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Abstract
Let G be a graph of order n > 4k, where k is a positive integer. Suppose that the
minimum degree of G is at least [n/2]. We show that G contains k vertex-disjoint
cycles covering all the vertices of G such that &k — 1 of them are quadrilaterals.
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1 Introduction

Let G be a graph. A set of subgraphs of G is said to be independent if no two of them have
any common vertex in GG. Corrddi and Hajnal [3] investigated the maximum number of
independent cycles in a graph. They proved that if GG is a graph of order at least 3k with
minimum degree at least 2k, then GG contains k£ independent cycles. In particular, when
the order of G is exactly 3k, then G contains k independent triangles. A cycle of length 4
is called a quadrilateral. Erdés and Faudree [6] conjectured that if G is a graph of order
4k with minimum degree at least 2k, then G contains k independent quadrilaterals. Alon
and Yuster [1] proved that for any € > 0, there exists kg such that if G is a graph of order
4k and has minimum degree at least (2+ €)k with k£ > ko, then G contains k independent
quadrilaterals. We proved this conjecture in [11], that is

Theorem A [11] If G is a graph of order 4k and the minimum degree of G is at least 2k,
then G contains k independent quadrilaterals.

In [9], we proved the following theorem.

Theorem B [9] Let G be a graph of order n with 4k +1 < n < 4k + 4, where k is
a positive integer. Suppose that the minimum degree of G is at least 2k + 1. Then G
contains k independent quadrilaterals.

In [4], El-Zahar conjectured that if G is a graph of order n = n; + ny + -+ + ny,
where each n; is an integer at least 3, such that 0(G) > [ny/2] + [no/2] + -+ + [nx/2],
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then GG contains k independent cycles of lengths ny,no, ..., ng, respectively. Clearly, this
conjecture generalizes the above conjecture by Erdés and Faudree. In [8], we confirmed
the El-Zahar’s conjecture for the case n; = --- =n,_1 = 3 and n, > 3. In this paper, we
will prove the following theorem:

Theorem C Let G be a graph of order n > 4k, where k is a positive integer. Suppose
that the minimum degree of G is at least [n/2]. Then G contains k independent cycles
covering all the vertices of G such that k — 1 of them are quadrilaterals.

The minimum degree condition in the theorem is sharp. To see this, we just need to
observe K(n—l)/?,(n+1)/2 when n is odd and K(n—?)/?,(n—l—?)/? when n is even.

We discuss only finite simple graphs and use standard terminology and notation from
2] except as indicated. Let G be a graph. For a vertex u € V(G) and a subgraph H
of G or a subset H of V(G), N(u, H) is the set of neighbors of u contained in H. We
let d(u, H) = |N(u, H)|. Thus d(u,G) is the degree of u in G. For a subset U of V(G),
G[U] denotes the subgraph of G induced by U. For a subset X of V(G), we use G — X
to denote G[V(G) — X]. If u € V(G), we also write G — {u} as G — u.

If C =x129...2,21 is a cycle, then the subscripts of z;’s will be taken modulo by m
in {1,2,...,m}. A chord of a cycle C'in G is an edge of G — F(C) that joins two vertices
of C. We use 7(C') to denote the number of chords of C' in G.

2 Lemmas

In the following, G = (V| F) is a graph of order n > 3.

Lemma 2.1. Let P = x; ...z be a path and u a vertex in G such that u & V(P) and
d(u, P) + d(zx, P) > k. Then either G has a path P" from xy to w such that V(P') =
V(P)U{u}, ork >2, xqu € E and d(zg, P) + d(u, P) = k.

Proof. Let I = {z;1|v;z, € E;1 < i < k}. Clearly, xy ¢ I. If N(u, P) N1 # &,
say Tir1 € N(u, P)N 1, then x; ... 2;x52,_1 . .. x;11u is the required path from x; to u. If
N(u, P)NI = @, then N(u, P)UI = V(P) since d(zy, P)+d(u, P) > k and |I| = d(zg, P),
and then the lemma follows. O

Lemma 2.2. Let Q) be a quadrilateral and let x and y be two distinct vertices of G not
on Q. Suppose d(x,Q) + d(y,Q) = 5, then G[V(Q) U {x,y}| contains a quadrilateral Q'
and an edge e such that Q) and e are independent and e is incident with exactly one of x
and y.

Proof. The lemma is clearly true if d(z,Q) = 4 or d(y,Q) = 4. So we may assume
w.lo.g. that d(x,Q) = 3 and d(y,Q) > 2. Label Q = ajasasasa; such that N(z,Q) =
{a1,as,as}. Then we see that the lemma is true if either ayy € E or ayy € E. If agy ¢ E
and auy € F, then Q' = ajaqazya; and e = aox satisfy the requirement. O

Lemma 2.3. Let Q be a quadrilateral and let x and y be two distinct vertices of G not
on Q. Suppose that d(z,Q)+d(y, Q) = 5 and G|V (Q)U{z,y}] is not hamiltonian. Then
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GIV(Q) U{z,y}] contains a quadrilateral Q" with 7(Q') = 7(Q) and an edge e such that
Q' and e are independent and e is incident with exactly one of x and y.

Proof. Let Q = ajasazasa;. We may assume that d(z, Q) > d(y, Q) and {ay, as, a3} C
N(z,Q). Clearly, the lemma is true if yay € F or d(z,Q) = 4. Hence we may assume
that yas ¢ F and d(z,Q) = 3. Thus d(y, Q) = 2. As G[V(Q)U{x,y}] is not hamiltonian,
we see that {aj, a2} € N(y) and {as, a3} € N(y). It follows that N(y,Q) = {a1, a3}, and
therefore asay ¢ E for otherwise G|V (Q) U {x,y}] is hamiltonian. Let Q" = yajaqazy and
P’ = zay. Clearly, 7(Q') = 7(Q), and so the lemma holds. O

Lemma 2.4. Suppose that n > 5 and d(x,G) + d(y,G) = n for every two nonadjacent
vertices x and y of G. Then for each x € V(G), G has a quadrilateral @) such that
G — V(Q) has a hamiltonian path starting at x unless that n < 6, and in addition, if
n =75 then d(u,G) + d(v,G) =5 for some two nonadjacent vertices u and v of G, and if
n =6 then G has an edge uv such that G has a hamiltonian path from u to v, G —u—v

has a quadrilateral and d(u,G) + d(v,G) = 6.

Proof. For the proof, we suppose that the lemma fails. Let xy be a vertex of G
such that G does not have a quadrilateral @) such that G — V(Q) has a hamiltonian path
starting at xg.

First, suppose that G — x( does not have a quadrilateral. Let z and y be two arbitrary
nonadjacent vertices of G — zp. Then |N(z,G — x¢) N N(y,G — z0)| < 1. As d(z,G) +
d(y,G) = n, we see that N(x,G) U N(y,G) = V(G) — {x,y}, o € N(z,G) N N(y, Q)
and |N(xz,G — x9) N N(y,G — zo)| = 1. Say N(z,G) N N(y,G) = {xg,z}. Assume
w.lo.g. d(z) > d(y). Suppose d(z,G — zo) > 4. Let {x1,22} C N(z,G — xp — z) with
r1 # wo. Then either x12 ¢ E or x92 ¢ E for otherwise G — xy has a quadrilateral.
Say x1z ¢ E. For the same reason, x1y ¢ E and xoy ¢ E. Similarly, we must have
N(z1,G)UN(y,G) = V(G) — {z1,y} and |N(z1,G) N N(y,G)| = 2. In particular, we
also have that z129 € E. Let y; € N(y,G — o — z) be such that z;y; € E. Clearly,
x9z ¢ E and xoy; € E for otherwise G — xy has a quadrilateral. Similarly, we have that
|IN(22,G) N N(y,G)| = 2 and N(z9,G) U N(y,G) = V(G) — {x2,y}. Let y2 € N(y,G)
be such that zsy, € E. Similarly, we can show y;y» € FE, and thus xixzoysy171 is a
quadrilateral in G — ¢, a contradiction. Therefore we must have d(x,G) = 3. Thus
n < 6. If n = 5, we have that d(z,G) 4+ d(y,G) = 5 and we are done. Hence we
assume n = 6. Thus d(z) = d(y) = 3. Let V(G) — {0, 2,y,2} = {1,751} be such that
{zz1,yy1} C E. Aszy; ¢ FE and yx; € E, we can show, as before, that {zoz1, 2oy} C E.
If 1917 € E, then z € N(z1) N N(y1) as d(z1,G) + d(y1,G) > 6, and consequently,
the second statement of the lemma holds with {u,v} = {y,y1}. Thus we assume that
r1y; € E. Then zzy € E and zy; € E for otherwise G — x(y has a quadrilateral. Then
zoz € E as d(z1,G) +d(z,G) > 6. Again, we see that the second statement of the lemma
holds with {u,v} = {z1,y1}.

Next, suppose that G — z( has a quadrilateral. We now choose a quadrilateral ) from
G — zy such that

The length of a longest path starting at xy in G — V(Q) is maximum. (1)
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Let P be a longest path starting at zo in G — V(Q). Subject to (1), we choose @) and P
such that

7(Q) is maximum. (2)

Let P = xoxy...2; and Q = ajasaszaga;. We need to show that ¢ = n — 5. On the
contrary, suppose t <n—>5. Let D =G—-V(PUQ) and r = |V(D)|. Thent =n—5—r.
Let yp € V(D). By Lemma 2.1, we have

d(yo, P) + d(xy, P) <t + 1. (3)
Therefore
d(yo, Q) +d(x,Q) Zn—(t+1) —(r—1) =5. (4)

We claim the following:

Claim A. For each i € {1,2}, {a;, ai12} € N(yo, Q).

Proof of Claim A. On the contrary, say w.l.o.g. {ai,as} € N(yo, Q). By (1), we
see that {as,as} N N(z4,Q) = &. Hence d(yy,Q) > 3 by (4). Say asyo € E. As
T(yoaraza3yp) < 7(Q) by (2), we must have asay € E. Thus G[{a,as,as,a4,y0} —
{a;}] contains a quadrilateral for each i € {1,2,3,4}, and therefore d(z;, Q) = 0 by (1),
contradicting with (4). Hence the claim holds.

We now divide the proof into the following two cases.

Case 1. d(yo, Q) = 2.

In this case, d(x;, Q) > 3. By Claim A, we may assume w.l.o.g. N(yo, Q) = {a1,az}.
We may also assume w.l.o.g. {as,a4} C N(x,Q) as d(x,Q) > 3. Then aja3 ¢ E for
otherwise ypaiazasyp is a quadrilateral and P + x;a,4 is longer than P in G. As ypas € F,
d(yo, G) + d(a3,G) = n and so |N(yo,G) N N(a3,G)| = 2. Then it is easy to see that
t > 1. Set )1 = mazazasr;. Then we see that z,_1yo € F and z;_1a1 ¢ E by (1). For
the same reason, d(yo, P — x¢) + d(x4—1, P — x) < t and N(yo, D) N N(z4—1,D) = @. It
follows that d(yo, PU D) + d(xt—1, PU D) < n —5, and therefore d(yo, Q) + d(z¢-1,Q) >
5. Therefore N(z;-1,Q) = {as,as,as}. Furthermore, we see that d(z;_1, P — x;) +
d(yo, P — x;) = t. By Lemma 2.1, t — 1 > 1. Let Q2 = zy_174a3a474—1. Then we see
that {yo, a1, a2} N N(zi—2,G) = @ and N(yo, D) N N(x4—2, D) = &. This implies that
d(yo, P — xy — x41) +d(xy_9, P — 2y — 24 1) 2n—5—(r—1) =t + 1. By Lemma 2.1,
GIV(P)U{yo} — {xs, ©;_1}] has a hamiltonian path P’ from z to yy. Therefore P'ypa;az
is longer than P and independent of )5, contradicting (1).

Case 2. d(yo, Q) = 1.

We have that d(x;, Q) = 4. Say yoa; € E. As |N(yo,G) N N(a3,G)| = 2, we see
that t > 1. By (1), ayzy—1 € E and yoz,—1 ¢ E. We also have, by (1), that N(yo, D) N
N(z¢-1, D) = @. It follows that d(yo, P —x;) + d(x¢—1, P —2¢) 2n—5—(r—1)=1t+1.
By Lemma 2.1, G[V(P) U{yo} — {z:+}] has a hamiltonian path P” from z( to yo. Then
P"ypa; is longer than P and independent of x;asasasz,, contradicting (1). This proves
the lemma. 0J
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Lemma 2.5. Suppose that d(z, G)+d(y, G) = n for every two nonadjacent vertices x and
y of G. Then for any two distinct vertices u and v, G has a hamiltonian path from u to

v unless either {u,v} is a vertex-cut of G or G has an independent set X with |X| > n/2
and {u,v} CV(G) — X.

Proof. For the proof, we suppose that there exist two distinct vertices u and v
such that G does not have a hamiltonian path from u to v and {u,v} is not a vertex-
cut of G. Then we shall prove that G has an independent set X with |X| > n/2 and
{u,v} CV(G) - X.

Let P be a longest path of G starting at one of u and v but not passing through the
other. Let {u,v} = {xg, 21} and P = zy29...24. Set D = G — V(P) and r = |V(D)|. If
r =1, then zoz; € E and so d(xg, P)+d(x¢, P) > n. By Lemma 2.1, G has a hamiltonian
path from z; to zg, a contradiction. Hence r > 2. As {xg,z1} is not a vertex-cut of
G, we let s be the smallest integer in {2,3,...,¢t — 1} such that d(zs, D — x9) > 1. Let
yo € V(D) — {xo} such that yozs € E. For each y € V(D) — {zo}, we must have
that d(y, P) + d(zy, P) < t by Lemma 2.1, and therefore d(y, D) + d(zy, D) > r. Thus
d(z;, D) > 0. It follows that N(x;, D) = {xo} and D is a complete subgraph of G.
Furthermore, d(y, P) + d(x;, P) =t for each y € V(D) — {xo}. Let L1 = z125... 25 and
Ly = 51202 Set I = {x;q|zyo € E,s+1 < i < t—1}. Clearly, yors11 € E
and N(zy, L) NI = @ for otherwise G[V(P) U {yo}] has a hamiltonian path starting
at x1. This implies that d(yo, La) + d(z¢, Le) < |V(L2)| —1 = t — s — 1, and thus
d(yo, L1)+d(xy, L) = s+1. As 2oYoTsTsi1Tst2 - .. T¢ is a path in G and by the maximality
of P, we must have s > 3. Clearly, xs_11; ¢ E for otherwise x125... 25 12414 1 ... Z5Yo
is a longer path than P in G. Therefore N(zy, L) = V(L1) — {zs_1} and yoz; € E. If
s = 4, then xoyoTsTsyiq ... TxT3...Ts 1 is a longer path than P in G, a contradiction.
Hence s = 3. If r > 3 then zoy'yoxsxs...x; is a longer path than P in G with ¢ €
V(D) — {0, Y0}, a contradiction. Hence r = 2. Let P’ = zqyox3xy...x;. Then P’ is a
path in G starting at xy without passing through z;. Furthermore, P’ and P have the same
length. Therefore we may assume w.l.o.g. that d(yo, G) = n/2 as d(yo, G) + d(x2, G) = n.
Let X = {z;p1|ziyo € B, 1 <i<t—1}U{yo}. We see that X is an independent set of G
for otherwise G|V (P) U {yo}| has a hamiltonian path starting at z;. Clearly, |X| > n/2
and {xg,z:1} C V(G) — X. This proves the lemma. O

Lemma 2.6. [7] If P = z122...2y, is a path of G with m > 3 such that d(zy, P) +
d(zpm, P) = m, then G has a cycle C' such that V(C) = V(P). Moreover, if d(xz,G) +
d(y,G) = n for any two nonadjacent vertices x and y of G, then G is hamiltonian.

Lemma 2.7. Lett be a positive integer and let G be a graph of order n > 4t. Suppose that
d(z) = [n/2] for each x € V(G). Then G has t independent quadrilaterals Q1,Q2, . .., Q¢

such that G — V(Ui_,Q;) has a hamiltonian path.

Proof. Letr = n—4t. We use induction on r to prove the lemma. When r € {0,1,4},
the lemma is true by Theorem A and Theorem B. Suppose r = 2. Then G has t
independent quadrilaterals Q1, . . ., Q; by Theorem B. If the two vertices of G—V (U:_,Q;),
say x and y, are not adjacent, then we would have that d(z, U!_;Q;)+d(y, U:_,Q;) > 4t+2,
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and therefore d(x, Q;) +d(y,Q;) = 5 for some i € {1,2,...,t}. By Lemma 2.2, the lemma
holds. Next, suppose r = 3. Using the above proof, we see that G has t independent
quadrilaterals Q1, . .., Q; such that G — V(U!_,@Q;) has at least one edge. Subject to this,
we let S, 7(Q;) be as large as possible. Let V(G) — V(Ul_,Q;) = {21, 22, 3} be such
that x1x9 € E. If 321 € E or x3x9 € E, we have nothing to prove. Hence we assume
that z3x; ¢ F and x3xs € E. Then we see that there exists @Q;, say Q); = @1, such that
d(xz1,Q1) + d(z3,Q1) = 5. By Lemma 2.2, G[V(Q;) U {z1,x3}] contains a quadrilateral
@} and an edge e such that )} and e are indepedent and e is incident with exactly
one of x; and x3. If e is incident with zq, then e and zyxy together contains a path
of order 3 and we are done. Therefore we may assume that e is incident with x3. Say
y1 € V(Q1) with y1z3 € E. Let Q1 = ajasagasa;. Suppose that d(zs, Q1) > 3. Say
N(z3,Q1) 2 {a1,as2,a3}. Then 17(z3a1a0a373) > 7(Q1) with equality only if asay € E. By
our choice of @;(1 < i < t), we must have that asay € E. Thus for each i € {1,2,3,4},
G[{ai,az,as,a4,x3} — {a;}] contains a quadrilateral. As d(x1,@Q;) = 1, we see that the
lemma holds. Hence we may assume that d(z3, Q1) < 2. Thus d(z1,@Q1) = 3. Suppose
that we also have that d(xs, Q1) + d(x3,@Q1) = 5. Then d(z,Q1) > 3. This implies
that there exists {7,5} C {1,2,3,4} with ¢ # j such that za;a;117221 and z1a;a;41727;
are two quadrilaterals in G. Thus the lemma holds if x3 is adjacent to some vertex of
{@iy2,ait3,a;42,a;43}. Hence we may assume that xs is not adjacent to any vertex of
this set, which implies that d(z3, Q1) < 1. It follows that d(z1,Q1) = d(z2,Q1) = 4 and
d(x3,Q1) = 1, and clearly, the lemma holds in this situation, too. To finish the proof,
we finally assume that d(xq, Q1) + d(x3, Q1) < 4. Then d(xq, Ui_,Q;) + d(xs, Ul_,Q;) =
4t +2 —5 = 4(t — 1) + 1. This implies that there exists @); with i > 2, say i = 2, such
that d(xq, Q2) + d(x3,Q2) = 5. As above, with Q2 and x5 in place of @7 and 1, we may
assume that Q2 has a vertex y, such that G|V (Q2) U{x2} — {y2}] contains a quadrilateral
Q5 and z3y, € E. Since yix3y, is a path in G, we see the lemma holds. Therefore the
lemma holds if » < 4. We now assume that the lemma is true if the value of (n — 4t) is
less than r with » > 5. Say n — 4t = r. Then n — 4(t + 1) = r — 4. By the induction
hypothesis, G has ¢ + 1 independent quadrilaterals Q1 ..., Q1 such that G — V (UF1Q;)
has a path P of order r — 4. Let P = zyx5...x,_4. Then we may assume that for each
Jed{Ll2,...,t+ 1}, d(z1,Q;) = d(x,—4,Q;) = 0 holds for otherwise G[V(Q; U P)] has a
hamiltonian path and we are done. Thus d(x1, P) + d(x,_4, P) > n, and by Lemma 2.6,
G[V(P)] is hamiltonian. As G is connected, there exists (); such that Zz;f d(z;,Q;) >0
and therefore G[V (Q);UP)] has a hamiltonian path. Thus the lemma is true for n—4t = r.
This proves the lemma. U

Lemma 2.8. [5] Let C' = z122 ... 2,21 be a cycle of G. Let x;,x; € V(C) with i # j. If
d(z;, C)+d(z;,C) = m+1, then G has a path P from x;41 to xj41 such that V(P) =V (C).

Lemma 2.9. Suppose that G has a hamiltonian path and that d(x,G) + d(y,G) > n+ s
for any two endvertices x and y of a hamiltonian path of G, where s is a fized nonnegative
integer. Then for any two distinct vertices w and v of G, d(u, G) +d(v,G) = n+ s holds.

Proof. By Lemma 2.6, G is hamiltonian. Let C' = xj25... 2,21 be a hamiltonian
cycle. Suppose, for a contradiction, that d(z;, G) +d(z;,G) < n+s—1 for some 1 < i <
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J < n. By the hypothesis, d(z;_1,G) +d(z;,G) > n+s and d(z;_1,G) +d(z;,G) > n+s.
Then we see that d(z;_1,G)+d(z;—1,G) > n+s+1. By Lemma 2.8, G has a hamiltonian
path from z; to x;, and by the hypothesis again, d(x;, G)+d(z;, G) > n+s, a contradiction.
]

3 Proof of Theorem C

Let k be a positive integer and G a graph of order n > 4k. Assume 0(G) > [n/2].
Suppose, for a contradiction, that G does not contain k independent cycles covering all
the vertices of GG such that k — 1 of them are quadrilaterals. By Theorem A, n > 4k.

Let t =n —4(k —1). By Lemma 2.7, G has k independent quadrilaterals Q1, ..., Qx
such that G — V(UY_,Q;) has a hamiltonian path P. If t —4 = 1, then we readily see that
d(u,Q;) = 3 where V(P) = {u} for some ¢ € {1,...,k} because 6(G) > [n/2] and so
G[V(Q; U P)] is hamiltonian, a contradiction. Hence we have t —4 > 2. For convenience,
let r =t —4. As G[V(Q; U P)] is not hamiltonian, for any two endvertices u and v of a
hamiltonian path of G — V(UX_,Q;), we have

d(u, @Q;) +d(v,Q;) <4 forallie{l,... k} (5)
and therefore
d(u,G = V(U Qi) + d(v,G =V (UL,Q) > +0 (6)

where o = 1if r is odd and otherwise 0 = 0. By Lemma 2.6, G—V (U, Q;) is hamiltonian
if r>3. Let H=U",Q; and D =G — V(H). By (6) and Lemma 2.9, we have

d(z,D)+d(y,D) > r + o for all {z,y} C V(D) with x # y. (7)

We now divide the proof into the following two cases.

Case 1. r > 5.

In this case, By (7), D is hamiltonian. We choose a hamiltonian path P of D as follows.
If for each x € V(D), D has a quadrilateral ) such that D —V () has a hamiltonian path
starting at x, let P be a hamiltonian path with an endvertex u such that d(u,Q;) > 1
for some i € {1,...,k}. Such a path exists because G is connected. We may assume
e(u, Q1) > 1 in this case. Otherwise by (7) and Lemma 2.4, we see that ¢ = 0 and D has
order 6. Furthermore, D has an edge uwv such that D has a hamiltonian path P from u to
v, D —u—v has a quadrilateral and d(u, D)+ d(v, D) = 6. Then equality holds in (5) and
(6) with respect to {u,v}, and therefore d(u, @;) + d(v,Q;) > 1 for some i € {1,...,k}.
In this case, we may assume d(u, Q1) = 1. In the former case, let @)} be a quadrilateral of
D such that D — V(@) has a hamiltonian path starting at u. Subject to this, we further
choose @} such that D — V(Q) does not contain a vertex-cut of cardinality 2 if there
exists such a choice. In the latter, let Q] be a quadrilateral of D —u —wv and P = uv. Set
D'=GV(DUQ) —V(Q))]. As d(u,®Q) > 1, D' has a hamiltonian path.

Replacing @)} and D’ in the above proof of (5), (6) and (7), we see that D" is hamil-
tonian, too. Let L be a hamiltonian cycle of D’. Then the number of edges of L in
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between ); and D' — V(@) must be even. This allows us to see that there exist two
independent edges x1y; and xays between Q1 and D' — V(@) with {y1, 2} C V(Q1) such
that G[V(Q1)] has a hamiltonian path from 7; to yo. If D has a hamiltonian path from
x1 to xg, then G[V (D U Q)] is hamiltonian and we are done. By Lemma 2.5, we see that
either {x1, 25} is a vertex-cut of D or D has an independent set X with |X| > r/2 and
{1,229} CV(D)—X. Let us first assume that {xy, x2} is a vertex-cut of D. By (7), we see
that D —x —x, has exactly two components, say D; and D; such that Dy = Dy = K(,._9) /o
and d(x1, D1 U Ds) = d(x9, Dy U Dy) = r —2. As D; U Dy D @, we see that r > 10.
Let Q7 be a quadrilateral in Dy + z; with x; € V(QY). Let z; € V(D;) — V(QY) and
29 € V(Dq). Clearly, d(z1, D) + d(z2, D) = r and D — V(@) has a hamiltonian path
from z; to ze. Then equality holds in (5) and (6) with respect to {21, 22}. It follows that
d(z;,Q;) = 1 for some j € {1,2} and i € {1,...,k}. But D — V(QY) does not contain
a vertex-cut of D with cardinality 2. This contradicts the choice of @}. Therefore D
has an independent set X with |X| > r/2 and {z,22} C V(D) — X. By (7), we see
that |X| = r/2 and D contains a complete bipartite subgraph with (X, V(D) — X) as
its bipartition. As mentioned in the beginning of this paragraph, D’ is hamiltonian and
so we readily see that d(z,@Q;) > 0 for some z € X. It follows that G[V (D U Q)] is
hamiltonian, a contradiction.

Case 2. 2 <r <4.
In this case, we choose the k£ independent quadrilaterals @1, ..., Q; and the path P
of order r such that

7(Q;) is maximum. (8)

-

1

1

By (6), D is hamiltonian if » > 3. We break into the following three cases.

Case 2.1. r = 3.

Then D is a triangle, say D = z1z9x37,. We have that 320 d(z;, H) > 3[n/2] — 6 =
3(2k + 2) — 6 = 6k. This implies that there exists Q); in H, say @; = @1, such that
Z?Zl d(x;, Q1) = 6. This further implies that there exist two independent edges e; and ey
between D and Q). Say Q1 = ajasazasa;. As G[V (D U @1)] is not hamiltonian, we may
assume that e; = a;x; and es = asxs, and then we see that d(as, D) = d(a4, D) = 0 and
asay ¢ E. Consequently, d(aj, D) = d(as, D) = 3. Let Q) be a quadrilateral of D + a;
and P’ = asazay. Clearly, 7(Q)) > 7(Q1), contradicting (8).

Case 2.2. r = 4.

Since G is hamiltonian, we have nothing to prove when & = 1. Therefore £ > 2.
Let Qo = 12973747, be a quadrilateral of D. Clearly, Y1, d(z;, H) > 4[n/2] — 12 =
8(k +1) — 12 = 6k + 2k — 4. This implies that there exists Q); in H, say Q; = Q1,
such that 377, d(z;,Q,) > 6. This further implies that there exists two independent
edges, say ujw; and ugwg with {ug,us} C V(Qo) and {wq,ws} C V(Q1), between Qg
and @ such that either ujuy € E(Qo) or wiwy € E(Q1). We may assume w.l.o.g. that
wiwy € E(Q1). Therefore ujuy & E(Qo) as G[V (QoUR1)] is not hamiltonian. Say w.l.o.g.
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{uy,us} = {1, 23}. Then for the same reason, we see that d(zz2, Q1) = d(z4, Q1) = 0 and
xoxy & E. Thus d(xe, H —V(Q1)) +d(xy, H—V(Q1)) = 2[n/2] —4 = 4(k — 1)+ 4. This
implies that there exists Q; in H—V (Q1), say Q; = Q2, such that d(xq, Q2)+d(z4, Q2) = 5.
As G[V(Qo U @2)] is not hamiltonian, we see that zyz3 ¢ E. Then equality holds in
(5) and (6) with respect to {x;,z;41} for each j € {1,2,3,4} and ¢ € {1,2,...,k},
that is, d(z;,Q;) + d(zj+1,Q;) = 4 for each j € {1,2,3,4} and j € {1,2,...,k}. Thus
d(x1,@Q1) = d(zs3,Q1) = 4. As d(x2,Q2) + d(x4,Q2) > 5, it is also easy to see that
d(x1,Q2) = d(x3,Q2) = 0 for otherwise G[V (Qo U Q2)] is hamiltonian. Thus d(z3, Q2) =
d(xy,Q2) = 4 and d(z1, Q1) = d(x3,Q1) = 4. Let y be an arbitrary vertex of ) and z an
arbitrary vertex of (). Clearly, )1 —y+x3 and ()5 — z + x4 are hamiltonian and yxxsz is
a path in G. Similar to the proof of (6), we see that G[{y, z1, z2, z}] must be hamiltonian.
Consequently, yz € E. This argument implies that d(w,@Qs) = 4 for all w € V(Q1). It
follows that G[V (Qo U Q1 U Q2) — {y, z1, x2, z}] is hamiltonian and we are done.

Case 2.3. r = 2.

Let D = x1x9. As6(G) > 2k+1 and by (5) and (6), we see that d(z1, Q;)+d(xe, Q;) = 4
for all i € {1,2,...,k}. We claim that for each i € {1,2,...,k}, either d(z;,Q;) = 0 or
d(xe,Q;) = 0. If this is not true, say d(z1, Q1) > 0 and d(z2, Q1) > 0. Let Q1 = ajazazaqsa;
with z1a; € E. As G[V(DUQ))] is not hamiltonian, we see that N(x1, Q1) = N(x2, Q1) =
{a1,a3} and asay ¢ E. Let Q) = x1a1x9a3x,. Clearly, 7(Q)) = 7(Q1) + 1. We also have
that d(as, H — V(Q1)) + d(as, H —V(Q1)) = 2(2k + 1) — 4 = 4(k — 1) + 2. This implies
that there exists Q; in H — V(Q1), say Q; = @2, such that d(ay, Q2) + d(as,Q2) = 5.
As GV (Q2) U {as, as}] is not hamiltonian and by Lemma 2.3, G[V(Q2) U {az, as}] has a
quadrilateral @ and a path P’ of order 2 such that 7(Q%) > 7(Q2) and V(Q5)NV(P') = @.
Replacing Q1 and Q2 by @] and @), we see that (8) is violated. Therefore our claim holds.

Next, we claim that G[N (21, G—x2)] is a complete subgraph of G and G[N (x4, G—x1)]
is a complete subgraph of G. For the proof, let u be an arbitrary vertex of N(z1,G — x2).
We shall show that u is adjacent to every vertex of N(z1, G—xo—u). Let Q1 = ajasazaqa;.
Say w.l.o.g. u=a;. Let Gy = G[V(DU Q)] and Hy = H — V(Q1). Then d(zo, Hy) +
d(a;,Hy) > 2(2k +1) —5 = 4(k — 1) + 1. This implies that there exists Q; in Hj,
say Q; = @2, such that d(zq, Q2) + d(a1,Q2) = 5. Thus we must have d(zy, @2) = 4 and
d(z1,Q2) = 0. If d(ay, Qa) = 2, then G[V(Q2)U{xs, ay}] is hamiltonian. As Q1 —a; +x is
hamiltonian, the theorem holds, a contradiction. Hence d(ay, Q2) = 1. Let Qo = b1babsbsby
with a;b; € E. Similarly, we must have that d(b;,Q1) = 1. Replacing ¢ and Qs by
Qll = T1020304T1 and QIQ = $2b2b3b41'2, we see, by (8), that {alag, b1b3} g E. Note that
this argument implies that G[V(Q);)] is a complete graph of order 4 for all i € {1,...,k}.
With respect to the choice of {a1by, @}, @5, Qs, ..., Qk}, we can also show that for each
i € {3,...,k}, either d(a,Q;) = 4 or d(b1,Q;) = 4. If there exists @; in {Qs,...,Qk}
such that d(z1,Q;) = d(b1,Q;) = 4, then we would see that each of Q; + z1 + b; and
Q2 — by + x5 is hamiltonian and we are done. Hence we must have d(a;, @Q);) = 4 for each
i €{3,...,k} with d(z1,Q;) = 4. Therefore G[N(z1,G — x3)] is a complete subgraph of
G. Similarly, G[N(xz9,G — z1)| is a complete subgraph of G. The above argument also
implies that d(w, G[N(z;, G — x;)]) = 1 for each w € N(z;,G — z;) with {3, j} = {1, 2},
that is, there are 2k independent edges between N(x1,G — x3) and N(z9, G — x1). It is
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easy to see that GG contains k required independent cycles in this case. This completes
the proof of the theorem.
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