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Abstract

Given a finite poset P , we associate a simple graph denoted by GP with all
connected order ideals of P as vertices, and two vertices are adjacent if and only if
they have nonempty intersection and are incomparable with respect to set inclusion.
We establish a bijection between the set of maximum independent sets of GP and the
set of P -forests, introduced by Féray and Reiner in their study of the fundamental
generating function FP (x) associated with P -partitions. Based on this bijection,
in the cases when P is naturally labeled we show that FP (x) can factorise, such
that each factor is a summation of rational functions determined by maximum
independent sets of a connected component of GP . This approach enables us to
give an alternative proof for Féray and Reiner’s nice formula of FP (x) for the case
of P being a naturally labeled forest with duplications. Another consequence of our
result is a product formula to compute the number of linear extensions of P .

Keywords: P -partition; P -forest; linear extension; connected order ideal; maxi-
mum independent set

1 Introduction

Throughout this paper, we shall assume that P is a poset on {1, 2, . . . , n}. We use 6P to
denote the order relation on P to distinguish from the natural order 6 on integers. We
say that P is naturally labeled if i < j whenever i <P j. A P -partition is a map f from
P to the set N of nonnegative integers such that

(1) if i <P j, then f(i) > f(j);

(2) if i <P j and i > j, then f(i) > f(j).

∗This work was supported by the PCSIRT Project of the Ministry of Education and the National
Science Foundation of China.
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For more information on P -partitions, we refer the reader to the book [9] of Stanley or
the recent survey paper [5] of Gessel. Let A (P ) denote the set of P -partitions. The
fundamental generating function FP (x) associated with P -partitions is defined as

FP (x) =
∑

f∈A (P )

xf =
∑

f∈A (P )

x
f(1)
1 x

f(2)
2 · · ·xf(n)

n .

One of the most important problems in the theory of P -partitions is to determine explicit
expressions for FP (x). The main objective of this paper is to show that for any naturally
labeled finite poset P , the generating function FP (x) can factorise.

Let us first review some background. The first explicit expression for FP (x) was given
by Stanley [8]. Recall that a linear extension of P is a permutation w = w1w2 · · ·wn on
{1, 2, . . . , n} such that i < j whenever wi <P wj. Let L(P ) be the set of linear extensions
of P . For a permutation w, write

Des(w) = {i | 1 6 i 6 n− 1, wi > wi+1}

for the descent set of w. Stanley [8] showed that

FP (x) =
∑

w∈L(P )

∏
i∈Des(w) xw1xw2 · · ·xwi∏n

j=1

(
1− xw1xw2 · · ·xwj

) . (1)

Boussicault, Féray, Lascoux and Reiner [2] obtained a similar formula for FP (x) when
P is a forest, namely, every element of P is covered by at most one other element. We
say that j is the parent of i, if i is covered by j in P . Björner and Wachs [1] defined the
descent set of a forest P as

Des(P ) = {i | if j is the parent of i, then i > j} . (2)

Thus, if i ∈ Des(P ), then there exists a node j ∈ P such that i <P j but i > j. In
particular, when a forest P is naturally labeled, the descent set Des(P ) is empty. For a
forest P , Boussicault, Féray, Lascoux, and Reiner’s formula is stated as

FP (x) =

∏
i∈Des(P )

∏
k6P i xk∏n

j=1

(
1−

∏
`6P j x`

) . (3)

Furthermore, Féray and Reiner [4] obtained a nice formula for FP (x) when P is a
naturally labeled forest with duplications, whose definition is given below. Recall that an
order ideal of P is a subset J such that if i ∈ J and j 6P i, then j ∈ J . Throughout
the rest of this paper, we will use J to represent an order ideal of P . An order ideal J
is connected if the Hasse diagram of J is a connected graph. A poset P is called a forest
with duplications if for any connected order ideal Ja of P , there exists at most one other
connected order ideal Jb such that Ja and Jb intersect nontrivially, namely,

Ja ∩ Jb 6= ∅, Ja 6⊂ Jb and Jb 6⊂ Ja.
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We would like to point out that a naturally labeled forest must be a naturally labeled forest
with duplications, while the Hasse diagram of a naturally labeled forest with duplications
needs not to be a forest. Let Jconn(P ) be the set of connected order ideals of P . For a
naturally labeled forest with duplications, Féray and Reiner [4] proved that

FP (x) =

∏
{Ja,Jb}∈Π(P )

(
1−

∏
i∈Ja xi

∏
j∈Jb xj

)
∏

J∈Jconn(P )

(
1−

∏
k∈J xk

) , (4)

where Π(P ) consists of all pairs {Ja, Jb} of connected order ideals that intersect nontriv-
ially. Note that when P is a naturally labeled forest (with no duplication), both Des(P )
and Π(P ) are empty, and each connected order ideal J of P must equal to {` | ` 6P j}
for some j ∈ {1, 2, . . . , n} and vice versa, and hence formula (4) coincides with formula
(3) in this special case.

For any poset P , Féray and Reiner [4] introduced the notion of P -forests and obtained
a decomposition of the set L(P ) in terms of linear extensions of P -forests. Recall that a
P -forest F is a forest on {1, 2, . . . , n} such that for any node i, the subtree rooted at i
is a connected order ideal of P , and that for any two incomparable nodes i and j in the
poset F , the union of the subtrees rooted at i and j is a disconnected order ideal of P .
Let F (P ) stand for the set of P -forests. For example, for the poset P in Figure 1 there
are three P -forests F1, F2 and F3.
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1

4

6

F1

2
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Figure 1: A poset P and the corresponding P -forests.

Féray and Reiner [4] showed that

L(P ) =
⊎

F∈F (P )

L(F ), (5)

which was implied in [4, Proposition 11.7]. As was remarked by Féray and Reiner, the
decomposition in (5) also appeared in the work of Postnikov [6] and Posnikov, Reiner and
Williams [7]. Combining (1), (3) and (5), one readily sees that

FP (x) =
∑

F∈F (P )

∏
i∈Des(F )

∏
k6F i xk∏n

j=1

(
1−

∏
`6F j x`

) . (6)
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Note that both (1) and (6) are summation formulas for FP (x). However, the expression
of FP (x) factored nicely for certain posets, as shown in (3) and (4). Thus it is desirable to
ask that for more general posets P whether FP (x) can factorise. In this paper, we show
that FP (x) can factorise for any naturally labeled poset P .

Before stating our result, let us first introduce some definitions and notations. In the
following we always assume that P is a poset on {1, 2, . . . , n}. For any graph G, we use
V (G) to denote the set of vertices of G. We associate to P a simple graph denoted by
GP with the set Jconn(P ) of connected order ideals of P as V (GP ), and two vertices are
adjacent if they intersect nontrivially. For example, if P is the poset given in Figure 1,
then GP is as illustrated in Figure 2, where we use ΛP

i = {k | k 6P i} to denote the
principal order ideal of P generated by i, and adopt the notation ΛP

i,j = ΛP
i ∪ ΛP

j .
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Figure 2: Connected order ideals of P and the graph GP .

The first result of this paper is a bijection between the set of P -forests and the set of
maximum independent sets of GP . Recall that an independent set of a graph is a subset
of vertices such that no two vertices of the subset are adjacent. A maximum independent
set of a graph is an independent set that of largest possible size. For any graph G, we
use M (G) to denote the set of maximum independent sets of G. We have the following
result.

Theorem 1. There exists a bijection between the set F (P ) of P -forests and the set
M (GP ) of maximum independent sets of GP .

The proof of this result will be given in Section 2, where we establish a bijection Φ
from F (P ) to M (GP ). Let Ψ be the inverse map of Φ. In view of the fact that Ψ(M) is
a forest, for a maximum independent set M of GP , we can define the descent set Des(M)
of M as the descent set Des(Ψ(M)), namely,

Des(M) = Des(Ψ(M)), (7)
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where Des(Ψ(M)) is given by (2). Suppose the graph GP has h connected components,
say C1, C2, . . . , Ch. As usual, we use V (Cr) to denote the vertex set of Cr for 1 6 r 6 h,
respectively. It is clear that each maximum independent set of GP is a disjoint union of
maximum independent sets of GP ’s connected components. Let M (Cr) denote the set of
maximum independent sets of Cr for each 1 6 r 6 h, respectively. Given a Mr ∈M (Cr),
we shall further define a descent set for Mr as illustrated below. Let M be a maximum
independent set of GP such that M ∩ V (Cr) = Mr. For any J ∈M , let

µ(M,J) =
⋃

J ′∈M, J ′⊂J

J ′. (8)

Define Des(Mr,M) and Des(Mr,M) as

Des(Mr,M) =
{
i ∈ Des(M) | {i} = J \ µ(M,J) for some J ∈Mr

}
,

Des(Mr,M) =
{
J ∈Mr | J \ µ(M,J) = {i} for some i ∈ Des(Mr,M)

}
.

It is remarkable that Des(Mr,M) and Des(Mr,M) are irrelevant to the choice of M when
the poset P is naturally labeled. Precisely, we have the following result.

Theorem 2. Suppose that P is a naturally labeled poset and GP has connected components
C1, C2, . . . , Ch. Let Mr be a maximum independent set of Cr for some 1 6 r 6 h. Then for
any two maximum independent sets M1,M2 of GP satisfying M1∩V (Cr) = M2∩V (Cr) =
Mr, we have

Des(Mr,M
1) = Des(Mr,M

2), (9)

Des(Mr,M
1) = Des(Mr,M

2).

Therefore, for a naturally labeled poset P and a given Mr ∈M (Cr), we can introduce
the notation of Des(Mr) and Des(Mr), which are respectively defined by

Des(Mr) = Des(Mr,M), (10)

Des(Mr) = Des(Mr,M),

where M is some maximum independent set of GP such that M ∩ V (Cr) = Mr.
The main result of this paper is as follows.

Theorem 3. If P is a naturally labeled poset, and the graph GP has h connected compo-
nents C1, C2,. . . ,Ch. Then we have

FP (x) =
h∏

r=1

∑
Mr∈M (Cr)

∏
J∈Des(Mr)

∏
k∈J xk∏

J∈Mr
(1−

∏
j∈J xj)

. (11)

This paper is organized as follows. In Section 2, we shall give a proof of Theorem
1. In Section 3, we shall prove Theorems 2 and 3. Based on Theorem 3, we provide an
alternative proof for Féray and Reiner’s formula (4). In Section 4, Theorem 3 will be used
to derive the generating function of major index of linear extensions of P , as well as to
count the number of linear extensions of P .
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2 The bijection Φ between F (P ) and M (GP )

The aim of this section is to give a proof of Theorem 1. To this end, we shall establish a
bijection Φ from F (P ) to M (GP ) as mentioned before.

To give a description of the map Φ, we first note some properties of F (P ) and M (GP ).
Given M ∈M (GP ) and J ∈M , let

U(M,J) = {J ′ ∈M | J ′ ⊂ J}, (12)

Umax(M,J) =
{
Ja ∈ U(M,J) | Ja 6⊂ Jb for any Jb ∈ U(M,J)

}
.

Recall that the set µ(M,J) is defined in (8), which is also an order ideal of P . Thus

µ(M,J) =
⋃

J ′∈U(M,J)

J ′ =
⋃

J ′∈Umax(M,J)

J ′. (13)

The following assertion will be used in the future proofs.

Lemma 4. For any M ∈ M (GP ) and J ∈ M , the intersection of any two elements of
Umax(M,J) is empty.

Proof. Let J1, J2 ∈ Umax(M,J). Because Umax(M,J) ⊂ M and M is an independent set
of GP , it follows that J1 and J2 are not adjacent in GP . Recall that for any two vertices
J1, J2 ∈ Jconn(P ) of GP , J1 and J2 are not adjacent in GP if and only if

J1 ∩ J2 = ∅, or J1 ⊂ J2, or J2 ⊂ J1.

On the other hand, by the definition of Umax(M,J), there is neither J1 ⊂ J2 nor J2 ⊂ J1.
Hence Ja ∩ Jb = ∅.

Given a P -forest F ∈ F (P ), let ΛF
i = {j | j 6F i} denote the principal order ideal

of F generated by i. By definition of P -forest, each ΛF
i is a connected order ideal of P ,

although ΛF
i is not necessarily a principal order ideal of P . Then by the definition of GP ,

each ΛF
i is a vertex of GP . Moreover, we have the following result.

Lemma 5. For any P -forest F ∈ F (P ), the principal order ideals ΛF
1 ,Λ

F
2 , . . . ,Λ

F
n form

a maximum independent set of GP .

Proof. We first show that {ΛF
1 ,Λ

F
2 , . . . ,Λ

F
n } is an independent set of GP , that is, for any

two nodes i, j of F , the principal order ideals ΛF
i and ΛF

j are not adjacent in GP . There
are two cases to consider.

(1) The vertices i and j are incomparable in F . Since F is a forest, it is clear that
ΛF

i ∩ ΛF
j = ∅. This implies that ΛF

i and ΛF
j are not adjacent in GP .

(2) The vertices i and j are comparable in F . If i <F j, then ΛF
i ⊂ ΛF

j ; If j <F i, then
ΛF

j ⊂ ΛF
i . In both circumstances, ΛF

i and ΛF
j are not adjacent in GP .
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We proceed to show that the independent set {ΛF
1 ,Λ

F
2 , . . . ,Λ

F
n } is of the largest possible

size. To this end, it is enough to verify that |M | 6 n for any independent set M of GP .
Assume that M = {J1, J2, . . . , Jk} is an independent set of GP , which means that Ji is
a connected order ideal of P , and Ji, Jj are not adjacent in GP for any 1 6 i < j 6 k.
We further assume that the subscript satisfies r < s whenever Jr ⊂ Js. In fact, this can
be achieved as follows. Consider M as a poset ordered by set inclusion. Then choose a
subscript such that J1J2 · · · Jk is a linear extension of M . Such a subscript satisfies the
condition that r < s whenever Jr ⊂ Js.

For 1 6 s 6 k, let

Is =
⋃

16r6s

Jr.

It is clear that Is−1 ⊆ Is for any 1 < s 6 k. We claim that

∅ 6= I1 ⊂ I2 ⊂ · · · ⊂ Ik ⊆ {1, 2, . . . , n}, (14)

which implies that |M | = k 6 n.
Suppose to the contrary that Is = Is−1 for some 1 < s 6 k. Thus,

Js ⊆ Is = Is−1 =
⋃

16r6s−1

Jr. (15)

The set U(M,Js) is defined as

U(M,Js) = {J ′ | J ′ ∈M,J ⊂ Js} = {Jr | 1 6 r 6 s− 1, Jr ⊂ Js}.

Clearly,

µ(M,Js) =
⋃

J ′∈U(M,Js)

J ′ ⊆ Js. (16)

Notice that for any 1 6 r 6 s − 1, if Jr does not belong to U(M,Js), then Jr ∩ Js = ∅,
since otherwise Jr and Js intersect nontrivially, contradicting the assumption that M is
an independent set of GP . In view of relation (15), we have

Js ⊆
⋃

J ′∈U(M,Js)

J ′ = µ(M,Js),

which together with (13) and (16), leads to

Js = µ(M,Js) =
⋃

J ′∈Umax(M,Js)

J ′.

If Umax(M,Js) has only one element, say, Umax(M,Js) = {Jr} for some 1 6 r 6 s − 1,
then Js = Jr, which is contrary to Jr ⊂ Js. Next we may assume that Umax(M,Js) has
more than one element. By Lemma 4, the intersection of any two elements of Umax(M,Js)
is empty. Thus Js is the union of some (at least two) nonintersecting connected order
ideals, which can not be connected. This contradicts the fact that Js is a connected order
ideal. It follows that Is−1 ⊂ Is for each 1 < s 6 k, as desired.
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By the above lemma, we can define a map Φ : F (P ) −→M (GP ) by letting

Φ(F ) = {ΛF
1 ,Λ

F
2 , . . . ,Λ

F
n }

for any F ∈ F (P ). In order to show that Φ is a bijection, we shall construct the inverse
map of Φ, denoted by Ψ. To give a description of Ψ, we need the following lemma.

Lemma 6. Given M ∈M (GP ) and J ∈M , there exists a unique j such that

J \ µ(M,J) = {j}, (17)

where µ(M,J) is given in (8). Moreover, j is a maximal element of J with respect to the
order 6P , and

Jr \ µ(M,Jr) 6= Js \ µ(M,Js) (18)

for any distinct Jr, Js ∈M .

Proof. By Lemma 5, we see that each maximum independent set of GP should contain
n vertices. Suppose that M = {J1, J2, . . . , Jn}. As in the proof of Lemma 5, we may
assume that

r < s whenever Jr ⊂ Js. (19)

For 1 6 s 6 n, let

Is =
⋃

16r6s

Jr.

By (14), we see that

∅ 6= I1 ⊂ I2 ⊂ · · · ⊂ In ⊆ {1, 2, . . . , n}. (20)

Therefore, if setting I0 = ∅, we obtain that for 1 6 s 6 n,

|Is \ Is−1| = 1. (21)

Let J = Js for some 1 6 s 6 n. In view of (8) and (19), we get that

µ(M,Js) =
⋃

J ′∈M, J ′⊂Js

J ′ =
⋃

16r6s−1,Jr⊂Js

Jr ⊆ Is−1.

Thus we have
J \ µ(M,J) = Js \ µ(M,Js) = Js \ Is−1 = Is \ Is−1, (22)

where the second equality follows from the fact that for any 1 6 r 6 s− 1, either Jr ⊂ Js
or Jr ∩ Js = ∅. In view of (21) and (22), we arrive at (17) and (18).

It remains to show that the unique element j of Js \µ(M,Js) is a maximal element of
Js with respect to the order 6P . Suppose that j is not a maximal element of Js. Then
there exists a maximal element i of Js such that j <P i. By (17) and j 6= i, we see that
i ∈ µ(M,Js). Therefore, there exists some J ′ ⊂ Js of and J ′ ∈ M such that i ∈ J ′.
Since J ′ is an order ideal of P , we get j ∈ J ′ ⊆ µ(M,Js), contradicting with the fact
j 6∈ µ(M,Js).
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For any M ∈M (GP ), it follows from (17) and (18) that

{1, 2, . . . , n} =
⊎
J∈M

J \ µ(M,J).

Let FM be the poset on {1, 2, . . . , n} such that i <FM
j if and only if Ja ⊂ Jb, where Ja and

Jb are the two connected order ideals in M satisfies Ja\µ(M,Ja) = {i}, Jb\µ(M,Jb) = {j}.
The following result show an important property for principal order ideals of the poset
FM .

Lemma 7. Given M ∈ M (GP ), let FM be the poset defined as above. Then for any
1 6 j 6 n we have ΛFM

j = {i | i 6FM
j} = J , where J ∈ M satisfying J \ µ(M,J) = {j}

as in Lemma 6.

Proof. We use the principle of Noetherian induction.
If j is a minimal element of FM with respect to the order 6FM

, then J is also a
minimal element of M when M is regarded as a poset ordered by set inclusion. Hence
ΛFM

j = {j} and there exists no J ′ ∈M such that J ′ ⊂ J , which yields that µ(M,J) = ∅.
So J = {j} ∪ µ(M,J) = {j}, and then ΛFM

j = J .
Suppose that j is not a minimal element of FM (with respect to the order 6FM

) and
ΛFM

i = J ′ holds for any i <FM
j, where J ′ \ µ(M,J ′) = {i}. The construction of FM tells

us that i <FM
j if and only if J ′ ⊂ J . Since ΛFM

i ⊂ ΛFM
j holds for each i <FM

j, we have

ΛFM
j = {i | i 6FM

j} = {j} ∪

 ⋃
i<FM

j

ΛFM
i

 .

Then by the induction hypothesis, we get that

ΛFM
j = {j} ∪

( ⋃
J ′∈M, J ′⊂J

J ′

)
= {j} ∪ µ(M,J) = J.

We proceed to examine more structure of FM , and obtain the following result.

Lemma 8. For any M ∈M (GP ), the poset FM is a P -forest.

Proof. We first show that FM is a forest. Suppose otherwise that FM is not a forest. Then
there exists an element i in FM such that i is covered by at least two elements of FM , say
j, k. Thus j and k must be incomparable with respect to the order 6FM

. (Recall that in
a poset P , we say that an element u is covered by an element v if u <P v and there is no
element w such that u <P w <P v.) By Lemma 6, there exist Ja, Jb, Jc ∈ M such that
Ja \ µ(M,Ja) = {i}, Jb \ µ(M,Jb) = {j} and Jc \ µ(M,Jc) = {k}. By the construction of
FM , we see that Ja ⊂ Jb, Ja ⊂ Jc and Jb, Jc are incomparable in M with respect to the
set inclusion order. Hence, Jb 6⊂ Jc, Jc 6⊂ Jb and (Jb ∩ Jc) ⊇ Ja 6= ∅. This implies that
Jb and Jc are adjacent in the graph GP , contradicting the fact that M is an independent
set.
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We proceed to show that FM is a P -forest. By Lemma 7, for each element i of FM ,
the subtree ΛFM

i = {j | j 6FM
i} of FM rooted at i is a connected order ideal of P .

To verify that FM is a P -forest, we still need to check that for 1 6 i, j 6 n, if i and
j are incomparable in FM , then the union ΛFM

i ∪ ΛFM
j is a disconnected order ideal of

P . By Lemma 6, assume that Ja and Jb are the connected order ideals in M such that
Ja \ µ(M,Ja) = {i} and Jb \ µ(M,Jb) = {j}. By Lemma 7, we have Ja = ΛFM

i and
Jb = ΛFM

j . Since i and j are incomparable in FM , we obtain that Ja 6⊂ Jb and Jb 6⊂ Ja.
On the other hand, Ja and Jb are not adjacent in the graph GP . This allows us to conclude
that Ja ∩ Jb = ∅. Therefore, as an order ideal of P , the union Ja ∪ Jb is disconnected, so
is the union ΛFM

i ∪ ΛFM
j . Hence FM is a P -forest.

With the above lemma, we can define the inverse map of Φ, denoted by Ψ : M (GP )→
F (P ), by letting

Ψ(M) = FM

for any M ∈M (GP ).
Now we are in a position to give a proof of Theorem 1.

Proof of Theorem 1. We first prove that Ψ(Φ(F )) = F for any P -forest F and Φ(Ψ(M)) =
M for any maximum independent set M of GP . The proof of the former statement will
be given below, and the proof of the latter will be omitted here. Given a P -forest F , by
definition, the image of F under the map Φ is Φ(F ) = {ΛF

1 , . . . ,Λ
F
n }, which is a maximum

independent set of GP by Lemma 5. Of course, we have ΛF
i ⊂ ΛF

j if and only if i <F j.
For each 1 6 i 6 n let Ji = ΛF

i and then denote M = {J1, J2, . . . , Jn}. We proceed to
show that Ψ(M) = FM = F . Note that both FM and F are posets on {1, 2, . . . , n}. It
remains to show that i <Fm j if and only if i <F j for any i, j ∈ {1, 2, . . . , n}. Recall that
for 1 6 i 6 n the principal order ideal ΛF

i is the subtree of F rooted at i. Hence

Ji \ µ(M,Ji) = ΛF
i \

(⋃
j<F i

ΛF
j

)
= {i}

holds for each 1 6 i 6 n. By the construction of FM , we know that i <FM
j if and only

if Ji ⊂ Jj. On the other hand, in the given P -forest F , i <F j if and only if ΛF
i ⊂ ΛF

j .
Since Ji = ΛF

i for each 1 6 i 6 n, it follows that i <FM
j if and only if i <F j. Thus

FM = F , as desired.
Because Ψ(Φ(F )) = F for any P -forest F , the map Φ is one-to-one. Moreover,

since the map Ψ is applicable to any maximum independent set M of GP , the quality
Φ(Ψ(M)) = M ensures that Φ is onto. Then Φ is bijective.

We take the poset P in Figure 1 as an example to illustrate Theorem 1 and its proof.
There are there P -forests F1, F2 and F3 as shown in Figure 1. The graph GP , as shown
in Figure 2, has three maximum independent sets:

M1 = {ΛP
3 ,Λ

P
4 ,Λ

P
6 ,Λ

P
1 ,Λ

P
2 ,Λ

P
2,5},

M2 = {ΛP
3 ,Λ

P
4 ,Λ

P
6 ,Λ

P
1 ,Λ

P
1,5,Λ

P
2,5},

M3 = {ΛP
3 ,Λ

P
4 ,Λ

P
6 ,Λ

P
5 ,Λ

P
1,5,Λ

P
2,5}.
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The principal order ideals of F1 is as shown in Figure 3.

5

2

3

1

4

6

F1

ΛF
1 = {1, 3, 4, 6}

ΛF
2 = {1, 2, 3, 4, 6}

ΛF
3 = {3}

ΛF
4 = {4, 6}

ΛF
5 = {1, 2, 3, 4, 5, 6}

ΛF
6 = {6}

Figure 3: The P -forest F1 and its principal order ideals.

By the construction of Φ, we have

Φ(F1) = {ΛF1
1 ,Λ

F1
2 , . . . ,Λ

F1
6 }

=
{
{1, 3, 4, 6}, {1, 2, 3, 4, 6}, {3}, {4, 6}, {1, 2, 3, 4, 5, 6}, {6}

}
,

which coincides with M1. One can also verify that Φ(F2) = M2 and Φ(F3) = M3.
On the other hand, for the maximum independent set M1, if we set J1 = ΛP

1 =
{1, 3, 4, 6}, J2 = ΛP

2 = {1, 2, 3, 4, 6}, J3 = ΛP
3 = {3}, J4 = ΛP

4 = {4, 6}, J5 = ΛP
2,5 =

{1, 2, 3, 4, 5, 6}, J6 = ΛP
6 = {6}, then it is straightforward to verify that Ji\µ(M1, Ji) = {i}

for 1 6 i 6 6. And then, by definition, in the P -forest FM1 there is 2 <FM1 5, 1 <FM1 2,
3 <FM1 1, 4 <FM1 1, 6 <FM1 4. One readily sees that FM1 = F1. Similarly, one can verify
that FM2 = F2 and FM3 = F3.

3 FP (x) for naturally labeled P

The main objective of this section is to prove Theorems 2 and 3. The proofs are based
on some properties of certain subgraphs of GP . Although we require that the poset P
in Theorems 2 and 3 be naturally labeled, these properties of GP are valid for any finite
poset P .

To begin with, let us first introduce some notations. For an order ideal J of P , let
gs(J) denote the set of maximal elements of J with respect to the order 6P , namely,

gs(J) = {i ∈ J | there exists no j ∈ J such that i <P j}.

This set is also called the generating set of J . Clearly, when gs(J) = {i1, i2, . . . , ik}, we
have J = ΛP

i1
∪ΛP

i2
∪ · · ·∪ΛP

ik
. Let χJ be the subgraph of GP induced by the vertex subset

{ΛP
i1
,ΛP

i2
, . . . ,ΛP

ik
}. We have the following assertion.

Lemma 9. For any connected order ideal J of P , the graph χJ is connected.
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Proof. Assume that gs(J) = {i1, i2, . . . , ik}. The proof is immediate if k = 1. In the
following we shall assume that k > 2. Define

Conn(i1) =
{
ir ∈ gs(J) | there is a path in χJ connecting ΛP

i1
and ΛP

ir}.

Note that i1 is always contained in Conn(i1). It is enough to show that Conn(i1) = gs(J).
Otherwise, suppose that Conn(i1) 6= gs(J). Let

I1 =
⋃

j∈Conn(i1)

ΛP
j and I2 =

⋃
j∈gs(J)\Conn(i1)

ΛP
j .

Then both I1 and I2 are nonempty subsets of J satisfying that I1 ∪ I2 = J , and both
I1 and I2 are order ideals of P . Since J is a connected order ideal of P , it follows that
I1 ∩ I2 6= ∅. Thus there exists some u ∈ Conn(i1) and some v ∈ gs(J) \ Conn(i1) such
that ΛP

u ∩ ΛP
v 6= ∅. Since both u and v are maximal elements in the connected order

ideal J , we must have ΛP
u 6⊂ ΛP

v and ΛP
v 6⊂ ΛP

u . This means that ΛP
u and ΛP

v are adjacent,
implying that v ∈ Conn(i1). This leads to a contradiction.

We also need the following lemma.

Lemma 10. Let J be a connected order ideal of P , and let C be any connected subgraph
of GP . Assume that J is not adjacent to any vertex of C. If there exists a vertex Ja of C
such that Ja ⊂ J , then Jb ⊂ J for any vertex Jb of C.

Proof. We first consider the case when Ja and Jb are adjacent. In this case, Jb and Ja
intersect nontrivially, and so we have ∅ 6= (Ja ∩ Jb). On the other hand, since Ja ⊂ J , we
obtain that

∅ 6= (Ja ∩ Jb) ⊂ (J ∩ Jb). (23)

Combining (23) and the hypothesis that the vertices Jb and J are not adjacent, we get
that Jb ⊂ J or J ⊂ Jb. If J ⊂ Jb, then Ja ⊂ J ⊂ Jb, which is impossible because Ja and
Jb intersect nontrivially. Hence we have Jb ⊂ J .

We now consider the case when Ja is not adjacent to Jb. Since C is connected, there
exists a sequence (J0 = Ja, J1, . . . , Jk = Jb) (k > 2) of vertices of C such that Ji is adjacent
to Ji−1 for 1 6 i 6 k. By the above argument, J1 is contained in J . Therefore, by a
simple recursion we get that Jb ⊂ J .

For example, let P be the poset given in Figure 4. The graph GP is illustrated in
Figure 5, where we adopt the notation ΛP

i,j = ΛP
i ∪ ΛP

j and ΛP
i,j,k = ΛP

i ∪ ΛP
j ∪ ΛP

k . The
graph GP has totally 13 connected components, and among them there are four connected
components C1, C2, C3, C4 which have more than one vertex.

• To illustrate the assertion of Lemma 9, for example, let J = ΛP
4,5,6, then we have

gs(J) = {4, 5, 6}. One can verify that the subgraph χJ of GP induced by the vertex
subset {ΛP

4 , ΛP
5 , ΛP

6 } is indeed connected.

the electronic journal of combinatorics 25(1) (2018), #P1.65 12



1 2 3

4 5 6
8

11

7

9

12

13

10

14 15

16 17

Figure 4: A naturally labeled poset P .

ΛP
4,6

ΛP
4,5

ΛP
5,6

ΛP
5

ΛP
6

ΛP
4 ΛP

13,15

ΛP
14

ΛP
15

ΛP
13

ΛP
10

ΛP
10,13

ΛP
9 ΛP

17

ΛP
11

ΛP
12

ΛP
16

ΛP
1 ΛP

2 ΛP
3

ΛP
9,11 ΛP

8 ΛP
7

ΛP
4,5,6

ΛP
14,15

ΛP
11,12

ΛP
16,17

C1 C2 C3 C4

Figure 5: The graph GP associated to the poset P in Figure 4.

• To illustrate the assertion of Lemma 10, for example, we let J = ΛP
10, and let C be

the connected component C1 of GP , then ΛP
5 ⊂ J . In this case we see that J ′ ⊂ ΛP

10

for any J ′ ∈ V (C1).

Now we turn to study a special subgraph of GP , which is induced by the principal
order ideals of P . This graph also plays an important role in our future proofs. Recall that
the set of principal order ideals of P consists of ΛP

1 ,Λ
P
2 , . . . ,Λ

P
n . Let HP be the subgraph

of GP induced by the vertex subset {ΛP
1 ,Λ

P
2 , . . . ,Λ

P
n }. For example, for the poset P and

the graph GP as illustrated in Figures 4 and 5, the graph HP is as shown in Figure 6. It
follows from Lemma 9 that for a given connected order ideal J the induced subgraph χJ
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ΛP
5

ΛP
6

ΛP
4 ΛP

14

ΛP
15

ΛP
13

ΛP
10

ΛP
9 ΛP

17

ΛP
11 ΛP

16

ΛP
1 ΛP

2 ΛP
3

ΛP
12

ΛP
7 ΛP

8

D1 D2 D3 D4 D5 D6 D7 D8 D9

Figure 6: The subgraph HP induced on GP by principal order ideals.

must be a subgraph of certain connected component of HP , where χJ is defined as before
Lemma 9. The graph HP admits the following interesting properties.

Lemma 11. Suppose that HP has connected components D1, D2, . . . , D`. We have the
following two assertions.

(1) Let 1 6 r < s 6 `, and let Ja, Jb be two connected order ideals of P . If χJa is a
subgraph of Dr while χJb is a subgraph of Ds, then Ja and Jb are not adjacent in
GP .

(2) Given a connected order ideal J , suppose that χJ is a subgraph of the connected
component Dr of HP , and hence J ⊆

⋃
ΛP
i ∈V (Dr) ΛP

i . If J 6=
⋃

ΛP
i ∈V (Dr) ΛP

i , then

there exists some ΛP
j ∈ V (Dr) such that J and ΛP

j are adjacent in GP .

Proof. Let us first prove assertion (1). Suppose to the contrary that Ja and Jb are adjacent
in the graph GP . Then Ja ∩ Jb 6= ∅. Since

Ja =
⋃

i∈gs(Ja)

ΛP
i , Jb =

⋃
j∈gs(Jb)

ΛP
j ,

there exist some i ∈ gs(Ja) and j ∈ gs(Jb) such that ΛP
i ∩ ΛP

j 6= ∅. Notice that ΛP
i is

a vertex of the connected component Dr and ΛP
j is a vertex of the connected component

Ds, so ΛP
i and ΛP

j are not adjacent in the graph HP . Since the graph HP is a vertex
induced subgraph of GP , the order ideals ΛP

i and ΛP
j are also not adjacent in the graph

GP , hence they intersect trivially. Because ΛP
i ∩ ΛP

j 6= ∅, we must have ΛP
i ⊂ ΛP

j or
ΛP

j ⊂ ΛP
i . If ΛP

i ⊂ ΛP
j , by Lemmas 9 and 10 we obtain that for any k ∈ gs(Ja), there is

ΛP
k ⊂ ΛP

j . Then,

Ja =
⋃

k∈gs(Ja)

ΛP
k ⊂ ΛP

j ⊆ Jb,

which implies that Ja and Jb are not adjacent in the graph GP . If ΛP
j ⊂ ΛP

i , we can use
a similar argument to deduce that Ja and Jb are not adjacent in the graph GP . In both
cases, we are led to a contradiction.
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We proceed to prove assertion (2). Recall that V (Dr) denotes the set of vertices of
Dr. Assume that gs(J) = {i1, . . . , ik}. Since J ⊆

⋃
ΛP
i ∈V (Dr) ΛP

i but J 6=
⋃

ΛP
i ∈V (Dr) ΛP

i ,

there exists some ΛP
j ∈ V (Dr) such that ΛP

j * J . Let

V1 = {ΛP
i ∈ V (Dr) | ΛP

i ⊆ J},
V2 = {ΛP

j ∈ V (Dr) | ΛP
j * J}.

Clearly, we have V1 ∪ V2 = V (Dr) and V2 6= ∅. Since χJ is a subgraph of Dr, we see
that V1 6= ∅. Because Dr is a connected component of HP , there exist some ΛP

i ∈ V1

and ΛP
j ∈ V2 such that ΛP

i and ΛP
j are adjacent in the graph HP . Since HP is a vertex

induced subgraph of GP , the vertices ΛP
i and ΛP

j are also adjacent in GP , which means
that ΛP

i and ΛP
j intersect nontrivially, namely

ΛP
i ∩ ΛP

j 6= ∅, ΛP
i 6⊂ ΛP

j , and ΛP
j 6⊂ ΛP

i .

In view of that ΛP
i ⊆ J and ΛP

j ∈ V2, we get J 6= ΛP
j and

J ∩ ΛP
j 6= ∅, J 6⊂ ΛP

j , and ΛP
j 6⊂ J.

Hence J is adjacent to ΛP
j , as desired.

With the above lemma, we can further obtain another property of GP .

Lemma 12. Let Cr be a connected component of GP with vertex set V (Cr). Let J be a
connected order ideal with the graph χJ as defined as above. We have the following two
assertions:

(1) Let Jmax
r denote the set

⋃
J ′∈V (Cr) J

′. Then Jmax
r is an isolated vertex of the graph

GP .

(2) If χJ is a subgraph of Cr, and J 6= Jmax
r , then J is a vertex of Cr.

Proof. Let us first prove assertion (1). It is clearly true when |V (Cr)| = 1. Suppose
|V (Cr)| > 2. We first prove that Jmax

r is a connected order ideal. Let V be a set of
connected order ideals and assume V satisfies the condition:

V ⊆ V (Cr) and
⋃

J∈V J is a connected order ideal. (*)

We claim that if V satisfies (*) and is of the largest possible size, then V must be equal
to V (Cr). Otherwise, suppose V ⊂ V (Cr) but V 6= V (Cr). Since Cr is a connected graph
and |V (Cr)| > 2, there exist some Ja ∈ V and Jb ∈ (V (Cr) \ V ) such that Ja and Jb are
adjacent in GP . Hence Ja ∩ Jb 6= ∅, and then (

⋃
J∈V J) ∩ Jb 6= ∅. It follows that the

set V ′ = V ∪ {Jb} also satisfies the condition (*), and |V ′| = |V | + 1, contradicting the
assumption that V is of the largest possible size.

We mow prove that Jmax
r is not adjacent to any other vertex ofGP . For a J ∈ Jconn(P ),

if J ∈ V (Cr), then J ⊂ Jmax
r and so J and Jmax

r are not adjacent in GP . If J /∈ V (Cr),
namely, J is not adjacent to any vertex of Cr, we need to consider three cases:
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(i) There exists some Ja ∈ V (C) such that Ja ⊂ J . Then by Lemma 10 we obtain that
Jb ⊂ J for any other Jb ∈ V (Cr). Hence Jmax

r ⊂ J , and it follows that J and Jmax
r

are not adjacent in GP ;

(ii) There exists some Ja ∈ V (C) such that J ⊂ Ja. Then J ⊂ Jmax
r , and as a conse-

quence, J and Jmax
r are also not adjacent in GP ;

(iii) J ∩ Ja = ∅ for any Ja ∈ V (Cr). Then Jmax
r ∩ J = ∅ and, again, J̃ and J are not

adjacent in GP .

Hence we conclude that Jmax
r is an isolated vertex of the graph GP .

To prove assertion (2), we first analyse some general properties of GP . Suppose the
graph HP has ` connected components D1, D2, . . . , D`. Lemma 9 tells us that for any
connected order ideal J ′, the graph χJ ′ is connected, and that it must be a subgraph of
Dk for some 1 6 k 6 `. For each 1 6 k 6 `, let

J k
conn(P ) = {J ∈ Jconn(P ) | the graph χJ is a subgraph of Dk}.

In particular, if J ′ = ΛP
i ∈ V (Dk) is a principal order ideal, then the graph χJ ′ has only

one vertex ΛP
i , thus χJ ′ is of course a subgraph of Dk. It follows that V (Dk) ⊆ J k

conn(P )
for each 1 6 k 6 `. It is clear that

Jconn(P ) = J 1
conn(P ) ] J 2

conn(P ) ] · · · ] J `
conn(P ).

For each 1 6 k 6 `, let Ck be the connected component of GP such that Dk is a subgraph
of Ck (it turns out that for each Dk, there exists a unique Ck such that Dk is a subgraph
of Ck). We proceed to show that V (Ck) ⊆ J k

conn(P ). Note that if Ja ∈ J s
conn(P ) and

Jb ∈ J t
conn(P ) for some s 6= t, the first assertion of Lemma 11 tells us that Ja and Jb

are not adjacent in GP . Thus, by the connectivity of Ck in GP , all members of V (Ck)
must belong to J k

conn(P ) since we already have V (Dk) ⊆ J k
conn(P ). And then, we get

that V (Dk) ⊆ V (Ck) ⊆ J k
conn(P ). That is to say, for any J ′ ∈ V (Ck), the graph χJ ′ is

a subgraph of Dk. Therefore, J ′ ⊆
⋃

ΛP
i ∈V (Dk) ΛP

i for any J ′ ∈ V (Ck). This leads to the
following equality:

Jmax
k =

⋃
J ′∈V (Ck)

J ′ =
⋃

ΛP
i ∈V (Dk)

ΛP
i . (24)

For the given J , we assume that χJ is a subgraph of the connected component Dr of
HP for some 1 6 r 6 `, and then Dr is a subgraph of Cr. Thus in view of (24), when
J 6= Jmax

r , it follows that J 6=
⋃

ΛP
i ∈V (Dr) ΛP

i . By the second assertion of Lemma 11, in
the graph GP we see that J is adjacent to some vertex of Dr, therefore, J is also a vertex
of Cr.

We are almost ready for the proof of Theorem 2. Note that the definition of Des(M)
(M ∈ M (GP )) is indirect, which uses the map Ψ from M (GP ) to F (P ). In order to
make the proof of Theorem 2 more clear, we shall give another characterization of Des(M)
which only uses the information of M . Before doing this, we shall introduce one more
notation. Given Ja, Jb ∈ M , we say that Ja ≺M Jb if Ja ⊂ Jb and there exists no J ∈ M
such that Ja ⊂ J ⊂ Jb. Our new characterization of Des(M) is as follows.
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Lemma 13. Given M ∈M (GP ), then i ∈ Des(M) if and only if there exists j < i such
that Ja ≺M Jb, where Ja, Jb ∈ M are connected order ideals uniquely determined by i, j
respectively as in Lemma 7.

Proof. By definition, i ∈ Des(M) = Des(FM) if and only if the parent of i, say j, is
greater than i with respect to the natural order on integers. Recall that if j is the parent
of i, then i <FM

j and there exists no k such that i <FM
k <FM

i. It follows from Lemma
7 that there exist two connected order ideals Ja, Jb in M satisfying Ja \ µ(M,Ja) =
{i}, Jb \ µ(M,Jb) = {j}. By the construction of FM , we have Ja ⊂ Jb but there exists no
J ∈M such that Ja ⊂ J ⊂ Jb, namely Ja ≺M Jb.

As shown above, the relation ≺M plays an important role for the new characterization
of Des(M). To prove Theorem 2, we also need the following lemma, which is evident by
definition. Recall that the set Umax(M,J) is defined by (12).

Lemma 14. Given Ja, Jb ∈M , if Ja ≺M Jb then Ja ∈ Umax(M,Jb).

Now we are in the position to prove Theorem 2. From now on we shall assume that
P is naturally labeled.
Proof of Theorem 2. There are two cases to consider.

(1). The connected component Cr has only one vertex, say Jr. ThusMr can only be the
unique one maximum independent set {Jr} of Cr. By Lemma 7, we have Jr \µ(M1, Jr) =
{i} for some i ∈ {1, 2, . . . , n}. In this case, we first prove that

Des(Mr,M
1) = Des(Mr,M

2) = ∅. (25)

Otherwise, suppose that Des(Mr,M
1) = {i}. By the definition of Des(Mr,M

1), we have
i ∈ Des(M1). By Lemma 13, there exist j < i and J ∈M1 such that J \ µ(M1, J) = {j}
and Jr ≺M1 J .

We proceed to show that it is impossible to have such a pair (i, j). Let us consider the
order relation between i and j in the poset P . It cannot be j <P i, since i ∈ Jr ⊂ J and
Lemma 6 tells us that j is a maximal element of J . Then it might be i <P j, or i and
j are incomparable in P . Since P is naturally labeled and j < i, it can not be i <P j.
Suppose that i and j are incomparable in P . Since Jr \ µ(M1, Jr) = {i}, it follows from
Lemma 6 that i is a maximal element of Jr. We proceed to prove that i is also a maximal
elements of J . To see this, it is enough to show that there exists no k ∈ J satisfying
i <P k. Note that

J = {j} ∪ µ(M1, J) = {j} ∪

 ⋃
J ′∈U(M1,J)

J ′

 = {j} ∪

 ⋃
J ′∈Umax(M1,J)

J ′

 .

By Lemma 14, the relation Jr ≺M1 J implies that Jr ∈ Umax(M1, J). Then there are
three cases to consider:

(i) If k = j, then i and k are incomparable in P ;
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(ii) If k ∈ Jr, in this case we have k 6P i, or i and k are incomparable in P , because i
is a maximal element of Jr;

(iii) If k ∈ J ′ for some J ′ ∈ Umax(M1, J) but J ′ 6= Jr, we obtain that i and k are
incomparable in P , since by Lemma 4 we have J ′ ∩ Jr = ∅, which implies that for
any u ∈ Jr, v ∈ J ′, u and v are incomparable in P .

Hence there exists no k ∈ J such that i <P k, i.e., i is a maximal element of J . It follows
that {i, j} ⊆ gs(J) and then the graphs χJr and χJ have a common vertex ΛP

i . Then
by Lemma 9, the graphs χJr and χJ belong to the same connected component Cs of GP .
Hence Cs has at least two vertices ΛP

i and ΛP
j . By Lemma 12 and the hypothesis that

Jr is an isolated vertex of GP , we obtain Jr =
⋃

J ′∈V (Cs) J
′ and J ⊆

⋃
J ′∈V (Cs) J

′. This
contradicts with the assumption that Jr ≺M1 J . Hence i and j cannot be incomparable
in P , a contradiction.

Since such a pair (i, j) can not exist, it follows that Des(Mr,M
1) = ∅. By using a

similar argument, one can also prove that Des(Mr,M
2) = ∅. Moreover, by the definition

of Des(Mr,M), it is clear that

Des(Mr,M
1) = Des(Mr,M

2) = ∅.

(2). Cr has at least two vertices. In this case, Mr ⊂ V (Cr). By Lemma 12, we see
that Jmax

r =
⋃

J ′∈V (Cr) J
′ is an isolated vertex of GP . Hence Jmax

r ∈ M holds for any

maximum independent set of GP , and in particular Jmax
r ∈M1 as well as Jmax

r ∈M2.
We first prove that for any J ∈Mr or J = Jmax

r ,

J \ µ(M1, J) = J \ µ(M2, J). (26)

To see this, we partition the set U(M2, J) into two subsets B1 and B2, where

B1 = {J1 ∈ U(M2, J) | J1 ∈ V (Cr)},

B2 = {J2 ∈ U(M2, J) | J2 /∈ V (Cr)}.

Assume J \ µ(M1, J) = {j}. We claim that j /∈ J2 for any J2 ∈ B2. Otherwise, suppose
to the contrary that there exists some J2 ∈ B2 such that j ∈ J2. It follows from Lemma
6 that j ∈ gs(J). On the other hand, since J2 ⊂ J , we obtain that j ∈ gs(J2). Hence
the graph χJ and χJ2 have a common vertex ΛP

j . Then by Lemma 9 the graphs χJ and
χJ2 belong to the same connected component of GP . We proceed to show that χJ2 is a
subgraph of Cr. To see this, there are two cases to consider.

(i) Suppose that J ∈ Mr ⊂ V (Cr) (then J 6= Jmax
r ), namely, J is a vertex of the

connected component Cr. It follows from the second assertion of Lemma 12 that χJ

and J are contained in the same connected component Cr of GP . Hence both χJ

and χJ2 are subgraphs of Cr.
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(ii) Suppose that J = Jmax
r =

⋃
J ′∈V (Cr) J

′. Let i ∈ gs(J) be a maximal element of J ,

then there exists some J ′ ∈ V (Cr) such that i ∈ J ′. It follows that i is also a maximal
element of J ′, namely, i ∈ gs(J ′). Hence the graphs χJ and χJ ′ have at least one
common vertex ΛP

i , and then χJ and χJ ′ belong to the same connected component
of GP . The second assertion of Lemma 12 tells us that for any J ′ ∈ V (Cr), χJ ′ and
J ′ are contained in the same connected component Cr of GP . Hence χJ , χJ ′ and χJ2

are all subgraphs of Cr.

On the other hand, because J2 ⊂ J , we have J2 6= Jmax
r . Then by the second assertion of

Lemma 12 we get J2 ∈ V (Cr), leading to a contradiction. Hence the claim, that j /∈ J2

for any J2 ∈ B2, is true.
Recall that M1 ∩ V (Cr) = M2 ∩ V (Cr) = Mr. It is routine to verify that

U(M1, J) ∩Mr = U(M2, J) ∩Mr = B1,

Combining (13) and the above identity, we get that

j ∈ J \ µ(M1, J) ⊆ J \
⋃

J1∈B1

J1.

As we have shown that j /∈ J2 for any J2 ∈ B2, so again by (13) there holds

j ∈ J \
⋃

J ′∈(B1∪B2)

J ′ = J \
⋃

J ′∈U(M2,J)

J ′ = J \ µ(M2, J).

Thus, by Lemma 6, the set J \µ(M2, J) contains exactly one element, which can only be
j. Therefore, we have

{j} = J \ µ(M2, J) = J \ µ(M1, J).

We proceed to show that Des(Mr,M
1) ⊆ Des(Mr,M

2). Let i ∈ Des(Mr,M
1), and

by the definition of Des(Mr,M
1) and Lemma 6 there exists Ja ∈ Mr such that Ja \

µ(M1, Ja) = {i}. By Lemma 13, there exist j < i and Jb ∈M1 such that Jb \µ(M1, Jb) =
{j} and Ja ≺M1 Jb. We claim that Jb ∈ V (Cr) or Jb = Jmax

r . Suppose otherwise that
Jb is not a vertex of Cr and Jb 6= Jmax

r . Since Ja ∈ V (Cr) and Ja ⊂ Jb, it follows
from Lemma 10 that J ′ ⊂ Jb for any J ′ ∈ V (Cr). Hence Jmax

r ⊂ Jb. Thus we obtain
Ja ⊂ Jmax

r ⊂ Jb. Recall that Jmax
r ∈ M1, the relation Ja ⊂ Jmax

r ⊂ Jb contradicts the
assumption that Ja ≺M1 Jb. Recall also that we have shown Jmax

r ∈ M2. If Jb = Jmax
r

then Jb ∈ M2. If Jb ∈ V (Cr), then Jb ∈ Mr = M2 ∩ V (Cr), and hence also Jb ∈ M2. We
further show that Ja ≺M2 Jb. Otherwise, suppose there exists some Jc ∈ M2 such that
Ja ⊂ Jc ⊂ Jb. By the hypothesis that Ja ≺M1 Jb and M1∩V (Cr) = M2∩V (Cr) = Mr, it
follows that Jc /∈Mr ⊂ V (Cr). Then by Lemma 10, for any J ′ ∈ V (Cr), there is J ′ ⊂ Jc.
Hence Jb ⊆

⋃
J ′∈V (Cr) ⊂ Jc, leading to a contradiction. Thus, for any i ∈ Des(Mr,M

1),

by (26) there exist Ja, Jb ∈ M2 such that Ja \ µ(M2, Ja) = {i}, Jb \ µ(M2, Jb) = {j},
Ja ≺M2 Jb and i > j. This means i ∈ Des(Mr,M

2) for any i ∈ Des(Mr,M
1). Hence

Des(Mr,M
1) ⊆ Des(Mr,M

2).
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It can be proved in a similar way that Des(Mr,M
2) ⊆ Des(Mr,M

1). So we get
Des(Mr,M

1) = Des(Mr,M
2). Combining this and (26), we further obtain Des(Mr,M

1) =
Des(Mr,M

2), as desired.
We proceed to prove Theorem 3.

Proof of Theorem 3. Given a maximum independent set M of GP , let

Des(M) =
{
J ∈M | J \ µ(M,J) = {i} for some i ∈ Des(M)

}
.

Recall that M (Cr) is the set of maximum independent sets of Cr for each 1 6 r 6 h,
respectively. It is clear that M admits the following natural decomposition:

M = M1 ]M2 ] · · · ]Mh, where Mr ∈M (Cr).

It follows from Theorem 2 that both Des(Mr) and Des(Mr) are well-defined, and hence

Des(M) = Des(M1) ]Des(M2) ] · · · ]Des(Mh), (27)

Des(M) = Des(M1) ]Des(M2) ] · · · ]Des(Mh). (28)

Thus, by (6), Theorem 1 and Lemma 7, we get that

FP (x) =
∑

M∈M (GP )

∏
J∈Des(M)

∏
k∈J xk∏

J∈M(1−
∏

`∈J x`)
.

By (28), we then have

FP (x) =
∑

M1∈M (C1)

∑
M2∈M (C2)

· · ·
∑

Mh∈M (Ch)

∏h
r=1

∏
J∈Des(Mr)

∏
k∈J xk∏h

r=1

∏
J∈Mr

(1−
∏

`∈J x`)

=
h∏

r=1

∑
Mr∈M (Cr)

∏
J∈Des(Mr)

∏
k∈J xk∏

J∈Mr
(1−

∏
`∈J x`)

.

We would like to point out that Theorem 3 enables us to give an alternative proof
to Féray and Reiner’s formula (4). To this end, let P be a naturally labeled forest with
duplications as defined by Féray and Reiner [4], namely, for any connected order ideal Ja
of P , there exists at most one other connected order ideal Jb such that Ja and Jb intersect
nontrivially. Assume that GP has h connected components C1, C2, . . . , Ch. Then each Cr

has at most two vertices, and hence each connected component of HP has also at most
two vertices.

We claim that when a connected component C of GP has two vertices, say Ja and Jb,
then both Ja and Jb are principal order ideals of P . Otherwise, suppose that Ja is not a
principal order ideal of P . Then the graph χJa has more than one vertices. Recall that
χJa is a subgraph of HP . By Lemma 9 and the fact that each connected component of
the graph HP has at most two vertices, the graph χJa is a connected component of HP .
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It then follows from (24) and the first assertion of Lemma 12 that Ja is an isolated vertex
of GP , a contradiction. Similarly, Jb is also a principal order ideal of P .

Therefore, we may assume that for 1 6 r 6 d the component Cr has two vertices
(both of them are principal order ideals of P ), say ΛP

ir and ΛP
jr , and for d < r 6 h the

component Cr has only one vertex. Thus, for 1 6 r 6 d, there are two choices for Mr,
namely, Mr = {ΛP

ir} or Mr = {ΛP
jr}. We assume that ir > jr. Then

Des({ΛP
ir}) = ΛP

ir , Des({ΛP
jr}) = ∅.

For d < r 6 h, let Jr be the only vertex of Cr, and then Des({Jr}) = ∅. By Theorem 3,
we obtain that

FP (x) =
∏

16r6d

 xΛP
ir(

1− xΛP
ir

) +
1(

1− xΛP
jr

)
 ∏

d<r6h

1

(1− xJr)

=
∏

16r6d

 1− xΛP
ir xΛP

jr(
1− xΛP

ir

)(
1− xΛP

jr

)
 ∏

d<r6h

1

(1− xJr)
,

where xA =
∏

i∈A xi for a subset A ⊆ {1, 2, . . . , n}. It is straightforward to verify that
the above formula is equivalent to (4).

4 Counting linear extensions

In this section, we take an example to show that formula (11) can be used to derive
the generating function of major index of linear extensions of P , as well as to count the
number |L(P )| of linear extensions of P .

The generating function FP (q) of major index of linear extensions of P is denoted by
FP (q) =

∑
w∈L(P ) q

maj(w), where maj(w) =
∑

i∈Des(w) i is called the major index of w. By

letting x1 = · · · = xn = q respectively in (1) and (11), we are led to the following identity

FP (q) = [n]!q

h∏
r=1

∑
Mr∈M (Cr)

q
∑

J∈Des(Mr)
|J |∏

J∈Mr
[|J |]q

, (29)

where [i]q = 1− qi for any i and [m]!q =
∏m

i=1[i]q.
Moreover, when q tends to 1 on both sides of (29), we arrive at the following formula

for the number of linear extensions of P :

|L(P )| = n!
h∏

r=1

∑
Mr∈M (Cr)

1∏
J∈Mr

|J |
. (30)

Note that the number of linear extensions of P is independent of the labelling of P . Thus
formula (30) is also valid in the cases when P is not naturally labeled.
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We would like to mention that calculating the number of linear extensions for general
posets has been proved to be a ]P -hard problem by Brightwell and Winkler [3]. However,
in the case when P is a poset such that each connected component Cr of GP has small
size of vertex set, we shall illustrate that formula (30) provides an efficient way to count
the number of linear extensions of P . For example, take the naturally labeled poset P in
Figure 4. From the graph of GP as illustrated in Figure 5, we obtain that

1. For the connected component C1, there are 6 choices for M1:

M1 {ΛP
4 ,Λ

P
4,5} {ΛP

4 ,Λ
P
4,6} {ΛP

5 ,Λ
P
4,5} {ΛP

5 ,Λ
P
5,6}

Des(M1) ∅ {6} {5} {6}
Des(M1) ∅ {ΛP

4,6} {ΛP
5 } {ΛP

5,6}

M1 {ΛP
6 ,Λ

P
4,6} {ΛP

6 ,Λ
P
5,6}

Des(M1) {6} {5,6}
Des(M1) {ΛP

6 } {ΛP
6 ,Λ

P
5,6}

2. For the connected component C2, there are 5 choices for M2:

M2 {ΛP
10,Λ

P
15,Λ

P
13,15} {ΛP

10,Λ
P
10,13,Λ

P
14} {ΛP

10,Λ
P
10,13,Λ

P
13,15}

Des(M2) {15} ∅ {15}
Des(M2) {ΛP

15} ∅ {ΛP
13,15}

M2 {ΛP
13,Λ

P
10,13,Λ

P
14} {ΛP

13,Λ
P
10,13,Λ

P
13,15}

Des(M2) {13} {13, 15}
Des(M2) {ΛP

13} {ΛP
13,Λ

P
13,15}

3. For the connected component C3, there are 3 choices for M3:

M3 {ΛP
11,Λ

P
11,9} {ΛP

9 ,Λ
P
11,9} {ΛP

9 ,Λ
P
12}

Des(M3) {11} ∅ {12}
Des(M3) {ΛP

11} ∅ {ΛP
12}

4. For the connected component C4, there are 2 choices for M4:

M4 {ΛP
16} {ΛP

17}
Des(M4) ∅ {17}
Des(M4) ∅ {ΛP

17}

5. For connected components which have only one vertex, each of them has only one
choice for each Mr, and Des(Mr) = ∅ as well as Des(Mr) = ∅.

Therefore, invoking formula (29), we see that FP (q) =
∑

w∈L(P ) q
maj(w) equals

[17]!q

[
1

[6]q

(
1 + 2q3 + 2q5 + q8

[3]q[5]q

)][
1

[15]q

(
q13 + 1 + q14

[7]q[13]q[14]q
+

q12 + q26

[12]q[13]q[14]q

)]
×
[

1

[5]q

(
q3

[3]q[4]q
+

1

[2]q[4]q
+

q3

[2]q[3]q

)][
1

[17]q

(1 + q16)

[16]q

]
× 15.
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Letting q → 1 in the above formula, we arrive at

|L(P )| = 17!×
(

1

6
× 6

3× 5

)
×
[

1

15
×
(

3

7× 13× 14
+

2

13× 12× 14

)]
×
[

1

5
×
(

1

3× 4
+

1

3× 2
+

1

4× 2

)]
×
(

1

17
× 2

16

)
× 15

= 2851200.

This coincides with the result by listing all linear extensions by using Sage [10].
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