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Abstract
Alspach [Bull. Inst. Combin. Appl., 52 (2008), pp. 7–20] defined the maximal

matching sequencibility of a graph G, denoted ms(G), to be the largest integer s for
which there is an ordering of the edges of G such that every s consecutive edges form
a matching. Alspach also proved that ms(Kn) =

⌊
n−1
2

⌋
. Brualdi et al. [Australas.

J. Combin., 53 (2012), pp. 245–256] extended the definition to cyclic matching
sequencibility of a graph G, denoted cms(G), which allows cyclical orderings and
proved that cms(Kn) =

⌊
n−2
2

⌋
.

In this paper, we generalise these definitions to require that every s consecu-
tive edges form a subgraph where every vertex has degree at most r > 1, and we
denote the maximum such number for a graph G by msr(G) and cmsr(G) for the
non-cyclic and cyclic cases, respectively. We conjecture that msr(Kn) =

⌊
rn−1
2

⌋
and

⌊
rn−1
2

⌋
− 1 6 cmsr(Kn) 6

⌊
rn−1
2

⌋
and that both bounds are attained for some

r and n. We prove these conjectured identities for the majority of cases, by defin-
ing and characterising selected decompositions of Kn. We also provide bounds on
msr(G) and cmsr(G) as well as results on hypergraph analogues of msr(G) and
cmsr(G).

Keywords: Graph; matching; edge ordering; matching sequencibility; graph de-
composition; hypergraph

1 Introduction

The (maximal) matching sequencibility of a simple graph G, denoted ms(G), is the largest
integer s for which there exists an ordering of the edges of G so that every s consecutive
edges form a matching. Alspach [1] determined ms(Kn), as follows.

Theorem 1 (Alspach [1]). For each integer n > 3,

ms(Kn) =

⌊
n− 1

2

⌋
.
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Brualdi, Kiernan, Meyer and Schroeder [3] considered the cyclic matching sequencibil-
ity cms(G) of a graph G, which is the natural analogue of the matching sequencibility for
G when cyclic orders are allowed. They proved the cyclic analogue of Theorem 1, below.

Theorem 2 (Brualdi et al. [3]). For each integer n > 4,

cms(Kn) =

⌊
n− 2

2

⌋
.

The aim of this paper is to extend Theorem 1 and Theorem 2 by generalising the notion
of matching sequencibility. In particular, for a graph G, msr(G) denotes the analogue of
ms(G) where consecutive edges form a subgraph whose vertices each has degree at most r.
Similarly, cmsr(G) is defined analogously to msr(G) where we allow cyclic orderings of
the edges of G.

Conjecture 3. Let n > 3 and 1 6 r 6 n− 2 be integers. Then

msr(Kn) =

⌊
rn− 1

2

⌋
and

⌊
rn− 1

2

⌋
− 1 6 cmsr(Kn) 6

⌊
rn− 1

2

⌋
.

The main results include the three to follow which verify the conjecture in many cases.
In each result we assume n > 3 and 1 6 r 6 n− 2.

Theorem 4. If n or r is even, or n is odd and either r > n−1
2

or gcd(r, n− 1) = 1, then

msr(Kn) =

⌊
rn− 1

2

⌋
.

Theorem 5. If n is even, or n is odd and r = n−1
2

, then

cmsr(Kn) =

⌊
rn− 1

2

⌋
.

Theorem 6. If n is odd and r is even, then⌊
rn− 1

2

⌋
− 1 6 cmsr(Kn) 6

⌊
rn− 1

2

⌋
.

One might ask which of the above bounds holds for which values of r and n. We
discuss this question at the end of the paper and prove the following theorem which is
the fourth and final of our main results.

Theorem 7. For odd integers r and n,

cmsr(Kn) =

⌊
rn− 1

2

⌋
if and only if cmsn−1−r(Kn) =

⌊
(n− 1− r)n− 1

2

⌋
.
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The paper is organised as follows. In Section 2 we generalise the methods of [1] and
[3], expressed as Propositions 9–11. The propositions allow us to reduce the problem
of determining msr(G) and cmsr(G) to ordering subgraphs of G which are partially r-
sequenceable for a smaller value of r. However, the parities of n and r play a crucial role
in the effectiveness of Propositions 9–11: the case when n is odd is trickier and more so
when r is also odd.

Section 3 defines the Walecki decomposition [1] and other decompositions of Kn. These
are central to the proofs of Theorems 4–6; those are presented in Sections 4–7. Section 8
presents the proof of Theorem 7 and, as part of that proof, we consider sequencibility when
certain general conditions are placed on consecutive edges of orderings of graphs. Section 9
concludes the paper with a discussion on Conjecture 3 and related open problems, and
we provide some recursive bounds on msr(G) and cmsr(G) for general graphs G as well
as for the complete k-graph Kkn; see Proposition 33 and Theorem 35, respectively.

2 Preliminaries

In this paper, graphs will always be simple. A matching of a graph G is a subgraph M
in which each vertex has degree 1. A graph G is (6 r)-regular if each of its vertices has
degree at most r. If every vertex has degree equal to r, then G is r-regular. In particular, a
matching of a graph is a 1-regular subgraph. For an integer n, let [n] := {0, 1, . . . , n− 1},
where [0] = ∅. An ordering or labelling of a graph G = (V,E) is a bijective function
` : E → [|E|]. The image of e under ` is called the label of e. The edges e0, . . . , es−1 are
consecutive in ` if the labels of e0, . . . , es−1 are consecutive integers. For an ordering ` of a
graph G, we let msr(`) denote the largest integer s for which every s consecutive edges of `
form a (6 r)-regular subgraph of G. We define msr(G) to be the maximum value of msr(`)
over all orderings ` of G. In particular, the special case ms1(G), which we also denote as
ms(G), is the same number as presented in the Introduction. The edges e0, . . . , es−1 of a
graph G = (V,E) are cyclically consecutive in ` if the labels of e0, . . . , es−1 are consecutive
integers modulo |E|. We define cmsr(`) and cmsr(G) analogously to msr(`) and msr(G),
respectively, where we allow cyclically consecutive edges. If G is a (6 r)-regular graph,
then, by definition, cmsr(G) = msr(G) = |E(G)|. So for the remainder of the paper,
we only consider the more interesting case in which r is strictly less than the maximum
degree of a vertex of G, denoted by ∆(G).

Lemma 8. Let G be a graph on n vertices with r < ∆(G), then

cmsr(G) 6 msr(G) 6

⌊
rn− 1

2

⌋
.

Proof. If rn is odd, then a (6 r)-regular graph on n vertices can have at most rn−1
2

edges
and so msr(G) 6

⌊
rn−1
2

⌋
. If rn is even, then a (6 r)-regular graph on n vertices can

have at most rn
2

edges. If ` is a labelling of G satisfying msr(`) = rn
2

, then the edges
`−1(0), . . . , `−1( rn−2

2
) form a r-regular graph as do the edges `−1(1), . . . , `−1( rn

2
). This

means the edges `−1(1), . . . , `−1( rn−2
2

), form a graph in which every vertex has degree r
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except two which have degree r − 1. Therefore, `−1(0) = `−1( rn
2

), a contradiction. Thus,
msr(G) 6

⌊
rn−1
2

⌋
. The inequality cmsr(G) 6 msr(G) is trivially true by definition.

For disjoint graphs G0, . . . , Ga−1 on the same vertex set V , with labellings `0, . . . , `a−1
respectively, let `0 ∨ · · · ∨ `a−1 denote the ordering ` of G = (V,

⋃a−1
i=0 E(Gi)) defined by

`(eij) = `j(eij) +
∑j−1

l=0 |E(Gl)| where eij ∈ E(Gj) for all i and j. Let s be an integer and
G and G′ be disjoint graphs on the same vertex set V and each having at least s−1 edges.
Also, let G and G′ have labellings ` and `′, respectively, and let Gs be the subgraph of
(V,E(G) ∪ E(G′)) that consists of the last s− 1 edges of ` and the first s− 1 edges of `′.
Then we will let `∨s `′ denote the ordering of Gs for which the edges of Gs appear in the
same order as they do in ` ∨ `′. Now we define msr(`, `

′) to be the largest integer s such
that ` ∨s `′ has r-matching sequencibility s.

An r-regular decomposition of a graph G is a set of edge-disjoint r-regular subgraphs
of G that partition the edge set of G. A (6 r)-regular graph decomposition and a matching
decomposition are defined analogously.

The main method used to prove Theorems 4–6 is to decompose Kn into regular parts
(regular in the sense that every vertex has the same degree), then order the edges in each
part, and concatenate the parts to obtain an ordering for Kn. The following propositions
will facilitate this, under certain conditions. The propositions are given in more generality
than we will require them, as they may be useful for other matching sequencibility prob-
lems. In each proposition, the subscripts of the orderings `i are taken modulo t: `i+u = `i′
exactly when i′ ≡ i+ u mod t.

Proposition 9. Let G be a graph that decomposes into matchings M0, . . . ,Mt−1, each with
n edges and orderings `0, . . . , `t−1, respectively. Suppose, for some ε ∈ [n] and r < ∆(G),
that ms(`i, `i+r) > n−ε for all i ∈ [t−r]. Then msr(G) > rn−ε, and if ms(`i, `i+r) > n−ε
for all i ∈ [t], then cmsr(G) > rn− ε.

Proposition 10. Let r < ∆(G) be even, set u := r
2
, and let G be a graph that decomposes

into (6 2)-regular graphs R0, . . . , Rt−1, each with n edges, and with orderings `0, . . . , `t−1,
respectively. Suppose, for some non-zero ε ∈

[
dn
2
e
]
, that ms2 (`i, `i+u) > n − ε for all

i ∈ [t − u]. Then msr(G) > rn
2
− ε, and if ms2 (`i, `i+u) > n − ε for all i ∈ [t], then

cmsr(G) > rn
2
− ε.

Proposition 11. Let 3 6 r < ∆(G) be odd, set u := r−1
2

, and let G be a graph that
decomposes into (6 2)-regular graphs R0, . . . , Rt−1, each with n edges, and with orderings
`0, . . . , `t−1, respectively. Suppose, for some non-zero ε ∈

[
dn
2
e
]
, that ms (`i, `i+u+1) >

dn
2
e − ε for all i ∈ [t − u − 1] and ms3 (`i, `i+u) > d3n

2
e − ε for all i ∈ [t − u]. Then

msr(G) > b rn+1
2
c− ε, and if ms (`i, `i+u+1) > dn2 e− ε and ms3 (`i, `i+u) > d3n2 e− ε for all

i ∈ [t], then cmsr(G) > b rn+1
2
c − ε.

For a graph G with ordering `, L`(G) denotes the edges of G listed the same order as `
and say that ` corresponds to L`(G); i.e., if e0, . . . , ek−1 is a list of the edges of G, then
` corresponds to that list if `(ei) = i for all i ∈ [k]. Also, for graphs G0, . . . , Ga−1 with
labellings `0, . . . , `a−1, respectively, L`0(G0) ∨ · · · ∨ L`a−1(Ga−1) denotes the lists of edges
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which the ordering `0∨ · · · ∨ `a−1 corresponds to. The proofs of Proposition 9–11 are very
similar, so we provide the proof of Proposition 11 and leave the details of the other two
to the reader.

Proof of Proposition 11. The cyclic and non-cyclic cases are similar so we only show the
cyclic case. Let ` be the ordering corresponding to L`0(R0) ∨ · · · ∨ L`t−1(Rt−1). Consider
a set E of b rn+1

2
c − ε consecutive edges of `. The edges of E, in order, will always be of

the form

e1, . . . , ej︸ ︷︷ ︸
edges in Ri

, L`i+1
(Ri+1) ∨ · · · ∨ L`i+u+1−a

(Ri+u+1−a) , ej+1, . . . , ean−bn
2
c−ε︸ ︷︷ ︸

edges in Ri+u+2−a

,

for some i ∈ [t], j ∈ [n + 1], and a. Without loss of generality, we can assume that
E ∩ E(Ri) and E ∩ E(Ri+u+2−a) are non-empty and so 0 < j < an− bn

2
c − ε. There are

0 < an− bn
2
c − ε 6 2n edges in E ∩ (E(Ri) ∪ E(Ri+u+2−a)). Therefore, a = 1 or a = 2.

If a = 1, then the first j edges and last dn
2
e− j− ε edges of E are the last j edges of `i

and the first dn
2
e− j − ε edges of `i+u+1, respectively. Thus, the j + dn

2
e− j − ε = dn

2
e− ε

edges of E ∩ (E(Ri)∪E(Ri+u+1)) are consecutive in `i ∨dn
2
e−ε `i+u+1 and, by assumption,

form a matching. The remaining edges of E are from the u = r−1
2

(6 2)-regular graphs
Ri+1, . . . , Ri+u and, hence, the edges of E form a (6 r)-regular graph.

If a = 2, then the first j edges and last d3n
2
e− j− ε edges of E are the last j edges of `i

and the first dn
2
e−j−ε edges of `i+u, respectively. Therefore, the j+d3n

2
e−j−ε = d3n

2
e−ε

edges of E∩ (E(Ri)∪E(Ri+u)) are consecutive in `i∨d 3n
2
e−ε `i+u and, by assumption, form

a (6 3)-regular graph. The remaining edges of E are from the u− 1 = r−3
2

(6 2)-regular
graphs Ri+1, . . . , Ri+u−1, and, thus, the edges of E form a (6 r)-regular graph.

Remark 12. Proposition 11 holds for r = 1 by replacing the assumption ms3 (`i, `i+u) =
ms3 (`i, `i) > d3n2 e − ε with ms(`i) > dn2 e − ε.

Note that Proposition 11 requires two conditions on the orderings `0, . . . , `t−1, namely
ms (`i, `i+u+1) > dn2 e− ε and ms3 (`i, `i+u) > d3n2 e− ε (for the relevant i), whereas Propo-
sition 9 and Proposition 10 require only one condition. This makes Proposition 11 harder
to use and largely explains why Theorems 4–6 cover more cases when r and n are not
both odd. Also, the requirement of two conditions in Propositions 11 may suggest that
the case when r and n are odd is inherently more difficult for Kn (or even any graph of
odd order).

Here and throughout the paper, we will allow orderings to be defined on sets of integers;
that is, a bijection α : A→ [|A|] on a set E of integers will also be considered an ordering.
However, we will only use such orderings for re-indexing. The following auxiliary lemma
guarantees the existence of an ordering of integers with particular useful properties. It
will find repeated use in later sections, so it is given here for easy reference.

Lemma 13. Let t and u be integers with t > u and set d := gcd(u, t). Define ai,j :=(
i (mod t

d
)
)

+ j t
d

(mod t) for all integers i and j. Then there exists an ordering α of [t]
with the property that α(ai+1,j) = α(ai,j) + u (mod t) for all i ∈

[
t
d

]
and j ∈ [d].
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Proof. We check that the function α : [t] → [t] defined by α(ai,j) = iu + j (mod t) for
i ∈

[
t
d

]
and j ∈ [d] will suffice. First, we will show that α is a bijection. Suppose that

iu+ j ≡ i′u+ j′ (mod t), with i, i′ ∈
[
t
d

]
and j, j′ ∈ [d]. Then (i− i′)u ≡ j′ − j (mod t).

As d divides t and u, any multiple of u modulo t is also a multiple of d. Thus, j − j′ is a
multiple of d, while 0 6 |j− j′| 6 d− 1. This is only possible if j = j′ and so (i− i′)u ≡ 0
(mod t). As 0 6 |i′ − i| 6 t

d
− 1 and lcm(t, u) = tu

d
, we must also have that i = i′. Thus,

α is injective and so bijective; α is thus an ordering of [t]. For any i ∈
[
t
d

]
and j ∈ [d],

α(ai+1,j) = (i+ 1)u+ j (mod t) = iu+ j + u (mod t) = α(ai,j) + u (mod t) .

Hence, α has the required properties.

The function α in the proof can be used to show a non-cyclic version of the lemma:

Lemma 14. Let t > u. Then there exists an ordering α of [t] with the property that, if
α(a) 6 t− u− 1, then α(a+ 1) = α(a) + u.

Example 15. Let t = 10 and u = 4; then d = gcd(4, 10) = 2. The following table
summarises the function α that is produced by Lemma 13.

x 0 1 2 3 4 5 6 7 8 9
α(x) 0 4 8 2 6 1 5 9 3 7

3 Decompositions of the complete graph Kn

To prove Theorems 4–6, we will require matching decompositions of Kn when n is even
and 2-regular decompositions of Kn when n is odd, so that we can apply the applicable
proposition from Section 2. Here we present the required decompositions.

3.1 Decompositions of Kn for even n

Let n = 2m, r ∈ [2m − 1] − {0}, c | 2m − 1 and d = 2m−1
c

. Let Vc,d = {v∞} ∪
{vi,j : i ∈ [c], j ∈ [d]} be the vertex set of K2m. We set vi,j := vi′,j′ , whenever i′ = i
(mod c) and j′ = j (mod d). The following sets (with the singleton excluded) are given
in [6]. For an integer x and odd integer y, let Px,y =

{
{x+ l, x− l} : l ∈ [y+1

2
]
}

, where
the elements of the members of Px,y are taken modulo y. We also note the following useful
fact.

Remark 16. Each family Px,y forms a partition of [y] into pairs and a singleton, and the
set {Px,y : x ∈ [y]} partitions the pairs and singletons of [y].

For i ∈ [c] and j ∈ [d], let Mi,j be the matching of K2m with edge set{
{v∞, vi,j}

}
∪
{
{va1,b1 , va2,b2} : {a1, a2} ∈ Pi,c, {b1, b2} ∈ Pj,d and a1 6= i or b1 6= j

}
.

These are indeed matchings, as the edge incident to v∞ in each Mi,j is unique and a
vertex va1,b1 , which is not adjacent to v∞ in Mi,j, is incident to edges {va1,b1 , va2,b2} with
{a1, a2} ∈ Pi,c and {b1, b2} ∈ Pj,d; also by the above remark, the choice for such an a2 and
b2 is unique.
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Example 17. When c = 5 and d = 3, M0,0 is the following subgraph of K2m.

v1,0

v2,0

v−1,0

v−2,0

v1,1

v2,1

v−1,1

v−2,1

v1,2

v2,2

v−1,2

v−2,2

v0,0

v0,1

v0,2

v∞

Lemma 18. The set {Mi,j : i ∈ [c], j ∈ [d]} is a matching decomposition of Kn.

Proof. Clearly, Mi,j is the unique matching containing the edge {v∞, vi,j}. For a1, a2 ∈ [c]
and b1, b2 ∈ [d], with a1 6= a2 or b1 6= b2, the edge {va1,b1 , va2,b2} is in the matching Mi,j,
for some i ∈ [c] and j ∈ [d] if {a1, a2} ∈ Pi,c and {b1, b2} ∈ Pj,d. By Remark 16, such i and
j, and therefore Mi,j exist and are uniquely given. Thus, the edge {va1,b1 , va2,b2} occurs
in exactly one matching. Hence, {Mi,j : i ∈ [c], j ∈ [d]} is a matching decomposition
of Kn.

Note that this decomposition is the same for different values of c, just indexed dif-
ferently. Indeed, the bijection τc,d : Vc,d → V2m−1,1 defined by τc,d(v∞) = v∞ and
τc,d(va,b) = vad+b,0 for a ∈ [c] and b ∈ [d] is an isomorphism, showing that the decom-
position for a particular value of c is isomorphic to the decomposition for c = 2m − 1.
Note that the Walecki decomposition (see [1]) decomposes K2m into Hamiltonian cycles
and a complete matching, from which the matching decomposition for c = 2m− 1, given
above, can be easily obtained.

3.2 Decompositions of Kn when n is odd

Let n = 2m + 1. We will present two different decompositions for K2m+1. The first
is the Walecki decomposition [1] mentioned above. Let V = {∞} ∪ Z2m be the vertex
set of K2m+1. Let H0 be the Hamiltonian cycle ∞ , 0 , 1 ,−1 , 2 ,−2 , . . . , x ,−x , . . . ,m−
1,−(m− 1),m, as depicted in Figure 1.
Let σ be the permutation σ = (∞)(0 1 · · · 2m − 2 2m − 1). Let Hi = σi(H0) for
i ∈ [m], where σ acts on the vertices of V . Alspach [1] proved the following lemma, and
we give a similar proof for completeness.

Lemma 19. The set {H0, . . . , Hm−1} is a 2-regular decomposition of K2m+1.
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0
1−1

2

m− 1−(m− 1)

−2

m

∞

Figure 1: The Hamiltonian cycle H0

Proof. As each Hi has 2m+1 edges, we only need to show that the edges of H0, . . . , Hm−1
are disjoint. Clearly the edges {∞, i} and {∞, i + m} are only present in Hi, for all
i ∈ [m]. For the remaining edges, let the length of an edge {i, j} with i, j 6= ∞ be j − i
mod 2m or i− j mod 2m, whichever lies in [m+ 1]− {0}.

We check, for every fixed length l ∈ [m + 1] − {0}, that the edges of length l in
H0, . . . , Hm−1 are distinct. Note that the edges of Hi that are not incident to ∞ are
{i+ x, i− x} for x ∈ [m]−{0}, and {i+ x, i− x+ 1} for x ∈ [m+ 1]−{0}. The edges of
even length l < m in Hi are

{
i+ l

2
, i− l

2

}
and

{
i+m− l

2
, i−m+ l

2

}
, and neither edge

is an edge of Hj for j 6= i. The edges of odd length l < m in Hi are
{
i+ l+1

2
, i− l+1

2
+ 1
}

and
{
i+m− l−1

2
, i−m+ l−1

2
+ 1
}

, and neither edge is an edge of Hj for j 6= i. If m is
even, then the edge of length m in Hi is

{
i+ m

2
, i− m

2

}
, and is only an edge of Hi. If m is

odd, then the edge of length m in Hi is
{
i+ m+1

2
, i− m+1

2
+ 1
}

, and is only an edge of Hi.
Therefore, the edges of every length l ∈ [m+ 1]− {0} in H0, . . . , Hm−1 are distinct.

The 2-regular decomposition {H0, . . . , Hm−1} of K2m+1 has a particular disadvantage
relevant to us. If `0 is an ordering of H0, then the permutation σ induces orderings
`1, . . . , `m−1, `m of H1, . . . , Hm−1, Hm = H0, respectively. However, `m 6= `0. Therefore,
the 2-regular decomposition {H0, . . . , Hm−1} is not ideal for constructing cyclic orderings
in this fashion.

The second decomposition overcomes this problem but does not exist for all n. Recall
that n = 2m + 1 and let m be odd. Let Vm,2 = {v∞} ∪ {vi,j : i ∈ [m], j ∈ [2]} be
the vertex set of K2m+1. For an integer x and an odd integer y, let Px,y be as defined in
Subsection 3.1. Let Ri be the subgraph of K2m+1 with edge set{
{v∞, vi,0}, {v∞, vi,1}, {vi,0, vi,1}

}
∪
{
{va1,b1 , va2,b2} : {a1, a2} ∈ Pi,m, a1 6= i, b1, b2 ∈ [2]

}
.
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Example 20. The following graph depicts R0, R1 and R2 for K7.

Clearly R0, R1 and R2 form a 2-regular decomposition of K7. Now we will show that
the same is true in general.

Lemma 21. For odd m, {R0, . . . , Rm−1} is a 2-regular graph decomposition of K2m+1.

Proof. Clearly, the edges {v∞, vi,0} , {v∞, vi,1} and {vi,0, vi,1} are present only in Ri. The
edge {va1,b1 , va2,b2} with a1 6= a2 is present in Ri for i such that {a1, a2} ∈ Pi,m. By Remark
16, such an i exists and is unique. Thus, every edge is in a unique Ri for i ∈ [m].

4 Proof of Theorems 4 and 5 for when n is even

Write n = 2m and let r ∈ [n − 1] − {0}. Set d := gcd(r, 2m − 1) and c := 2m−1
d

, and as
in Subsection 3.1, define Vc,d to be the vertex set of K2m. Also, let Mi,j be the matchings
defined in Subsection 3.1 for i ∈ [c] and j ∈ [d]. Define `i,j to be the following ordering of
Mi,j:

`i,j({v∞, vi,j}) = 0 ,

`i,j({vi+x,j, vi−x,j}) = x for x ∈
[
c+ 1

2

]
− {0} ,

`i,j({vi+2x,j+y, vi−2x,j−y}) = (y − 1)c+
c+ 1

2
+
(
x+ i

c− 1

2
(mod c)

)
for x ∈ [c], y ∈

[
d+ 1

2

]
− {0} .

Example 22. When c = 5 and d = 3, the matching M0,0 is labelled as in Figure 2.

Note that the matchings Mi,0 are obtained by rotating the above graph but the orderings
`i,0 are not. We will use the following notation. Let V ′j,0 = {v∞} ∪ {vz,j : z ∈ [c]} for j ∈
[d] and let V ′j,y = {vz,j±y : z ∈ [c]} for j ∈ [d] and y ∈

[
d+1
2

]
−{0}. Clearly, V ′j,0, . . . , V

′
j, d−1

2

partition Vc,d for all j ∈ [d]. The crucial component of the proof of Theorems 4 and 5 for
when n is even is the following lemma which allows us to apply Proposition 9.

Lemma 23. For all i ∈ [c] and j ∈ [d], ms(`i,j, `i+1,j) > m− 1.
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Figure 2: The matching M0,0

Proof. Consider a set of m − 1 consecutive edges E in ` = `i,j ∨m−1 `i+1,j. As Mi,j and
Mi+1,j are matchings, two edges incident to a common vertex in E cannot both be from
Mi+1,j or both be from Mi,j. The edges of E are the edges labelled m − l, . . . ,m − 1
by `i,j and the edges labelled 0, . . . ,m − l − 2 by `i+1,j, for some l ∈ [m − 1] − {0}.
Thus, for a vertex v to be incident to two edges in E, v must be incident to e1 in Mi,j

and e2 in Mi+1,j which satisfy `i,j(e1) > m − l and `i+1,j(e2) 6 m − l − 2. Therefore,
`i,j(e1)− `i+1,j(e2) > m− l − (m− l − 2) = 2. Hence, to check that E forms a matching,
it suffices to show, for all vertices v ∈ Vc,d, that if v is incident to e1 in Mi,j and e2 in
Mi+1,j, then `i,j(e1)− `i+1,j(e2) < 2. Let v ∈ V ′j,y for some y ∈ [d+1

2
].

First, suppose that y = 0. If e1 in Mi,j and e2 in Mi+1,j are both incident to ∞, then
`i,j(e1) − `i+1,j(e2) = 0 − 0 = 0 < 2. We therefore only need to check the remaining
vertices in V ′j,0. Let v = vi+x,j for some x ∈ [ c+1

2
]. Then v is incident to the edge labelled

x by `i,j. Let x′ ∈ [ c+1
2

] be the integer such that v is either vi+1+x′,j or vi+1−x′,j. In either
case, v is incident to the edge labelled x′ by `i+1,j. Therefore, it suffices to show that
x−x′ < 2. If v = vi+1+x′,j, then i+x ≡ i+ 1 +x′ (mod c) and so x ≡ x′+ 1 (mod c). As
x, x′ ∈ [ c+1

2
], it follows that x = x′ + 1, and so x − x′ = 1 < 2. Otherwise, v = vi+1−x′,j,

implying that i+ x ≡ i+ 1− x′ (mod c), and so x+ x′ ≡ 1 (mod c). As x, x′ ∈ [ c+1
2

], it
follows that {x, x′} = {0, 1}. Therefore, x − x′ is 1 or −1 and in particular less than 2.
The case in which v = vi−x,j for some x ∈ [ c+1

2
] can be treated in a similar fashion and is

left to the reader.
Now suppose that y 6= 0. Let v = vi+2x,j+y for some x ∈ [c]. Let e1 and e2 be the

edges incident to v in Mi,j and Mi+1,j, respectively. Let v = vi+1+2x′,j+y for some x′ ∈ [c].
Then i+ 2x ≡ i+ 1 + 2x′ (mod c). As gcd(2, c) = 1, this reduces to

x′ ≡ x+
c− 1

2
(mod c) . (1)
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We will now check that `i,j(e1)−`i+1,j(e2) < 2. The labels of e1 and e2 are, respectively,

(y−1)c+
c+ 1

2
+
(
x+i

c− 1

2
(mod c)

)
and (y−1)c+

c+ 1

2
+
(
x′+(i+1)

c− 1

2
(mod c)

)
.

By (1), the difference between these two labels is(
x+ i

c− 1

2
(mod c)

)
−
(
x+ i

c− 1

2
+ (1 + 1)

c− 1

2
(mod c)

)
.

The right term is c−1 more than the left term before taking modulo c. So the difference is
either 1 or −(c−1) and in particular less than 2. Hence, `i,j(e1)− `i+1,j(e2) < 2. The case
in which v = vi−2x,j−y is similar and therefore omitted. Thus, E forms a matching.

Proof of Theorems 4 and 5 when n is even. Theorem 4 when n is even follows from The-
orem 5 when n is even, so we only prove the latter. Let α and ai,j be as defined in Lemma
13 for u = r and t = 2m−1. Let M ′

α(ai,j)
= Mi,j and `α(ai,j) = `i,j for all i ∈ [c] and j ∈ [d].

If x = α(ai,j), then, by Lemmas 13 and 23, ms(`x, `x+r) = ms(`i,j, `i+1,j) > m− 1 (where
x+ r in `x+r is taken modulo 2m− 1). Thus, Proposition 9 yields cmsr(K2m) > rm− 1,
using the matchings M ′

0, . . . ,M
′
2m−1 ordered by `′0, . . . , `

′
2m−1, respectively. The reverse

inequality, cmsr(K2m) 6 rm− 1, follows from Lemma 8. This completes the proof.

5 Proof of Theorem 4 for when n is odd and gcd(r, n − 1) = 1

Let n = 2m + 1 and r ∈ [2m] − {0} be an integer such that gcd(r, 2m) = 1. Also, let
V2m be the vertex set of K2m+1, and Hi be the Hamiltonian cycles from Subsection 3.2
for i ∈ [m]. Let `i be the ordering of Hi defined as follows:

`i({∞, i}) = 0 ,

`i({∞, i+m}) = m,

`i({i+ rx, i− rx}) = x for non-zero x ∈ [m] ,

`i

({
i+ rx+

r + 1

2
, i− rx− r − 1

2

})
= m+ x+ 1 for x ∈ [m] .

This is indeed valid as the edge {i+a, i−a} has label ar−1 (mod m) for a ∈ [m]−{0}
and the edge {i+a, i−a+1} has the label m+1+

(
r−1
(
a− r+1

2

)
(mod m)

)
for a ∈ [m].

Also, it is clear that the first m edges of `i form a matching as do the last m edges of `i.

Example 24. When n = 11 and r = 3, the Hamiltonian cycle H0 is labelled as in
Figure 3.

Lemma 25. Let r be odd and set u := r−1
2

. Then ms3(`i, `i+u) > 3m+1 for all i ∈ [m−u]
and ms(`i, `i+u+1) > m for all i ∈ [m− u− 1].

Proof. First, we will show that if i ∈ [m − u], then ms3(`i, `i+u) > 3m + 1. Let ` =
`i ∨3m+1 `i+u and consider a set E of 3m+ 1 consecutive edges in `. A vertex has degree
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Figure 3: The Hamiltonian cycle H0

greater than 3 in E, only if it has degree two in both E ∩ E(Hi) and E ∩ E(Hj). In
particular, the result follows immediately if there are m or fewer edges in either E∩E(Hi)
or E ∩ E (Hi+u), as the first m edges of `a form a matching as do the last m edges of `a
for all a ∈ [m]. So, suppose that there are 2m − l edges in E ∩ E(Hi) and so m + 1 + l
edges in E ∩ E (Hi+u) for some l ∈ [m]. Let W1 be the vertices of degree at most 1 in
E ∩ E(Hi) and W2 be the vertices of degree 2 in E ∩ E(Hi+u). To show that E forms a
(6 3)-regular graph, it suffices to check that W2 ⊆ W1.

The first m edges of `i+u form a matching in which i + u + m is the only isolated
vertex. Therefore, the vertices W2 are those incident to edges with labels between m and
m + l, excluding i + u + m. In particular, W2 = {∞} ∪ {i + r−1

2
+ rx + r+1

2
, i + r−1

2
−

rx − r−1
2

: x ∈ [l]}, where [0] = ∅. So W2 = {∞} ∪ {i + r(x + 1), i − rx : x ∈ [l]} =
{∞} ∪ ({i+ rx, i− rx : x ∈ [l + 1]} − {i− rl}), by re-indexing. Similarly, the vertices
in W1 are those incident to an edge in E(Hi)−E; these edges are labelled between 0 and
l by `i. Thus, W1 = {∞}∪ {i+ rx′, i− rx′ : x′ ∈ [l+ 1]}. Comparing W1 and W2 shows
that W2 ⊆ W1.

Finally, we will show that if i ∈ [m−u−1], thenms(`i, `i+u+1) > m. Let ` = `i∨m`i+u+1

and consider a set E of m consecutive edges in `. Suppose that there are m − l edges
in E ∩ E(Hi), and so l edges in E ∩ E(Hi+u+1) for some non-zero l ∈ [m]. The first m
edges of `a form a matching as do the last m edges of `a for a ∈ [m]. Thus, E does not
form a matching only if a vertex is incident to an edge in E ∩ E (Hi) and an edge in
E ∩ E(Hi+u+1). Let W0 be the vertices incident to no edges in E ∩ E (Hi) and W1 be
the vertices incident to an edge in E ∩E(Hi+u+1). To prove that E forms a matching, it
suffices to show that W1 ⊆ W0.

The last m edges of `i form a matching in which ∞ is the only vertex not incident to
an edge. Thus, the members of W0 are the vertices incident to an edge with a label in
between m+ 1 and m+ l, along with∞. Hence, W0 = {∞}∪{i+ rx+ r+1

2
, i− rx− r−1

2
:
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x ∈ [l]}. The members of W1 are the vertices incident to one of the first l edges of
`i+u+1, so W1 = {∞, i + r+1

2
} ∪ {i + rx + r+1

2
, i − rx + r+1

2
: x ∈ [l] − {0}}. Therefore,

W1 = {∞} ∪
(
{i+ rx+ r+1

2
, i− rx− r−1

2
: x ∈ [l]} − {i− r(l − 1)− r−1

2
}
)
⊆ W0. This

completes the proof.

Proof of Theorem 4 when n is odd and gcd(r, n− 1) = 1. By Lemma 25 and Proposition
11, using H0, . . . , Hm−1 with labellings `0, . . . , `m−1, respectively, we have that msr(Kn) >
rn−1
2

. The reverse inequality follows from Lemma 8.

6 Proof of Theorem 6 and the remaining cases of Theorem 4

Let n = 2m+ 1, r ∈ [2m]−{0} and let V2m and Hi be as defined in Section 3.2. Also, let
`i be the labelling of Hi defined as follows:

`i({∞, i}) = 0 ,

`i({∞, i+m}) = m,

`i({i+ x, i− x}) = x for x ∈ [m]− {0} ,
`i({i+ x, i− x+ 1}) = m+ x for x ∈ [m+ 1]− {0} .

Example 26. When n = 11, the Hamiltonian cycle H0 is labelled as follows:

5

0

6
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7
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−3 3

−4 4
5

∞

0

The other Hi’s and their labellings are obtained by rotating the above graph. There-
fore, `i is just the labelling that takes alternating edges of the Hamilton cycle Hi starting
from {∞, i}. Thus, it is clear that ms(`i) = m for i ∈ [m].

6.1 Proof of Theorem 4 for when n is odd and r is even

We will require the following lemma to apply Proposition 10.

Lemma 27. For distinct i, j ∈ [m], ms2(`i, `j) > 2m+ 1− |j − i|.
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Proof. Let s = 2m+ 1− |j− i| and consider a set E of s consecutive edges of ` = `i ∨s `j.
As ms(`a) > m for all a ∈ [m], the last m edges of `i form a matching as do the first m
edges of `j. Thus, if both E ∩ E(Hi) and E ∩ E(Hj) contain fewer than m + 1 edges,
then E ∩ E(Hi) and E ∩ E(Hj) both form matchings. Hence, no vertex would have
degree greater than 2 in E. So, consider a set of s consecutive edges E in ` where either
E ∩ E(Hi) or E ∩ E(Hj) contains at least m + 1 edges. Let a ∈ {i, j} be the integer for
which |E ∩ E(Ha)| > m + 1. Let W2 be the vertices of degree 2 in E ∩ E(Ha) and W1

be the vertices of degree 1 in E ∩ E(Ha′), where a′ ∈ {i, j} and a′ 6= a. As ms(`a′) > m,
E∩E(Ha′) forms a matching. Thus, there exists a vertex incident to more than two edges
in E only if W1 ∩W2 6= ∅. Hence, to show that E forms a (6 2)-regular graph, it suffices
to prove that W1 ∩W2 = ∅.

If a = i, then E ∩E(Hi) has s− l edges and E ∩E(Hj) has l edges for some non-zero
l ∈ [s −m]. The last m edges of `i form a matching in which ∞ is the only vertex not
incident to an edge. Therefore, the vertices in W2 are the vertices incident to an edge
labelled x by `i such that l + |j − i| 6 x 6 m, excluding ∞. In particular, W2 contains
i+m and i+ x and i− x for l+ |j − i| 6 x 6 m− 1. The vertices in W1 are the vertices
incident to any of the first l edges of `j; hence, W1 contains ∞, j, and j + x′ and j − x′
for x′ ∈ [l]− {0}. Then W2 and W1 can be expressed (modulo 2m) as

W2 = {i+ l + |j − i|, . . . , i+ (m− 1), i+m, i− (m− 1), . . . , i− l − |j − i|}
and W1 = {∞, j − l + 1, . . . , j − 1, j, j + 1, . . . , j + l − 1} .

As i − |j − i| < j + 1 and i + |j − i| > j − 1, W1 ∩W2 = ∅. The case in which a = j is
similar and we omit the details. Thus, the s consecutive edges of E form a (6 2)-regular
graph.

Proof of Theorem 4 when n is odd and r is even. Let α satisfy the properties in Lemma
14 with u = r

2
and t = m. Let H ′α(i) = Hi and `′α(i) = `i for all i ∈ [m]. If x =

α(i) ∈ [m − u], then ms2(`
′
x, `
′
x+u) = ms2(`i, `i+1) > 2m, by Lemmas 14 and 27. Thus,

applying Proposition 10 to H ′0, . . . , H
′
m−1 with orderings `′0, . . . , `

′
m−1, respectively, yields

the inequality msr(Kn) > rn
2
− 1. The reverse inequality, msr(Kn) 6 rn

2
− 1, follows from

Lemma 8.

6.2 Proof of Theorem 4 for when n and r are odd and r > n−1
2

We will require the following two lemmas.

Lemma 28. For a fixed t
2
6 u 6 t− 1 there exists an ordering αu of [t] such that

(1) αu(i+ u) = αu(i)− 1 for all i ∈ [t− u];

(2) αu(i+ u+ 1) = αu(i) + 1 for all i ∈ [t− u− 1].

Proof. We show that the ordering αu : [t]→ [t], defined delow, will suffice:

αu(i) :=


2i+ 1 if 0 6 i 6 t− u− 1

i+ (t− u) if t− u 6 i 6 u− 1

2(i− u) if u 6 i 6 t− 1 .

the electronic journal of combinatorics 25(1) (2018), #P1.6 14



It is easy to check that αu is injective and thus bijective; αu is thus an ordering of [t].
For each integer i ∈ [t − u], αu(i + u) = 2(i + u − u) = 2i = αu(i) − 1. Similarly for
i ∈ [t− u− 1], αu(i+ u+ 1) = 2(i+ u+ 1− u) = 2i+ 2 = αu(i) + 1.

Lemma 29. If i < j, then ms(`i, `j) > m+ 1− (j− i) and ms3(`i, `j) > 3m+ 1− (j− i).
If i > j, ms(`i, `j) > m− (i− j) and ms3(`i, `j) > 3m+ 2− (i− j).

Proof. Let ` = `i ∨s `j, where s is yet to be specified. First, let s = 3m + 2 − |j − i| − ε
where ε = 0 if i > j and ε = 1 otherwise. We want to show that ms3(`) > s. Consider
a set of s consecutive edges E of `. For each a ∈ [m], the first m edges of `a form a
matching, as do the last m edges of `a, since ms(`a) > m. Thus, if either E ∩ E(Hi) or
E ∩ E(Hj) contain fewer than m + 1 edges, then the degree of a vertex cannot be more
than 3 in E. So, it suffices to assume that |E ∩E(Hi)| > m+ 1 and |E ∩E(Hj)| > m+ 1.
Suppose that there are s− (m+ l) edges in E ∩E(Hi), and so m+ l edges in E ∩E(Hj)
for some non-zero l ∈ [s− 2m].

Let Wa be the vertices incident to two edges in E ∩ E(Ha) for a = i, j. To show that
E forms a (6 3)-regular graph, it suffices to prove that Wi ∩Wj = ∅, as Hi and Hj are
2-regular. The last m edges of `i form a matching that covers every vertex except ∞.
Therefore, Wi contains the vertices that are incident to one of the edges with labels
between |j − i|+ l + ε− 1 and m, apart from ∞. Thus, the vertices in Wi are i+m and
i + x and i − x for |j − i| + l + ε − 1 6 x 6 m − 1. Similarly, the first m edges of `j
form a matching that covers all vertices except j + m. Hence, Wj contains the vertices
that are incident to one of the edges with labels between m and m+ l− 1, except j +m.
Therefore, the vertices in Wj are∞ and j+x′ and j−x′+ 1 for x ∈ [l]−{0}. So Wi∩Wj

is clearly empty when l = 1. In the remaining cases, we can then express Wi and Wj as
follows modulo 2m:

Wi = {i+ |j − i|+ l + ε− 1, . . . , i+ (m− 1), i+m,

i− (m− 1), . . . , i− |j − i| − l − ε+ 1}

=

{
{2i− j + l − 1, 2i− j + l, . . . , j − l + 1} if i > j

{j + l, j + l + 1, . . . , 2i− j − l} if i < j

and Wj = {∞, j − l + 2, . . . , j − 1, j, j + 1, . . . , j + l − 1} .

We see that Wi∩Wj = ∅. Thus, the s consecutive edges of E form a (6 3)-regular graph.
Now set ` := `i ∨s `j with s = m + 1 − |j − i| − ε where ε = 0 if i < j and ε = 1

otherwise. We want to show that ms(`) > s. Consider a set of s consecutive edges E of `.
Suppose that there are s − l edges in E ∩ E(Hi) and so l edges in E ∩ E(Hj) for some
non-zero l ∈ [s]. Let Wa be the vertices incident to an edge in E ∩ E(Ha) for a = i, j.
As ms(`b) > m for all b ∈ [m], the last m edges of `i form a matching as do the first m
edges of `j. In particular, E ∩ E(Hi) and E ∩ E(Hj) are matchings. Thus, to show that
E forms a matching, it suffices to prove that Wi∩Wj = ∅. The vertices in Wi and Wj are
the vertices incident to one of the last s− l edges of `i and one of the first l edges of `j,
respectively. Hence, the vertices in Wi are i+ x and i− x+ 1 for l+ |j − i|+ ε 6 x 6 m,
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while the vertices in Wj are ∞, j, and j + x′ and j − x′ for x′ ∈ [l] − {0}. We can then
express Wi and Wj as follows modulo 2m:

Wi = {i+ l + |j − i|+ ε, . . . , i+ (m− 1), i+m,

i−m+ 1, . . . , i− |j − i| − ε− l + 1}

=

{
{j + l, j + l + 1, . . . , 2i− j − l + 1} if i < j

{2i− j + l + 1, 2i− j + l + 2, . . . , j − l} if i > j

and Wj = {∞, j − l + 1, . . . , j − 1, j, j + 1, . . . , j + l − 1} .

We see that Wi ∩Wj = ∅. Thus, the s consecutive edges in E form a matching.

Proof of Theorem 4 for when n and r are odd and r > n−1
2

. Theorem 5 implies the result
for r = n−1

2
. So, suppose that r > n+1

2
. Let αu be a labelling with the properties

given in Lemma 28 for u = r−1
2

and t = m = n−1
2

. Set H ′i := Hαu(i) and `′i := `αu(i)

for each i ∈ [m]. By Lemma 28, `′i+u = `αu(i+u) = `αu(i)−1 for each i ∈ [m − u] and
`′i+u+1 = `αu(i+u+1) = `αu(i)+1 for each i ∈ [m − u − 1]. Thus, ms3(`

′
i, `
′
i+u) > 3m + 1 for

each i ∈ [m− u] and ms(`′i, `
′
i+u+1) > m for each i ∈ [m− u− 1], by Lemma 29. Hence,

msr(Kn) >
⌊
rn−1
2

⌋
follows from Proposition 11, using the decomposition H ′0, . . . , H

′
m−1 of

Kn with orderings `′0, . . . , `
′
m−1, respectively. Lemma 8 implies that msr(Kn) 6

⌊
rn−1
2

⌋
,

completing the proof.

6.3 Proof of Theorem 6

To prove Theorem 6, we will need the following ordering of the integers in {l, l+ 1 . . . , l+
t− 1}. An ordering α : A→ [|A|] corresponds to a list a0, a1 . . . , ak−1 of the integers of A
if α(ai) = i for all i. Let t ∈ [m+ 1]−{0} and l ∈ [m− t+ 1], and let αl,t be the ordering
corresponding to

l, l + 2, . . . , l + t− 2, l + t− 1, l + t− 3, . . . , l + 1 if t is even

and l, l + 2, . . . , l + t− 1, l + t− 2, l + t− 4, . . . , l + 1 if t is odd .

Proof of Theorem 6. Set d := gcd( r
2
,m) and c := m

d
. Let α and ai,j be defined as in

Lemma 13 with u = r
2

and t = m. Let H ′α(ai,j) := Hα−1
jc,c(i)

and `′α(ai,j) := `α−1
jc,c(i)

for

all i ∈ [c] and j ∈ [d]. This is indeed well-defined, as α is a bijection of [m] and αjc,c
are bijections of the disjoint sets {jc, jc + 1, . . . , jc + c − 1} for j ∈ [d]. By Lemma 13,
α(ai+1,j) = α(ai,j) + u (mod m) for all i ∈ [c] and j ∈ [d]. By definition, it is clear
that |α−1l,t (i + 1) − α−1l,t (i)| 6 2 for all i ∈ [t] where i + 1 is reduced modulo t. Thus for
x = α(ai,j), Lemma 27 implies that

ms2(`
′
x, `
′
x+u) = ms2

(
`′α(ai,j), `

′
α(ai+1,j)

)
= ms2

(
`α−1

jc,c(i)
, `α−1

jc,c(i+1)

)
> 2m− 1 .

By applying Proposition 10 to H ′0, . . . , H
′
m−1 with orderings `′0, . . . , `

′
m−1, respectively, we

see that cmsr(Kn) > rn
2
− 2 =

⌊
rn−1
2

⌋
− 1. By Lemma 8, cmsr(Kn) 6

⌊
rn−1
2

⌋
.
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7 Proof of Theorem 5 for when r = n−1
2

We will first prove the case when r is even.

Proof of Theorem 5 when r = n−1
2

for even r. Let Hi be the Hamiltonian cycle defined in
Subsection 3.2. Also, let `i be the ordering of Hi defined in Section 6. Let α and ai,j be
as defined in Lemma 13 for u = r

2
and t = m. Let H ′α(ai,j) := Hai,j and `′α(ai,j) := `ai,j for

i ∈ [2] and j ∈ [ r
2
] = [m

2
]. As gcd(r,m) = m

2
, it follows that t

u
= 2. Thus, |ai+1,j−ai,j| = 1

for all i, j. Lemmas 13 and 27 therefore imply that, for x = α(ai,j),

ms2(`
′
x, `
′
x+u) = ms2

(
`′α(ai,j), `

′
α(ai+1,j)

)
= ms2

(
`ai,j , `ai+1,j

)
> 2m

for all i, j. By applying Proposition 10 to H ′0, . . . , H
′
m−1 ordered by `′0, . . . , `

′
m−1, respec-

tively, we see that msr(Kn) >
⌊
rn−1
2

⌋
. The reverse inequality follows from Lemma 8,

completing the proof.

Now let r = m be odd and let Ri be the 2-regular graph defined in Section 3.2 for
i ∈ [m]. Let `i be the ordering of Ri defined as follows:

`i({v∞, vi,0}) = 0 ,

`i({v∞, vi,1}) = m,

`i({vi+2x,x, vi−2x,x}) = x for x ∈ [m]− {0} ,
`i({vi+2x−1,x, vi−(2x−1),x+1}) = m+ x for x ∈ [m+ 1]− {0} .

Example 30. When n = 7, R0 is ordered as

0

3

1

2

5

46

v∞

v0,0

v1,0v−1,0

v0,1

v1,1v−1,1

For each i, set Ri := Ri′ and `i := `i′ where i′ ≡ i (mod m). It is easy to check that
`i is indeed a valid ordering of Ri and that the first m edges of `i form a matching as do
the last m edges of `i.

Lemma 31. For all i, ms3(`i, `i+1) > 3m+ 1 and ms(`i, `i−1) > m.
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Proof. First, we will show that ms3(`i, `i+1) > 3m + 1 for all i. Set ` := `i ∨3m+1 `i+1

and consider a set of 3m + 1 consecutive edges E of `. A vertex v has degree more than
3 in E only if v has degree two in both E ∩ E(Ri) and E ∩ E(Ri+1). The first m edges
of `j form a matching as do the last m edges of `j for all j. Therefore, if there are m or
fewer edges in either E ∩E(Ri) or E ∩E(Ri+1), then E forms a (6 3)-regular graph. So,
suppose that there are 2m+ 1− l edges in E ∩E(Ri) and so m+ l edges in E ∩E(Ri+1)
for some non-zero l ∈ [m+ 1]. Let W2 be the vertices of degree 2 in E ∩E(Ri+1) and W1

be the vertices of degree at most 1 in E ∩ E(Ri). To show that E forms a (6 3)-regular
graph, it suffices to show that W2 ⊆ W1.

As Ri is 2-regular and the first m edges of `i form a matching, W1 contains the vertices
incident to one of the first l edges of `i. Thus, W1 = {v∞}∪{v,i+2x,x, vi−2x,x : x ∈ [l]}. The
first m edges of `i+1 form a matching which covers every vertex except vi,1. Therefore,
W2 the vertices incident to an edge with label between m and m + l − 1, excluding
vi,1: W2 = {v∞}∪

{
vi+1+2x′−1,x′ , vi+1−(2x′−1),x′+1 : x′ ∈ [l]− {0}

}
. By simplifying and re-

indexing, we see that W2 = {v∞} ∪
(
{vi+2x′,x′ , vi−2x′,x′ : x′ ∈ [l]} − {vi−2(l−1),l−1}

)
⊆ W1.

Therefore, E forms a (6 3)-regular graph and ms3(`i, `i+1) > 3m+ 1.
Finally, we show that ms(`i, `i−1) > m for all i. Set ` := `i ∨m `i−1 and consider a set

of m consecutive edges E of `. Suppose that there are m− l edges in E ∩E(Ri) and thus
l edges in E ∩ E(Ri−1) for some non-zero l ∈ [m]. Let W1 be the vertices incident to an
edge in E ∩ E(Ri−1) and W0 be the vertices not incident to any edge in E ∩ E(Ri). The
last m edges of `i form a matching as do the first m edges of `i−1. Thus, a vertex v is
incident to 2 or more edges of E only if v ∈ W1 and v is incident to an edge in E ∩E(Ri).
Therefore, it suffices to show that W1 ⊆ W0.

The last m edges of `i form a matching in which v∞ is the only isolated vertex.
Therefore, W0 contains the vertex v∞ along with the vertices incident to an edge with label
betweenm+1 andm+l; that is, W0 = {v∞}∪

{
vi+2x−1,x, vi−(2x−1),x+1 : x ∈ [l + 1]− {0}

}
.

By re-indexing, we see that W0 ={v∞, vi−1,0, vi−1+2l,l}∪{vi−1+2x,x, vi−1−2x,x : x∈ [l]− {0}}.
Now, W1 contains the vertices that are incident to one of the first l edges of `i−1. In other
words, W1 = {v∞, vi−1,0}∪{vi−1+2x′,x′ , vi−1−2x′,x′ : x′ ∈ [l]− {0}} ⊆ W0. Hence, E forms
a matching and ms(`i, `i−1) > m, as required.

Proof of Theorem 5 when r = n−1
2

for odd r. Set u := r−1
2

= m−1
2

and let β : [m]→ [m]
be the function defined by β(i) := iu−1 (mod m) for all i ∈ [m]. The function β is clearly
a bijection. Set R′x := Rβ(x) and `′x := `β(x) for x ∈ [m]. For any i, β(i+u) ≡ (i+u)u−1 ≡
β(i) + 1 (mod m). Also, as u−1 ≡ −2 (mod m), we see that

β(i+ u+ 1) ≡ −2(i+ u+ 1) ≡ −2i− 2u− 2 ≡ −2i− 1 ≡ β(i)− 1 (mod m) .

Lemma 31 thus implies that, for any x ∈ [m], ms(`′x, `
′
x+u+1) = ms(`β(x), `β(x)−1) > m and

ms3(`
′
x, `
′
x+u) = ms(`β(x), `β(x)+1) > 3m+ 1. By applying Proposition 11 to R′0, . . . , R

′
m−1

ordered by `′0, . . . , `
′
m−1, respectively, we see that cmsr(Kn) >

⌊
rn−1
2

⌋
. By Lemma 8,

cmsr(Kn) 6
⌊
rn−1
2

⌋
, and the result follows.
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8 General conditions and the proof of Theorem 7

In the process of proving Theorem 7, we develop some notions of sequencibility where an
arbitrary condition is placed on the subgraphs formed by consecutive edges. We express
such a condition by letting C be an arbitrary family of graphs on a fixed set of vertices V
with some fixed vertex labelling.

A ordering ` of some graph is cyclically (s, C)-sequenceable if all s cyclically consecutive
edges in ` form a graph in C. A graph G is cyclically (s, C)-sequenceable if there exists
a cyclically (s, C)-sequenceable ordering ` of G. Note that s is not maximised here: for
an arbitrary set of conditions C, maximising s may be trivial or otherwise not of interest.
For a graph G = (V,E), let

C{G := {(V,E(C)∆E(G)) : C ∈ C} ,

where E(C)∆E(G) is the symmetric difference of E(C) and E(G).

Lemma 32. Let C be a set of conditions on vertex-labelled graphs; let G be a graph, and
let s be an integer. Then for an ordering ` of G, ` is cyclically (s, C)-sequenceable if and
only if ` is cyclically (|E(G)| − s, C{G)-sequenceable.

Proof. Let k = |E(G)| and let ` be an ordering of G which is cyclically (s, C)-sequenceable.
Also, let ei be the edge of G labelled i by `. Consider a set of (k−s)-cyclically consecutive
edges E in `, namely ej, ej+1, . . . , ej+k−s−1 for some j ∈ [k], where the subscripts are taken
modulo k. The edges of G not in E are ej+k−s, ej+k−s+1, . . . , ej−1, and they are in this
order in `. By assumption, the s edges of E(G)−E form a graph in C. Thus, the (k− s)-
cyclically consecutive edges ej, ej+1, . . . , ej+k−s−1 must form a member of C{G . Hence, ` is
cyclically (k− s, C{G)-sequenceable. If ` is cyclically (|E(G)| − s, C{G)-sequenceable, then
it follows, from the above argument and the identities (C{G){G = C and k − (k − s) = s,
that ` is cyclically (s, C)-sequenceable.

Proof of Theorem 7. Let sa =
⌊
an−1

2

⌋
for each a ∈ [n − 1]. Also, let Cr be the set of all

vertex-labelled (6 r)-regular graphs on n vertices. Suppose that cmsr(`) = sr and, in
particular, suppose that ` is cyclically (sr, Cr)-sequenceable for some ordering ofKn. Then,

by Lemma 32, ` is
(n(n−1)

2
− sr, C

{Kn
r

)
-sequenceable. Set s′ := n(n−1)

2
− sr = sn−1−r + 1.

Then C{Kn
r is the family of all vertex-labelled subgraphs of Kn whose vertices each have

degree at least n − 1 − r. The minimum number of edges in a member of C{Kn
r is s′.

Also, any member of C{Kn
r with s′ edges must be a graph in which each vertex has degree

n− 1− r except one vertex which has degree n− r.
Consider s′ + 1 cyclically consecutive edges e0, . . . , es′ in `. Since ` is (s′, C{Kn

r )-
sequenceable, the edges of each of E0 := {e0, . . . , es′−1} and E1 := {e1, . . . , es′} form

a member of C{Kn
r . Also as s′ < n(n−1)

2
, e0 6= es′ . I claim that this ensures that the edges

E ′ := {e1, . . . , es′−1} form a (6 n − 1 − r)-regular graph. Assume otherwise; then some
vertex v is incident to at least n − r of the edges in E ′. Let v0 and v1 be the endpoints
of e0. The edges of E0 must form a graph in CCKn

r , i.e., a graph whose vertices each has
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degree n−1−r except one which has degree n−r. As v is incident to at least n−r of the
edges in E ′ ⊆ E0, v must be incident to exactly n− r of the edges in E0. In particular, v
must be distinct from v0 and v1. So, v0 and v1 are each incident to n− 1− r of the edges
in E0. However, this means that v0 and v1 are each incident to n− 2− r of the edges in
E ′. Thus, either v0 or v1 is incident to only n − 2 − r of the edges in E1, since es′ 6= e0.

Therefore, the graph formed by the edges of E1 is not in C{Kn
r , a contradiction.

Any set E ′ of s′ − 1 = sn−1−r cyclically consecutive edges in ` is a consecutive sub-
sequence of some s′ + 1 cyclically consecutive edges in ` of the form e0 ∨ L`(E ′) ∨ es′ .
Thus, by the above argument, every vertex must have degree at most n − 1 − r in
E ′. Hence, cms(`) > sn−1−r and, therefore, cmsn−1−r(Kn) > sn−1−r. By Lemma 8,
cmsn−1−r(Kn) = sn−1−r. The reverse direction, namely that cmsn−1−r(Kn) = sn−1−r
implies cmsr(Kn) = sr, follows by applying the above argument with r replaced by
n− 1− r.

Note that a similar result to Lemma 32 could be can proved for non-cyclic sequences.
However, the notion of sequencibility would have to be generalised to allow partially
cyclical sequences. A result analogous to Theorem 7 follows from a similar proof, but
there is not an equivalence between msr(Kn) = rn−1

2
and msn−1−r(Kn) = (n−1−r)n−1

2
for

odd r and n.

9 Concluding remarks

When r is even and n is odd, we expect that cmsr(Kn) =
⌊
rn−1
2

⌋
. Theorem 5 confirms this

for even r = n−1
2

. By computer search, we were able to find the following two orderings
for K7 that show that cms2(K7) = 6 =

⌊
2n−1

2

⌋
and cms4(K7) = 13 =

⌊
4n−1

2

⌋
, respectively.

The orderings are represented by the sequence of edges that has corresponding ordering
value sequence 0, . . . , 20.

{∞, 0}, {1, 2}, {3,−2}, {3,−1}, {1,−1}, {∞,−2}, {0, 2},
{0, 1}, {2, 3}, {∞,−1}, {−2,−1}, {1, 3}, {∞, 2}, {0,−2},
{0, 3}, {∞, 1}, {2,−1}, {1,−2}, {∞, 3}, {0,−1}, {2,−2} ;

{∞, 0}, {∞, 1}, {0, 2}, {1, 3}, {2,−2}, {0,−1}, {−1,−2},
{∞, 3}, {1, 2}, {∞,−2}, {0, 3}, {1,−1}, {2, 3}, {0,−2},
{∞,−1}, {0, 1}, {∞, 2}, {3,−2}, {2,−1}, {1,−2}, {3,−1} .

We also found an ordering for K9, showing that cms2(K9) = 8 =
⌊
2n−1

2

⌋
, as given below.

{∞, 0}, {∞, 1}, {0, 2}, {1, 3}, {2, 4}, {3,−3}, {4,−2}, {−1,−3}, {∞,−2}
{0, 1}, {∞, 2}, {1,−1}, {2, 3}, {0,−3}, {3, 4}, {−3,−2}, {∞, 4}, {0,−1},
{1,−2}, {2,−1}, {∞, 3}, {2,−3}, {0, 4}, {1,−3}, {3,−2}, {4,−1}, {0,−2},
{∞,−1}, {1, 2}, {∞,−3}, {0, 3}, {1, 4}, {2,−2}, {3,−1}, {4,−3}, {−1,−2} .
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When r and n are both odd, Theorem 5 implies that cmsr(Kn) =
⌊
rn−1
2

⌋
for r = n−1

2
. If

there are other cases for which cmsr(Kn) =
⌊
rn−1
2

⌋
with r and n odd, then, by Theorem 7,

the condition for which cms(Kn) =
⌊
rn−1
2

⌋
holds must be invariant under replacing r with

n− 1− r.

Proposition 33. For a graph G and integers r1, r2,

msr1r2(G) > r2msr1(G) and cmsr1r2(G) > r2 cmsr1(G) .

Note that this proposition and Theorems 1 and 2 together imply that msr(Kn) > rn−1
2

and cmsr(Kn) > rn−3
2

, respectively, when n is odd.

Proof. Let s = cmsr1(G) and let ` be a labelling of G for which cmsr1(`) = cmsr1(G).
Any set of r2s cyclically consecutive edges E of ` are just r2 sets of s cyclically consecutive
edges of ` and in each set, every vertex has degree at most r1. Thus, every vertex has
degree at most r1r2 in E and, hence, cmsr1r2(G) > cmsr1r2(`) > r2s. The non-cyclic case
is similar.

A hypergraph is a pair (V,E) where V is a set and E is a family of subsets of V . A
k-graph is a hypergraph (V,E) for which each member e ∈ E has cardinality |e| = k.
For instance, each graph is a 2-graph. The notion of matching sequencibility naturally
extends to hypergraphs, as do Proposition 33 and the propositions of Section 2, using
analogous proofs. For example the natural hypergraph analogue of Proposition 9 is as
follows.

Proposition 34. Let H be a hypergraph that decomposes into matchings M0, . . . ,Mt−1,
each with n edges and orderings `0, . . . , `t−1, respectively. Suppose, for some ε ∈ [n] and
r < ∆(H), that ms(`i, `i+r) > n − ε for all i ∈ [t − r]. Then msr(H) > rn − ε, and if
ms(`i, `i+r) > n− ε for all i ∈ [t], then cmsr(H) > rn− ε.

The natural analogue of Kn for k-graphs is the complete k-graph on n vertices, denoted
Kkn, whose edges are all the vertex subsets of size k. Katona [4] proved that cms(Kkn) >
b n
k2
c for sufficiently large n, under the assumption that a particular conjecture holds.

Katona [4] also conjectured that cms(Kkn) > bn
k
c − 1. By similar reasoning to Lemma 8,

msr(G) 6
⌊
rn−1
k

⌋
for any k-graph G, which is not a (6 r)-regular k-graph. This leads us

to conjecture that msr(Kkn) =
⌊
rn−1
k

⌋
and

⌊
rn−1
k

⌋
− 1 6 cmsr(Kkn) 6

⌊
rn−1
k

⌋
for all r, n,

and k, and to expect that cmsr(Kkn) can attain both bounds.
We prove a result similar to Katona’s, Theorem 35 below, for the special case in

which k | n.

Theorem 35. Let k | n, a be the largest integer such that n
k
− (a− 1)k > 0 and b be the

largest integer such that n
k
− (b− 1)(k + 1) > 0. Then, for r < ∆(Kkn),

msr(Kkn) > (r − 1)
n

k
+ a and cmsr(Kkn) > (r − 1)

n

k
+ b .
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To prove this theorem, we use Baranyai’s Theorem [2] which states that if k | n, then
Kkn has a complete matching decomposition. Note that in such a decomposition, each
matching has size n

k
.

Proof of Theorem 35. By Baranyai’s Theorem, there is a matching decomposition of Kkn,
say, M0, . . . ,MN−1 where N = k

n

(
n
k

)
. Set d := gcd(r,N) and c := N

d
, and arbitrarily

re-index the matching decomposition as Mi,j for i ∈ [c] and j ∈ [d]. We construct
orderings `i,j of Mi,j for i ∈ [c] and j ∈ [d] such that ms(`i,j, `i+1,j) > b for all i ∈ [c].
Choose an arbitrary ordering `0,j of M0,j. Suppose, by induction on i for a fixed j, that
`0,j, . . . , `i,j have been constructed, that the first l edges of `i+1,j are e0, . . . , el−1, and that
any b consecutive edges of L`i,j(Mi,j), e0, . . . , el−1 form a matching. Let e′0, . . . , e

′
b−2 be

the last b − 1 edges of `i,j. If l 6 b − 2, then there are at least n
k
− (b − l − 1)k − l > 0

edges in Mi+1,j − {e0, . . . , el−1} which do not share a common vertex with any of the
edges e′l, . . . , e

′
b−2. Thus, we can choose an edge el in Mi+1,j − {e0, . . . , el−1} such that

e′l, . . . , e
′
b−2, e0, . . . , el−1, el forms a matching and let `i+1,j(el) = l. If l > b− 2, then for an

arbitrary edge el in Mi+,j − {e0, . . . , el−1}, let `i+1,j(el) = l. Now let e0, . . . , eb−2 be the
last b− 1 edges of `0,j. We are free to permute the ordering `0,j and maintain the identity
ms(`0,j, `1,j) > b so long as the labels of e0, . . . , eb−2 remain unchanged. Therefore, we
can apply a similar argument to the above to permute `0,j in such a way that ensures
that ms(`c−1,j, `0,j) > b, since n

k
− (b − 1) − (b − l − 1)k − l > 0 for all l ∈ [b − 1].

Set M′
α(ai,j)

:= Mi,j and `′α(ai,j) := `i,j where α and ai,j are defined as in Lemma 13 for
u = r and t = N . Proposition 34 and Lemma 13 yields the second inequality using the
matchings M′

0, . . . ,M′
N−1 ordered by `′0, . . . , `

′
N−1, respectively. The non-cyclic case is

similar and, therefore, omitted.

Kühn and Osthus [5] offer an alternate decomposition of Kkn than those given by
Baranyai’s Theorem, into Berge cycles which broadly generalise cycles in graphs. Their
decomposition would however not be likely to be useful for proving a matching sequenci-
bility result.
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