paper we focus on simultane-
ous core partitions with distinct parts. The generating function of t-core partitions
with distinct parts is obtained. We also prove results on the number, the largest
size and the average size of (t, t+1)-core partitions with distinct parts. This gives a
complete answer to a conjecture of Amdeberhan, which is partly and independently
proved by Straub, Nath and Sellers, and Zaleski recently.
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1 Introduction

The aim of this paper is to study simultaneous core partitions with distinct parts. Let us
recall some basic definitions first. We refer the reader to [9, 16] for the basic knowledge on
partitions. A partition is a finite nonincreasing sequence λ = (λ1, λ2, . . . , λ`) of positive
integers. Here λi (1 6 i 6 `) are called the parts of λ and |λ| =

∑
16i6` λi is the size

of λ. A partition λ is usually identified with its Young diagram, which is a collection of
left-justified rows with λi boxes in the i-th row. The hook length of the box � = (i, j)
in the i-th row and j-th column of the Young diagram, denoted by h(i, j), is the number
of boxes exactly to the right, or exactly below, or the box itself. For example, Figure 1
shows the Young diagram and hook lengths of the partition (5, 3, 3, 2, 1).

For positive integers t1, t2, . . . , tm, a partition is called a (t1, t2, . . . , tm)-core partition
if none of its hook lengths belongs to {t1, t2, . . . , tm}. In particular, a partition is called a
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Figure 1: The Young diagram of the partition (5, 3, 3, 2, 1) and the hook lengths.

t-core partition if none of its hook lengths equals t (see [7, 18]). For example, we can see
from Figure 1 that λ = (5, 3, 3, 2, 1) is a (8, 10)-core partition.

Many results have been obtained in the study of (t1, t2, . . . , tm)-core partitions. For
m = 2, Anderson [3] showed that the number of (t1, t2)-core partitions is the rational
Catalan number 1

t1+t2

(
t1+t2
t1

)
when t1 and t2 are coprime to each other. Olsson and Stanton

[14] found the largest size of such partitions, which is
(t21−1)(t22−1)

24
. Various results on the

enumeration of (t1, t2)-core partitions are achieved in [4, 6, 8, 12, 17, 20]. A specific type
of simultaneous core partitions, (t, t+ 1, . . . , t+ p)-core partitions, had been well studied.
Results on the number, the largest size and the average size of such partitions can be
found in [2, 10, 21, 24].

Much attention has been attracted to simultaneous core partitions with distinct parts
since Amdeberhan’s conjectures (see [?]) on this subject in 2015. The results on the
enumeration of (t, t + 1), (t, t + 2) and (t, nt ± 1)-core partitions with distinct parts can
be found in several papers [10, 19, 22, 23, 25, 26] published since 2016. In this paper1,
we obtain the generating function of t-core partitions with distinct parts in Theorem 1.1.
We also prove the results on the number, the largest size and the average size of (t, t+ 1)-
core partitions with distinct parts in Theorem 1.2, which verify Amdeberhan’s conjecture
on such partitions. Notice that part of Theorem 1.2 was generalized independently by
[11, 19, 22, 26]. In fact, Straub [19] and Nath-Sellers [11] found the number of (t, nt− 1)
and (t, nt + 1)-core partitions with distinct parts respectively. The largest sizes of the
above two kinds of partitions were given by the author [22]. Zaleski [26] obtained the
explicit expressions for the moments of the sizes of (t, t+ 1)-core partitions with distinct
parts, which gave a generalization of Theorem 1.2(4). Furthermore, Zaleski and Zeilberger
[25] obtained the moments of the sizes of (2t+1, 2t+3)-core partitions with distinct parts,
whose number, largest size and average size were given by Yan, Qin, Jin and Zhou [23].
Our main results are stated next.

Theorem 1.1. Suppose that t > 2. Let cdt(n) be the number of t-core partitions of size n
with distinct parts. Then the generating function for such partition is∑

n>0

cdt(n)qn =
∑

(n1,n2,··· ,nt−1)∈Ct

q
∑t−1

i=1(ini+t(ni
2 ))−(

∑t−1
i=1

ni
2 ), (1.1)

1 We mention that our paper is one of the earliest papers in the study of simultaneous core partitions
with distinct parts (the first edition of this paper was available on arxiv since August 2015, which is cited
by all six papers above).
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where Ct = {(x1, x2, · · · , xt−1) ∈ Nt−1 : xixi+1 = 0 for 1 6 i 6 t− 2}. In particular, when
t = 2, 3, 4, we have ∑

n>0

cd2(n)qn =
∑
n>0

q(
n+1
2 ),

∑
n>0

cd3(n)qn =
∑
n>1

qn
2

+
∑
n>0

qn(n+1),

and ∑
n>0

cd4(n)qn =
∑
n>1

q
n(3n+1)

2 +
∑
n>0

∑
m>0

q
n(3n−1)+3m(m+1)−2mn

2 .

Theorem 1.2 (Amdeberhan’s conjecture, see [1, 19]). Let t > 2 be a positive integer and
(Fi)i>0 = (0, 1, 1, 2, 3, 5, 8, 13, . . .) be the Fibonacci numbers. For (t, t + 1)-core partitions
with distinct parts, we have the following results.

(1) The number of such partitions is Ft+1.
(2) The largest size of such partitions is b1

3

(
t+1
2

)
c, where bxc is the largest integer not

greater than x.
(3) The number of such partitions with the largest size is 2 if t ≡ 1 (mod 3) and 1

otherwise.
(4) The total sum of the sizes of these partitions and the average size are, respectively,

given by ∑
i+j+k=t+1
i,j,k>1

FiFjFk and
∑

i+j+k=t+1
i,j,k>1

FiFjFk
Ft+1

.

2 The β-sets of core partitions

In this section, we study the properties of β-sets of t-core partitions and obtain the
generating function for t-core partitions of size n with distinct parts.

Suppose that λ = (λ1, λ2, . . . , λ`) is a partition whose corresponding Young diagram
has ` rows. The β-set β(λ) of λ is defined to be the set of first-column hook lengths in
the Young diagram of λ (for example, see [14, 21]), i.e.,

β(λ) = {h(i, 1) : 1 6 i 6 `}.

The following results are well-known and easy to prove.

Lemma 2.1 ([3, 5, 14, 21]). (1) Suppose λ = (λ1, λ2, . . . , λ`) is a partition. Then λi =
h(i, 1)− `+ i for 1 6 i 6 `. Thus the size of λ is |λ| =

∑
x∈β(λ) x−

(|β(λ)|
2

)
.

(2) (Abacus condition for t-core partitions.) A partition λ is a t-core partition
if and only if for any x ∈ β(λ) with x > t, we always have x− t ∈ β(λ).

Remark 2.2. An element x ∈ β(λ) is called t-maximal if x + t /∈ β(λ). Lemma 2.1(2)
implies that the β-set β(λ) of a t-core partition λ is determined by all t-maximal elements
in β(λ). Thus there is a bijection η which sends each t-core partition λ to

(n1, n2, · · · , nt−1) := (n1(λ), n2(λ), · · · , nt−1(λ)) ∈ Nt−1
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such that t(ni−1)+i is t-maximal in β(λ) if ni > 1; and i /∈ β(λ) if ni=0 for 1 6 i 6 t−1.
In this case, β(λ) =

⋃t−1
i=1

⋃ni−1
j=0 {jt+ i} and therefore |β(λ)| =

∑t−1
i=1 ni.

Example 2.3. Let λ = (5, 3, 3, 2, 1) be a 8-core partition. Then β(λ) = {9, 6, 5, 3, 1} and
η(λ) = (2, 0, 1, 0, 1, 1, 0).

By Lemma 2.1(1), we have the following result.

Lemma 2.4. The partition λ is a partition with distinct parts if and only if there does
not exist x, y ∈ β(λ) with x− y = 1.

Proof. Suppose that λ = (λ1, λ2, . . . , λ`). Then by Lemma 2.1(1), we have λi = λi+1 if and
only if h(i, 1)− `+ i = h(i+1, 1)− `+ i+1, which is equivalent to h(i, 1)−h(i+1, 1) = 1.
This implies the claim.

Let [t] = {x ∈ N : 1 6 x 6 t} for every t > 1. We say that a subset B of [t] is nice if
x− y 6= 1 for any x, y ∈ B. Let Bt be the set of nice subsets of [t− 1] and at = |Bt| be the
number of nice subsets of [t − 1]. Recall that Ct = {(x1, x2, · · · , xt−1) ∈ Nt−1 : xixi+1 =
0 for 1 6 i 6 t− 2} for every t > 2.

Example 2.5. Let t = 5. The set of all nice subsets of [4] are

B5 = {{1}, {2}, {3}, {4}, {1, 3}, {1, 4}, {2, 4}}.

Notice that C5 is determined by B5 in the following manner: C5 = {(x1, 0, 0, 0) ∈ N4} ∪
{(0, x2, 0, 0) ∈ N4} ∪ {(0, 0, x3, 0) ∈ N4} ∪ {(0, 0, 0, x4) ∈ N4} ∪ {(x1, 0, x3, 0) ∈ N4} ∪
{(x1, 0, 0, x4) ∈ N4} ∪ {(0, x2, 0, x4) ∈ N4}.

Let CDt be the set of t-core partitions with distinct parts and cdt(n) be the number
of partitions in CDt with size n. Recall that the bijection η is defined in Remark 2.2.

Theorem 2.6. The mapping η gives a bijection between the sets CDt and Ct. If η(λ) =
(n1, n2, · · · , nt−1) for some t-core partition λ with distinct parts, then

|λ| =
t−1∑
i=1

(
ini + t

(
ni
2

))
−
(∑t−1

i=1 ni
2

)
. (2.1)

Proof. By Lemma 2.4 we know if λ is a t-core partition with distinct parts, then {i, i+1} 6⊆
β(λ) for 1 6 i 6 t − 2. Also we know i ∈ β(λ) iff ni(λ) > 1. Then the bijection
between CDt and Ct is described in Remark 2.2. By the definition of η, we know η(λ) =
(n1, n2, · · · , nt−1) means

β(λ) =
t−1⋃
i=1

ni−1⋃
j=0

{jt+ i}.

Therefore by Lemma 2.1(1) we derive (2.1).

Now we are ready to prove Theorem 1.1.
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Proof of Theorem 1.1. The formula (1.1) is a direct corollary of Theorem 2.6.
In particular, when t = 2, we have C2 = N. Then by (1.1) we obtain∑

n>0

cd2(n)qn =
∑
n1>0

qn1+2(n1
2 )−(n1

2 ) =
∑
n>0

q(
n+1
2 ).

When t = 3, We have

C3 = {(x1, 0) ∈ N2 : x1 > 1} ∪ {(0, x2) ∈ N2 : x2 > 0}.

By (1.1) we obtain∑
n>0

cd3(n)qn =
∑
n1>1

qn1+3(n1
2 )−(n1

2 ) +
∑
n2>0

q2n2+3(n2
2 )−(n2

2 )

=
∑
n>1

qn
2

+
∑
n>0

qn(n+1).

When t = 4, We have

C4 = {(0, x2, 0) ∈ N2 : x2 > 1} ∪ {(x1, 0, x3) ∈ N2 : x1 > 0, x3 > 0}.

By (1.1) we obtain∑
n>0

cd4(n)qn =
∑
n2>1

q2n2+4(n2
2 )−(n2

2 ) +
∑
n1>0

∑
n3>0

qn1+3n3+4(n1
2 )+4(n3

2 )−(n1+n3
2 )

=
∑
n>1

q
n(3n+1)

2 +
∑
n>0

∑
m>0

q
n(3n−1)+3m(m+1)−2mn

2 .

3 (t, t+ 1)-core partitions with distinct parts

In this section we focus on (t, t + 1)-core partitions with distinct parts. We have the
following characterization for β-sets of (t, t+ 1)-core partitions.

Lemma 3.1. Let t > 2 be a positive integer. Suppose that λ is a (t, t+ 1)-core partition.
Then we have

β(λ) ⊆
⋃

16k6t−1

{x ∈ N : (k − 1)(t+ 1) + 1 6 x 6 kt− 1}.

Proof. By Lemma 2.1(2) we have at + b(t + 1) /∈ β(λ) for every nonnegative integers
a, b ∈ N, which means that

β(λ) ⊆ N \ {at+ b(t+ 1) : a, b ∈ N}.
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The above set is related to the Frobenius problem (see [15]). Notice that for any k ∈ N,
we have

{at+ b(t+ 1) : a, b ∈ N, a+ b = k} = {x ∈ N : kt 6 x 6 k(t+ 1)}.

Therefore
β(λ) ⊆

⋃
16k6t−1

{x ∈ N : (k − 1)(t+ 1) + 1 6 x 6 kt− 1}.

Lemma 3.2. Let t > 2 be a positive integer. Suppose that λ is a (t, t+ 1)-core partition
with distinct parts. Then

β(λ) ⊆ [t− 1] = {x ∈ N : 1 6 x 6 t− 1}.

Proof. By Lemma 2.1(2) we have t, t + 1 /∈ β(λ) since 0 /∈ β(λ). For x > t + 2, if
x ∈ β(λ), by Lemma 2.1(2) we know x − t, x − (t + 1) ∈ β(λ). But by Lemma 2.4 this
is impossible since λ is a partition with distinct parts. Then x /∈ β(λ) and thus β(λ) is a
subset of [t− 1].

Now we are ready to prove our main result Theorem 1.2.

Proof of Theorem 1.2. (1) By Lemmas 2.1(2), 2.4 and 3.2, a partition λ is a (t, t + 1)-
core partition with distinct parts if and only if β(λ) is a nice subset of [t− 1]. Thus the
number of (t, t+1)-core partitions with distinct parts equals the number at of nice subsets
of [t − 1], which is equal to Ft+1 since it is well known that the Fibonacci number Fn+2

counts subsets of {1, 2, . . . , n} not containing two consecutive elements (see [13]).
(2) Suppose that λ is a (t, t + 1)-core partition with distinct parts such that β(λ) =

{x1, x2, . . . , xk}. By (1) we already know β(λ) is a nice subset of [t− 1]. Thus

|λ| =
k∑
i=1

xi −
(
k

2

)
6

k∑
i=1

(t+ 1− 2i)−
(
k

2

)
= −3

2
(k − 2t+ 1

6
)2 +

(2t+ 1)2

24
.

When t = 3n for some integer n, we obtain

|λ| 6 −3

2
(k − 6n+ 1

6
)2 +

(6n+ 1)2

24
6

3n2

2
+
n

2
.

When t = 3n+ 1 for some integer n, we obtain

|λ| 6 −3

2
(k − 6n+ 3

6
)2 +

(6n+ 3)2

24
6

3n2

2
+

3n

2
.

When t = 3n+ 2 for some integer n, we obtain

|λ| 6 −3

2
(k − 6n+ 5

6
)2 +

(6n+ 5)2

24
6

3n2

2
+

5n

2
+ 1.

the electronic journal of combinatorics 25(1) (2018), #P1.57 6



Finally, in each case we always obtain

λ 6 b1
3

(
t+ 1

2

)
c.

(3) By (2) we know, if λ is a (t, t + 1)-core partition with distinct parts which has
the largest size, then its β-set must be β(λ) = {t − 1, t − 3, . . . , t − (2k − 1)} for some
integer k. When t = 3n for some integer n, λ has the largest size b1

3

(
t+1
2

)
c if and only if

k = n; when t = 3n + 1 for some integer n, λ has the largest size b1
3

(
t+1
2

)
c if and only if

k = n or n+ 1; when t = 3n+ 2 for some integer n, λ has the largest size b1
3

(
t+1
2

)
c if and

only if k = n+ 1. Therefore we prove the claim.
(4) First we introduce some sequences. For every t > 2, let

bt =
∑
B∈Bt

|B|, ct =
∑
B∈Bt

|B|2,

dt =
∑
B∈Bt

∑
x∈B

x, et = dt −
∑
B∈Bt

(
|B|
2

)
,

and
φt =

∑
i+j=t
i,j>1

FiFj, ψt =
∑

i+j+k=t
i,j,k>1

FiFjFk.

Lemmas 2.1, 2.4 and 3.2 imply that et equals the total sum of the sizes of all (t, t+ 1)-
core partitions with distinct parts. Thus we just need to show that et = ψt+1 for t > 2.

When t > 4, suppose that B ∈ Bt. If t− 1 ∈ B, then t− 2 /∈ B. Therefore

bt =
∑
B∈Bt
t−1/∈B

|B|+
∑
B∈Bt
t−1∈B

|B| =
∑

B∈Bt−1

|B|+
∑

B∈Bt−2

(|B|+ 1)

= bt−1 + bt−2 + at−2 = bt−1 + bt−2 + Ft−1.

Similarly we have

ct =
∑
B∈Bt
t−1/∈B

|B|2 +
∑
B∈Bt
t−1∈B

|B|2 =
∑

B∈Bt−1

|B|2 +
∑

B∈Bt−2

(|B|+ 1)2

= ct−1 + ct−2 + 2bt−2 + Ft−1

and

dt =
∑
B∈Bt
t−1/∈B

∑
x∈B

x+
∑
B∈Bt
t−1∈B

∑
x∈B

x =
∑

B∈Bt−1

∑
x∈B

x+
∑

B∈Bt−2

(t− 1 +
∑
x∈B

x)

= dt−1 + dt−2 + (t− 1)Ft−1.
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Notice that

et = dt −
∑
B∈Bt

(
|B|
2

)
= dt −

1

2
(ct − bt),

which means that

et − et−1 − et−2 = (t− 1)Ft−1 − bt−2.

Since e2 = ψ3 = 1, e3 = ψ4 = 3, to show that et = ψt+1 for t > 2, we just need to show
that

ψt+1 − ψt − ψt−1 = (t− 1)Ft−1 − bt−2 (3.1)

for t > 4.
Notice that F0 = 0, F1 = 1. We have

ψt+1 =
∑

i+j+k=t+1
i,j,k>1

FiFjFk =
∑

i+j+k=t+1
j,k>1
i>2

FiFjFk +
∑
j+k=t
j,k>1

FjFk

=
∑

i+j+k=t+1
j,k>1
i>2

Fi−1FjFk +
∑

i+j+k=t+1
j,k>1
i>2

Fi−2FjFk + φt

=
∑

i′+j+k=t
i′,j,k>1

Fi′FjFk +
∑

i′+j+k=t−1
i′,j,k>1

Fi′FjFk + φt

= ψt + ψt−1 + φt.

Thus (3.1) is equivalent to

(t− 1)Ft−1 − bt−2 = φt. (3.2)

Notice that (3.2) is true for t = 4, 5. Also we have

(t− 1)Ft−1 − bt−2 −
(
(t− 2)Ft−2 − bt−3

)
−
(
(t− 3)Ft−3 − bt−4

)
= (t− 1)Ft−1 − (t− 2)Ft−2 − (t− 3)Ft−3 − Ft−3
= (t− 1)Ft−1 − (t− 2)Ft−1 = Ft−1

and

φt =
∑
i+j=t
i,j>1

FiFj =
∑
i+j=t
j>1
i>2

FiFj + Ft−1 =
∑
i+j=t
j>1
i>2

Fi−1Fj +
∑
i+j=t
j>1
i>2

Fi−2Fj + Ft−1

=
∑

i′+j=t−1
i′,j>1

Fi′Fj +
∑

i′+j=t−2
i′,j>1

Fi′Fj + Ft−1 = φt−1 + φt−2 + Ft−1.

the electronic journal of combinatorics 25(1) (2018), #P1.57 8



Now we obtain (3.2) is true for t > 4. This implies that et = ψt+1 for t > 2. Therefore
the total sum of the sizes of all (t, t+ 1)-core partitions with distinct parts is

et = ψt+1 =
∑

i+j+k=t+1
i,j,k>1

FiFjFk.

Then by (1) the average size of these partitions is∑
i+j+k=t+1
i,j,k>1

FiFjFk
Ft+1

.
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