# Covering a Graph with Cycles of Length at least 4 

Hong Wang<br>Department of Mathematics<br>The University of Idaho<br>Moscow, Idaho, USA 83844<br>hwang@uidaho.edu

Submitted: Feb 9, 2014; Accepted: Mar 1, 2018; Published: Mar 16, 2018
Mathematics Subject Classifications: 05C38, 05C70, 05C75


#### Abstract

Let $G$ be a graph of order $n \geqslant 4 k$, where $k$ is a positive integer. Suppose that the minimum degree of $G$ is at least $\lceil n / 2\rceil$. We show that $G$ contains $k$ vertex-disjoint cycles covering all the vertices of $G$ such that $k-1$ of them are quadrilaterals.


Keywords: cycles; disjoint cycles; cycle coverings

## 1 Introduction

Let $G$ be a graph. A set of subgraphs of $G$ is said to be independent if no two of them have any common vertex in $G$. Corrádi and Hajnal [3] investigated the maximum number of independent cycles in a graph. They proved that if $G$ is a graph of order at least $3 k$ with minimum degree at least $2 k$, then $G$ contains $k$ independent cycles. In particular, when the order of $G$ is exactly $3 k$, then $G$ contains $k$ independent triangles. A cycle of length 4 is called a quadrilateral. Erdős and Faudree [6] conjectured that if $G$ is a graph of order $4 k$ with minimum degree at least $2 k$, then $G$ contains $k$ independent quadrilaterals. Alon and Yuster [1] proved that for any $\epsilon>0$, there exists $k_{0}$ such that if $G$ is a graph of order $4 k$ and has minimum degree at least $(2+\epsilon) k$ with $k \geqslant k_{0}$, then $G$ contains $k$ independent quadrilaterals. We proved this conjecture in [11], that is

Theorem $\boldsymbol{A}$ [11] If $G$ is a graph of order $4 k$ and the minimum degree of $G$ is at least $2 k$, then $G$ contains $k$ independent quadrilaterals.

In [9], we proved the following theorem.
Theorem B [9] Let $G$ be a graph of order $n$ with $4 k+1 \leqslant n \leqslant 4 k+4$, where $k$ is a positive integer. Suppose that the minimum degree of $G$ is at least $2 k+1$. Then $G$ contains $k$ independent quadrilaterals.

In [4], El-Zahar conjectured that if $G$ is a graph of order $n=n_{1}+n_{2}+\cdots+n_{k}$, where each $n_{i}$ is an integer at least 3 , such that $\delta(G) \geqslant\left\lceil n_{1} / 2\right\rceil+\left\lceil n_{2} / 2\right\rceil+\cdots+\left\lceil n_{k} / 2\right\rceil$,
then $G$ contains $k$ independent cycles of lengths $n_{1}, n_{2}, \ldots, n_{k}$, respectively. Clearly, this conjecture generalizes the above conjecture by Erdős and Faudree. In [8], we confirmed the El-Zahar's conjecture for the case $n_{1}=\cdots=n_{k-1}=3$ and $n_{k} \geqslant 3$. In this paper, we will prove the following theorem:

Theorem Cet $G$ be a graph of order $n \geqslant 4 k$, where $k$ is a positive integer. Suppose that the minimum degree of $G$ is at least $\lceil n / 2\rceil$. Then $G$ contains $k$ independent cycles covering all the vertices of $G$ such that $k-1$ of them are quadrilaterals.

The minimum degree condition in the theorem is sharp. To see this, we just need to observe $K_{(n-1) / 2,(n+1) / 2}$ when $n$ is odd and $K_{(n-2) / 2,(n+2) / 2}$ when $n$ is even.

We discuss only finite simple graphs and use standard terminology and notation from [2] except as indicated. Let $G$ be a graph. For a vertex $u \in V(G)$ and a subgraph $H$ of $G$ or a subset $H$ of $V(G), N(u, H)$ is the set of neighbors of $u$ contained in $H$. We let $d(u, H)=|N(u, H)|$. Thus $d(u, G)$ is the degree of $u$ in $G$. For a subset $U$ of $V(G)$, $G[U]$ denotes the subgraph of $G$ induced by $U$. For a subset $X$ of $V(G)$, we use $G-X$ to denote $G[V(G)-X]$. If $u \in V(G)$, we also write $G-\{u\}$ as $G-u$.

If $C=x_{1} x_{2} \ldots x_{m} x_{1}$ is a cycle, then the subscripts of $x_{i}$ 's will be taken modulo by $m$ in $\{1,2, \ldots, m\}$. A chord of a cycle $C$ in $G$ is an edge of $G-E(C)$ that joins two vertices of $C$. We use $\tau(C)$ to denote the number of chords of $C$ in $G$.

## 2 Lemmas

In the following, $G=(V, E)$ is a graph of order $n \geqslant 3$.
Lemma 2.1. Let $P=x_{1} \ldots x_{k}$ be a path and $u$ a vertex in $G$ such that $u \notin V(P)$ and $d(u, P)+d\left(x_{k}, P\right) \geqslant k$. Then either $G$ has a path $P^{\prime}$ from $x_{1}$ to $u$ such that $V\left(P^{\prime}\right)=$ $V(P) \cup\{u\}$, or $k \geqslant 2, x_{1} u \in E$ and $d\left(x_{k}, P\right)+d(u, P)=k$.

Proof. Let $I=\left\{x_{i+1} \mid x_{i} x_{k} \in E, 1 \leqslant i \leqslant k\right\}$. Clearly, $x_{1} \notin I$. If $N(u, P) \cap I \neq \varnothing$, say $x_{i+1} \in N(u, P) \cap I$, then $x_{1} \ldots x_{i} x_{k} x_{k-1} \ldots x_{i+1} u$ is the required path from $x_{1}$ to $u$. If $N(u, P) \cap I=\varnothing$, then $N(u, P) \cup I=V(P)$ since $d\left(x_{k}, P\right)+d(u, P) \geqslant k$ and $|I|=d\left(x_{k}, P\right)$, and then the lemma follows.

Lemma 2.2. Let $Q$ be a quadrilateral and let $x$ and $y$ be two distinct vertices of $G$ not on $Q$. Suppose $d(x, Q)+d(y, Q) \geqslant 5$, then $G[V(Q) \cup\{x, y\}]$ contains a quadrilateral $Q^{\prime}$ and an edge $e$ such that $Q^{\prime}$ and $e$ are independent and $e$ is incident with exactly one of $x$ and $y$.

Proof. The lemma is clearly true if $d(x, Q)=4$ or $d(y, Q)=4$. So we may assume w.l.o.g. that $d(x, Q)=3$ and $d(y, Q) \geqslant 2$. Label $Q=a_{1} a_{2} a_{3} a_{4} a_{1}$ such that $N(x, Q)=$ $\left\{a_{1}, a_{2}, a_{3}\right\}$. Then we see that the lemma is true if either $a_{2} y \in E$ or $a_{4} y \in E$. If $a_{2} y \notin E$ and $a_{4} y \notin E$, then $Q^{\prime}=a_{1} a_{4} a_{3} y a_{1}$ and $e=a_{2} x$ satisfy the requirement.

Lemma 2.3. Let $Q$ be a quadrilateral and let $x$ and $y$ be two distinct vertices of $G$ not on $Q$. Suppose that $d(x, Q)+d(y, Q) \geqslant 5$ and $G[V(Q) \cup\{x, y\}]$ is not hamiltonian. Then
$G[V(Q) \cup\{x, y\}]$ contains a quadrilateral $Q^{\prime}$ with $\tau\left(Q^{\prime}\right) \geqslant \tau(Q)$ and an edge $e$ such that $Q^{\prime}$ and $e$ are independent and $e$ is incident with exactly one of $x$ and $y$.

Proof. Let $Q=a_{1} a_{2} a_{3} a_{4} a_{1}$. We may assume that $d(x, Q) \geqslant d(y, Q)$ and $\left\{a_{1}, a_{2}, a_{3}\right\} \subseteq$ $N(x, Q)$. Clearly, the lemma is true if $y a_{4} \in E$ or $d(x, Q)=4$. Hence we may assume that $y a_{4} \notin E$ and $d(x, Q)=3$. Thus $d(y, Q) \geqslant 2$. As $G[V(Q) \cup\{x, y\}]$ is not hamiltonian, we see that $\left\{a_{1}, a_{2}\right\} \nsubseteq N(y)$ and $\left\{a_{2}, a_{3}\right\} \nsubseteq N(y)$. It follows that $N(y, Q)=\left\{a_{1}, a_{3}\right\}$, and therefore $a_{2} a_{4} \notin E$ for otherwise $G[V(Q) \cup\{x, y\}]$ is hamiltonian. Let $Q^{\prime}=y a_{1} a_{4} a_{3} y$ and $P^{\prime}=x a_{2}$. Clearly, $\tau\left(Q^{\prime}\right)=\tau(Q)$, and so the lemma holds.

Lemma 2.4. Suppose that $n \geqslant 5$ and $d(x, G)+d(y, G) \geqslant n$ for every two nonadjacent vertices $x$ and $y$ of $G$. Then for each $x \in V(G), G$ has a quadrilateral $Q$ such that $G-V(Q)$ has a hamiltonian path starting at $x$ unless that $n \leqslant 6$, and in addition, if $n=5$ then $d(u, G)+d(v, G)=5$ for some two nonadjacent vertices $u$ and $v$ of $G$, and if $n=6$ then $G$ has an edge $u v$ such that $G$ has a hamiltonian path from $u$ to $v, G-u-v$ has a quadrilateral and $d(u, G)+d(v, G)=6$.

Proof. For the proof, we suppose that the lemma fails. Let $x_{0}$ be a vertex of $G$ such that $G$ does not have a quadrilateral $Q$ such that $G-V(Q)$ has a hamiltonian path starting at $x_{0}$.

First, suppose that $G-x_{0}$ does not have a quadrilateral. Let $x$ and $y$ be two arbitrary nonadjacent vertices of $G-x_{0}$. Then $\left|N\left(x, G-x_{0}\right) \cap N\left(y, G-x_{0}\right)\right| \leqslant 1$. As $d(x, G)+$ $d(y, G) \geqslant n$, we see that $N(x, G) \cup N(y, G)=V(G)-\{x, y\}, x_{0} \in N(x, G) \cap N(y, G)$ and $\left|N\left(x, G-x_{0}\right) \cap N\left(y, G-x_{0}\right)\right|=1$. Say $N(x, G) \cap N(y, G)=\left\{x_{0}, z\right\}$. Assume w.l.o.g. $d(x) \geqslant d(y)$. Suppose $d\left(x, G-x_{0}\right) \geqslant 4$. Let $\left\{x_{1}, x_{2}\right\} \subseteq N\left(x, G-x_{0}-z\right)$ with $x_{1} \neq x_{2}$. Then either $x_{1} z \notin E$ or $x_{2} z \notin E$ for otherwise $G-x_{0}$ has a quadrilateral. Say $x_{1} z \notin E$. For the same reason, $x_{1} y \notin E$ and $x_{2} y \notin E$. Similarly, we must have $N\left(x_{1}, G\right) \cup N(y, G)=V(G)-\left\{x_{1}, y\right\}$ and $\left|N\left(x_{1}, G\right) \cap N(y, G)\right|=2$. In particular, we also have that $x_{1} x_{2} \in E$. Let $y_{1} \in N\left(y, G-x_{0}-z\right)$ be such that $x_{1} y_{1} \in E$. Clearly, $x_{2} z \notin E$ and $x_{2} y_{1} \notin E$ for otherwise $G-x_{0}$ has a quadrilateral. Similarly, we have that $\left|N\left(x_{2}, G\right) \cap N(y, G)\right|=2$ and $N\left(x_{2}, G\right) \cup N(y, G)=V(G)-\left\{x_{2}, y\right\}$. Let $y_{2} \in N(y, G)$ be such that $x_{2} y_{2} \in E$. Similarly, we can show $y_{1} y_{2} \in E$, and thus $x_{1} x_{2} y_{2} y_{1} x_{1}$ is a quadrilateral in $G-x_{0}$, a contradiction. Therefore we must have $d(x, G)=3$. Thus $n \leqslant 6$. If $n=5$, we have that $d(x, G)+d(y, G)=5$ and we are done. Hence we assume $n=6$. Thus $d(x)=d(y)=3$. Let $V(G)-\left\{x_{0}, x, y, z\right\}=\left\{x_{1}, y_{1}\right\}$ be such that $\left\{x x_{1}, y y_{1}\right\} \subseteq E$. As $x y_{1} \notin E$ and $y x_{1} \notin E$, we can show, as before, that $\left\{x_{0} x_{1}, x_{0} y_{1}\right\} \subseteq E$. If $x_{1} y_{1} \notin E$, then $z \in N\left(x_{1}\right) \cap N\left(y_{1}\right)$ as $d\left(x_{1}, G\right)+d\left(y_{1}, G\right) \geqslant 6$, and consequently, the second statement of the lemma holds with $\{u, v\}=\left\{y, y_{1}\right\}$. Thus we assume that $x_{1} y_{1} \in E$. Then $z x_{1} \notin E$ and $z y_{1} \notin E$ for otherwise $G-x_{0}$ has a quadrilateral. Then $x_{0} z \in E$ as $d\left(x_{1}, G\right)+d(z, G) \geqslant 6$. Again, we see that the second statement of the lemma holds with $\{u, v\}=\left\{x_{1}, y_{1}\right\}$.

Next, suppose that $G-x_{0}$ has a quadrilateral. We now choose a quadrilateral $Q$ from $G-x_{0}$ such that

The length of a longest path starting at $x_{0}$ in $G-V(Q)$ is maximum.

Let $P$ be a longest path starting at $x_{0}$ in $G-V(Q)$. Subject to (1), we choose $Q$ and $P$ such that

$$
\begin{equation*}
\tau(Q) \text { is maximum. } \tag{2}
\end{equation*}
$$

Let $P=x_{0} x_{1} \ldots x_{t}$ and $Q=a_{1} a_{2} a_{3} a_{4} a_{1}$. We need to show that $t=n-5$. On the contrary, suppose $t<n-5$. Let $D=G-V(P \cup Q)$ and $r=|V(D)|$. Then $t=n-5-r$. Let $y_{0} \in V(D)$. By Lemma 2.1, we have

$$
\begin{equation*}
d\left(y_{0}, P\right)+d\left(x_{t}, P\right) \leqslant t+1 \tag{3}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
d\left(y_{0}, Q\right)+d\left(x_{t}, Q\right) \geqslant n-(t+1)-(r-1)=5 . \tag{4}
\end{equation*}
$$

We claim the following:
Claim A. For each $i \in\{1,2\},\left\{a_{i}, a_{i+2}\right\} \nsubseteq N\left(y_{0}, Q\right)$.
Proof of Claim A. On the contrary, say w.l.o.g. $\left\{a_{1}, a_{3}\right\} \subseteq N\left(y_{0}, Q\right)$. By (1), we see that $\left\{a_{2}, a_{4}\right\} \cap N\left(x_{t}, Q\right)=\varnothing$. Hence $d\left(y_{0}, Q\right) \geqslant 3$ by (4). Say $a_{2} y_{0} \in E$. As $\tau\left(y_{0} a_{1} a_{2} a_{3} y_{0}\right) \leqslant \tau(Q)$ by (2), we must have $a_{2} a_{4} \in E$. Thus $G\left[\left\{a_{1}, a_{2}, a_{3}, a_{4}, y_{0}\right\}-\right.$ $\left.\left\{a_{i}\right\}\right]$ contains a quadrilateral for each $i \in\{1,2,3,4\}$, and therefore $d\left(x_{t}, Q\right)=0$ by (1), contradicting with (4). Hence the claim holds.

We now divide the proof into the following two cases.
Case 1. $d\left(y_{0}, Q\right)=2$.
In this case, $d\left(x_{t}, Q\right) \geqslant 3$. By Claim $A$, we may assume w.l.o.g. $N\left(y_{0}, Q\right)=\left\{a_{1}, a_{2}\right\}$. We may also assume w.l.o.g. $\left\{a_{2}, a_{4}\right\} \subseteq N\left(x_{t}, Q\right)$ as $d\left(x_{t}, Q\right) \geqslant 3$. Then $a_{1} a_{3} \notin E$ for otherwise $y_{0} a_{1} a_{3} a_{2} y_{0}$ is a quadrilateral and $P+x_{t} a_{4}$ is longer than $P$ in $G$. As $y_{0} a_{3} \notin E$, $d\left(y_{0}, G\right)+d\left(a_{3}, G\right) \geqslant n$ and so $\left|N\left(y_{0}, G\right) \cap N\left(a_{3}, G\right)\right| \geqslant 2$. Then it is easy to see that $t \geqslant 1$. Set $Q_{1}=x_{t} a_{2} a_{3} a_{4} x_{t}$. Then we see that $x_{t-1} y_{0} \notin E$ and $x_{t-1} a_{1} \notin E$ by (1). For the same reason, $d\left(y_{0}, P-x_{t}\right)+d\left(x_{t-1}, P-x_{t}\right) \leqslant t$ and $N\left(y_{0}, D\right) \cap N\left(x_{t-1}, D\right)=\varnothing$. It follows that $d\left(y_{0}, P \cup D\right)+d\left(x_{t-1}, P \cup D\right) \leqslant n-5$, and therefore $d\left(y_{0}, Q\right)+d\left(x_{t-1}, Q\right) \geqslant$ 5. Therefore $N\left(x_{t-1}, Q\right)=\left\{a_{2}, a_{3}, a_{4}\right\}$. Furthermore, we see that $d\left(x_{t-1}, P-x_{t}\right)+$ $d\left(y_{0}, P-x_{t}\right)=t$. By Lemma 2.1, $t-1 \geqslant 1$. Let $Q_{2}=x_{t-1} x_{t} a_{3} a_{4} x_{t-1}$. Then we see that $\left\{y_{0}, a_{1}, a_{2}\right\} \cap N\left(x_{t-2}, G\right)=\varnothing$ and $N\left(y_{0}, D\right) \cap N\left(x_{t-2}, D\right)=\varnothing$. This implies that $d\left(y_{0}, P-x_{t}-x_{t-1}\right)+d\left(x_{t-2}, P-x_{t}-x_{t-1}\right) \geqslant n-5-(r-1)=t+1$. By Lemma 2.1, $G\left[V(P) \cup\left\{y_{0}\right\}-\left\{x_{t}, x_{t-1}\right\}\right]$ has a hamiltonian path $P^{\prime}$ from $x_{0}$ to $y_{0}$. Therefore $P^{\prime} y_{0} a_{1} a_{2}$ is longer than $P$ and independent of $Q_{2}$, contradicting (1).
Case 2. $d\left(y_{0}, Q\right)=1$.
We have that $d\left(x_{t}, Q\right)=4$. Say $y_{0} a_{1} \in E$. As $\left|N\left(y_{0}, G\right) \cap N\left(a_{3}, G\right)\right| \geqslant 2$, we see that $t \geqslant 1$. By (1), $a_{1} x_{t-1} \notin E$ and $y_{0} x_{t-1} \notin E$. We also have, by (1), that $N\left(y_{0}, D\right) \cap$ $N\left(x_{t-1}, D\right)=\varnothing$. It follows that $d\left(y_{0}, P-x_{t}\right)+d\left(x_{t-1}, P-x_{t}\right) \geqslant n-5-(r-1)=t+1$. By Lemma 2.1, $G\left[V(P) \cup\left\{y_{0}\right\}-\left\{x_{t}\right\}\right]$ has a hamiltonian path $P^{\prime \prime}$ from $x_{0}$ to $y_{0}$. Then $P^{\prime \prime} y_{0} a_{1}$ is longer than $P$ and independent of $x_{t} a_{2} a_{3} a_{4} x_{t}$, contradicting (1). This proves the lemma.

Lemma 2.5. Suppose that $d(x, G)+d(y, G) \geqslant n$ for every two nonadjacent vertices $x$ and $y$ of $G$. Then for any two distinct vertices $u$ and $v, G$ has a hamiltonian path from $u$ to $v$ unless either $\{u, v\}$ is a vertex-cut of $G$ or $G$ has an independent set $X$ with $|X| \geqslant n / 2$ and $\{u, v\} \subseteq V(G)-X$.

Proof. For the proof, we suppose that there exist two distinct vertices $u$ and $v$ such that $G$ does not have a hamiltonian path from $u$ to $v$ and $\{u, v\}$ is not a vertexcut of $G$. Then we shall prove that $G$ has an independent set $X$ with $|X| \geqslant n / 2$ and $\{u, v\} \subseteq V(G)-X$.

Let $P$ be a longest path of $G$ starting at one of $u$ and $v$ but not passing through the other. Let $\{u, v\}=\left\{x_{0}, x_{1}\right\}$ and $P=x_{1} x_{2} \ldots x_{t}$. Set $D=G-V(P)$ and $r=|V(D)|$. If $r=1$, then $x_{0} x_{t} \notin E$ and so $d\left(x_{0}, P\right)+d\left(x_{t}, P\right) \geqslant n$. By Lemma 2.1, $G$ has a hamiltonian path from $x_{1}$ to $x_{0}$, a contradiction. Hence $r \geqslant 2$. As $\left\{x_{0}, x_{1}\right\}$ is not a vertex-cut of $G$, we let $s$ be the smallest integer in $\{2,3, \ldots, t-1\}$ such that $d\left(x_{s}, D-x_{0}\right) \geqslant 1$. Let $y_{0} \in V(D)-\left\{x_{0}\right\}$ such that $y_{0} x_{s} \in E$. For each $y \in V(D)-\left\{x_{0}\right\}$, we must have that $d(y, P)+d\left(x_{t}, P\right) \leqslant t$ by Lemma 2.1, and therefore $d(y, D)+d\left(x_{t}, D\right) \geqslant r$. Thus $d\left(x_{t}, D\right)>0$. It follows that $N\left(x_{t}, D\right)=\left\{x_{0}\right\}$ and $D$ is a complete subgraph of $G$. Furthermore, $d(y, P)+d\left(x_{t}, P\right)=t$ for each $y \in V(D)-\left\{x_{0}\right\}$. Let $L_{1}=x_{1} x_{2} \ldots x_{s}$ and $L_{2}=x_{s+1} x_{s+2} \ldots x_{t}$. Set $I=\left\{x_{i-1} \mid x_{i} y_{0} \in E, s+1 \leqslant i \leqslant t-1\right\}$. Clearly, $y_{0} x_{s+1} \notin E$ and $N\left(x_{t}, L_{2}\right) \cap I=\varnothing$ for otherwise $G\left[V(P) \cup\left\{y_{0}\right\}\right]$ has a hamiltonian path starting at $x_{1}$. This implies that $d\left(y_{0}, L_{2}\right)+d\left(x_{t}, L_{2}\right) \leqslant\left|V\left(L_{2}\right)\right|-1=t-s-1$, and thus $d\left(y_{0}, L_{1}\right)+d\left(x_{t}, L_{1}\right) \geqslant s+1$. As $x_{0} y_{0} x_{s} x_{s+1} x_{s+2} \ldots x_{t}$ is a path in $G$ and by the maximality of $P$, we must have $s \geqslant 3$. Clearly, $x_{s-1} x_{t} \notin E$ for otherwise $x_{1} x_{2} \ldots x_{s-1} x_{t} x_{t-1} \ldots x_{s} y_{0}$ is a longer path than $P$ in $G$. Therefore $N\left(x_{t}, L_{1}\right)=V\left(L_{1}\right)-\left\{x_{s-1}\right\}$ and $y_{0} x_{1} \in E$. If $s \geqslant 4$, then $x_{0} y_{0} x_{s} x_{s+1} \ldots x_{t} x_{2} x_{3} \ldots x_{s-1}$ is a longer path than $P$ in $G$, a contradiction. Hence $s=3$. If $r \geqslant 3$ then $x_{0} y^{\prime} y_{0} x_{3} x_{4} \ldots x_{t}$ is a longer path than $P$ in $G$ with $y^{\prime} \in$ $V(D)-\left\{x_{0}, y_{0}\right\}$, a contradiction. Hence $r=2$. Let $P^{\prime}=x_{0} y_{0} x_{3} x_{4} \ldots x_{t}$. Then $P^{\prime}$ is a path in $G$ starting at $x_{0}$ without passing through $x_{1}$. Furthermore, $P^{\prime}$ and $P$ have the same length. Therefore we may assume w.l.o.g. that $d\left(y_{0}, G\right) \geqslant n / 2$ as $d\left(y_{0}, G\right)+d\left(x_{2}, G\right) \geqslant n$. Let $X=\left\{x_{i+1} \mid x_{i} y_{0} \in E, 1 \leqslant i \leqslant t-1\right\} \cup\left\{y_{0}\right\}$. We see that $X$ is an independent set of $G$ for otherwise $G\left[V(P) \cup\left\{y_{0}\right\}\right]$ has a hamiltonian path starting at $x_{1}$. Clearly, $|X| \geqslant n / 2$ and $\left\{x_{0}, x_{1}\right\} \subseteq V(G)-X$. This proves the lemma.

Lemma 2.6. [7] If $P=x_{1} x_{2} \ldots x_{m}$ is a path of $G$ with $m \geqslant 3$ such that $d\left(x_{1}, P\right)+$ $d\left(x_{m}, P\right) \geqslant m$, then $G$ has a cycle $C$ such that $V(C)=V(P)$. Moreover, if $d(x, G)+$ $d(y, G) \geqslant n$ for any two nonadjacent vertices $x$ and $y$ of $G$, then $G$ is hamiltonian.

Lemma 2.7. Let $t$ be a positive integer and let $G$ be a graph of order $n \geqslant 4 t$. Suppose that $d(x) \geqslant\lceil n / 2\rceil$ for each $x \in V(G)$. Then $G$ has $t$ independent quadrilaterals $Q_{1}, Q_{2}, \ldots, Q_{t}$ such that $G-V\left(\cup_{i=1}^{t} Q_{i}\right)$ has a hamiltonian path.

Proof. Let $r=n-4 t$. We use induction on $r$ to prove the lemma. When $r \in\{0,1,4\}$, the lemma is true by Theorem $A$ and Theorem $B$. Suppose $r=2$. Then $G$ has $t$ independent quadrilaterals $Q_{1}, \ldots, Q_{t}$ by Theorem $B$. If the two vertices of $G-V\left(\cup_{i=1}^{t} Q_{i}\right)$, say $x$ and $y$, are not adjacent, then we would have that $d\left(x, \cup_{i=1}^{t} Q_{i}\right)+d\left(y, \cup_{i=1}^{t} Q_{i}\right) \geqslant 4 t+2$,
and therefore $d\left(x, Q_{i}\right)+d\left(y, Q_{i}\right) \geqslant 5$ for some $i \in\{1,2, \ldots, t\}$. By Lemma 2.2, the lemma holds. Next, suppose $r=3$. Using the above proof, we see that $G$ has $t$ independent quadrilaterals $Q_{1}, \ldots, Q_{t}$ such that $G-V\left(\cup_{i=1}^{t} Q_{i}\right)$ has at least one edge. Subject to this, we let $\sum_{i=1}^{t} \tau\left(Q_{i}\right)$ be as large as possible. Let $V(G)-V\left(\cup_{i=1}^{t} Q_{i}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}$ be such that $x_{1} x_{2} \in E$. If $x_{3} x_{1} \in E$ or $x_{3} x_{2} \in E$, we have nothing to prove. Hence we assume that $x_{3} x_{1} \notin E$ and $x_{3} x_{2} \notin E$. Then we see that there exists $Q_{i}$, say $Q_{i}=Q_{1}$, such that $d\left(x_{1}, Q_{1}\right)+d\left(x_{3}, Q_{1}\right) \geqslant 5$. By Lemma 2.2, $G\left[V\left(Q_{1}\right) \cup\left\{x_{1}, x_{3}\right\}\right]$ contains a quadrilateral $Q_{1}^{\prime}$ and an edge $e$ such that $Q_{1}^{\prime}$ and $e$ are indepedent and $e$ is incident with exactly one of $x_{1}$ and $x_{3}$. If $e$ is incident with $x_{1}$, then $e$ and $x_{1} x_{2}$ together contains a path of order 3 and we are done. Therefore we may assume that $e$ is incident with $x_{3}$. Say $y_{1} \in V\left(Q_{1}\right)$ with $y_{1} x_{3} \in E$. Let $Q_{1}=a_{1} a_{2} a_{3} a_{4} a_{1}$. Suppose that $d\left(x_{3}, Q_{1}\right) \geqslant 3$. Say $N\left(x_{3}, Q_{1}\right) \supseteq\left\{a_{1}, a_{2}, a_{3}\right\}$. Then $\tau\left(x_{3} a_{1} a_{2} a_{3} x_{3}\right) \geqslant \tau\left(Q_{1}\right)$ with equality only if $a_{2} a_{4} \in E$. By our choice of $Q_{i}(1 \leqslant i \leqslant t)$, we must have that $a_{2} a_{4} \in E$. Thus for each $i \in\{1,2,3,4\}$, $G\left[\left\{a_{1}, a_{2}, a_{3}, a_{4}, x_{3}\right\}-\left\{a_{i}\right\}\right]$ contains a quadrilateral. As $d\left(x_{1}, Q_{1}\right) \geqslant 1$, we see that the lemma holds. Hence we may assume that $d\left(x_{3}, Q_{1}\right) \leqslant 2$. Thus $d\left(x_{1}, Q_{1}\right) \geqslant 3$. Suppose that we also have that $d\left(x_{2}, Q_{1}\right)+d\left(x_{3}, Q_{1}\right) \geqslant 5$. Then $d\left(x_{2}, Q_{1}\right) \geqslant 3$. This implies that there exists $\{i, j\} \subseteq\{1,2,3,4\}$ with $i \neq j$ such that $x_{1} a_{i} a_{i+1} x_{2} x_{1}$ and $x_{1} a_{j} a_{j+1} x_{2} x_{1}$ are two quadrilaterals in $G$. Thus the lemma holds if $x_{3}$ is adjacent to some vertex of $\left\{a_{i+2}, a_{i+3}, a_{j+2}, a_{j+3}\right\}$. Hence we may assume that $x_{3}$ is not adjacent to any vertex of this set, which implies that $d\left(x_{3}, Q_{1}\right) \leqslant 1$. It follows that $d\left(x_{1}, Q_{1}\right)=d\left(x_{2}, Q_{1}\right)=4$ and $d\left(x_{3}, Q_{1}\right)=1$, and clearly, the lemma holds in this situation, too. To finish the proof, we finally assume that $d\left(x_{2}, Q_{1}\right)+d\left(x_{3}, Q_{1}\right) \leqslant 4$. Then $d\left(x_{2}, \cup_{i=2}^{t} Q_{i}\right)+d\left(x_{3}, \cup_{i=2}^{t} Q_{i}\right) \geqslant$ $4 t+2-5=4(t-1)+1$. This implies that there exists $Q_{i}$ with $i \geqslant 2$, say $i=2$, such that $d\left(x_{2}, Q_{2}\right)+d\left(x_{3}, Q_{2}\right) \geqslant 5$. As above, with $Q_{2}$ and $x_{2}$ in place of $Q_{1}$ and $x_{1}$, we may assume that $Q_{2}$ has a vertex $y_{2}$ such that $G\left[V\left(Q_{2}\right) \cup\left\{x_{2}\right\}-\left\{y_{2}\right\}\right]$ contains a quadrilateral $Q_{2}^{\prime}$ and $x_{3} y_{2} \in E$. Since $y_{1} x_{3} y_{2}$ is a path in $G$, we see the lemma holds. Therefore the lemma holds if $r \leqslant 4$. We now assume that the lemma is true if the value of $(n-4 t)$ is less than $r$ with $r \geqslant 5$. Say $n-4 t=r$. Then $n-4(t+1)=r-4$. By the induction hypothesis, $G$ has $t+1$ independent quadrilaterals $Q_{1}, \ldots, Q_{t+1}$ such that $G-V\left(\cup_{i=1}^{t+1} Q_{i}\right)$ has a path $P$ of order $r-4$. Let $P=x_{1} x_{2} \ldots x_{r-4}$. Then we may assume that for each $j \in\{1,2, \ldots, t+1\}, d\left(x_{1}, Q_{j}\right)=d\left(x_{r-4}, Q_{j}\right)=0$ holds for otherwise $G\left[V\left(Q_{j} \cup P\right)\right]$ has a hamiltonian path and we are done. Thus $d\left(x_{1}, P\right)+d\left(x_{r-4}, P\right) \geqslant n$, and by Lemma 2.6, $G[V(P)]$ is hamiltonian. As $G$ is connected, there exists $Q_{j}$ such that $\sum_{i=1}^{r-4} d\left(x_{i}, Q_{j}\right)>0$ and therefore $G\left[V\left(Q_{j} \cup P\right)\right]$ has a hamiltonian path. Thus the lemma is true for $n-4 t=r$. This proves the lemma.

Lemma 2.8. [5] Let $C=x_{1} x_{2} \ldots x_{m} x_{1}$ be a cycle of $G$. Let $x_{i}, x_{j} \in V(C)$ with $i \neq j$. If $d\left(x_{i}, C\right)+d\left(x_{j}, C\right) \geqslant m+1$, then $G$ has a path $P$ from $x_{i+1}$ to $x_{j+1}$ such that $V(P)=V(C)$.

Lemma 2.9. Suppose that $G$ has a hamiltonian path and that $d(x, G)+d(y, G) \geqslant n+s$ for any two endvertices $x$ and $y$ of a hamiltonian path of $G$, where $s$ is a fixed nonnegative integer. Then for any two distinct vertices $u$ and $v$ of $G, d(u, G)+d(v, G) \geqslant n+s$ holds.

Proof. By Lemma 2.6, $G$ is hamiltonian. Let $C=x_{1} x_{2} \ldots x_{n} x_{1}$ be a hamiltonian cycle. Suppose, for a contradiction, that $d\left(x_{i}, G\right)+d\left(x_{j}, G\right) \leqslant n+s-1$ for some $1 \leqslant i<$
$j \leqslant n$. By the hypothesis, $d\left(x_{i-1}, G\right)+d\left(x_{i}, G\right) \geqslant n+s$ and $d\left(x_{j-1}, G\right)+d\left(x_{j}, G\right) \geqslant n+s$. Then we see that $d\left(x_{i-1}, G\right)+d\left(x_{j-1}, G\right) \geqslant n+s+1$. By Lemma 2.8, $G$ has a hamiltonian path from $x_{i}$ to $x_{j}$, and by the hypothesis again, $d\left(x_{i}, G\right)+d\left(x_{j}, G\right) \geqslant n+s$, a contradiction.

## 3 Proof of Theorem $C$

Let $k$ be a positive integer and $G$ a graph of order $n \geqslant 4 k$. Assume $\delta(G) \geqslant\lceil n / 2\rceil$. Suppose, for a contradiction, that $G$ does not contain $k$ independent cycles covering all the vertices of $G$ such that $k-1$ of them are quadrilaterals. By Theorem $A, n>4 k$.

Let $t=n-4(k-1)$. By Lemma 2.7, $G$ has $k$ independent quadrilaterals $Q_{1}, \ldots, Q_{k}$ such that $G-V\left(\cup_{i=1}^{k} Q_{i}\right)$ has a hamiltonian path $P$. If $t-4=1$, then we readily see that $d\left(u, Q_{i}\right) \geqslant 3$ where $V(P)=\{u\}$ for some $i \in\{1, \ldots, k\}$ because $\delta(G) \geqslant\lceil n / 2\rceil$ and so $G\left[V\left(Q_{i} \cup P\right)\right]$ is hamiltonian, a contradiction. Hence we have $t-4 \geqslant 2$. For convenience, let $r=t-4$. As $G\left[V\left(Q_{i} \cup P\right)\right]$ is not hamiltonian, for any two endvertices $u$ and $v$ of a hamiltonian path of $G-V\left(\cup_{i=1}^{k} Q_{i}\right)$, we have

$$
\begin{equation*}
d\left(u, Q_{i}\right)+d\left(v, Q_{i}\right) \leqslant 4 \text { for all } i \in\{1, \ldots, k\} \tag{5}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
d\left(u, G-V\left(\cup_{i=1}^{k} Q_{i}\right)\right)+d\left(v, G-V\left(\cup_{i=1}^{k} Q_{i}\right)\right) \geqslant r+\sigma \tag{6}
\end{equation*}
$$

where $\sigma=1$ if $r$ is odd and otherwise $\sigma=0$. By Lemma 2.6, $G-V\left(\cup_{i=1}^{k} Q_{i}\right)$ is hamiltonian if $r \geqslant 3$. Let $H=\cup_{i=1}^{k} Q_{i}$ and $D=G-V(H)$. By (6) and Lemma 2.9, we have

$$
\begin{equation*}
d(x, D)+d(y, D) \geqslant r+\sigma \text { for all }\{x, y\} \subseteq V(D) \text { with } x \neq y \tag{7}
\end{equation*}
$$

We now divide the proof into the following two cases.
Case 1. $r \geqslant 5$.
In this case, By (7), $D$ is hamiltonian. We choose a hamiltonian path $P$ of $D$ as follows. If for each $x \in V(D), D$ has a quadrilateral $Q$ such that $D-V(Q)$ has a hamiltonian path starting at $x$, let $P$ be a hamiltonian path with an endvertex $u$ such that $d\left(u, Q_{i}\right) \geqslant 1$ for some $i \in\{1, \ldots, k\}$. Such a path exists because $G$ is connected. We may assume $e\left(u, Q_{1}\right) \geqslant 1$ in this case. Otherwise by (7) and Lemma 2.4, we see that $\sigma=0$ and $D$ has order 6. Furthermore, $D$ has an edge $u v$ such that $D$ has a hamiltonian path $P$ from $u$ to $v, D-u-v$ has a quadrilateral and $d(u, D)+d(v, D)=6$. Then equality holds in (5) and (6) with respect to $\{u, v\}$, and therefore $d\left(u, Q_{i}\right)+d\left(v, Q_{i}\right) \geqslant 1$ for some $i \in\{1, \ldots, k\}$. In this case, we may assume $d\left(u, Q_{1}\right) \geqslant 1$. In the former case, let $Q_{1}^{\prime}$ be a quadrilateral of $D$ such that $D-V\left(Q_{1}^{\prime}\right)$ has a hamiltonian path starting at $u$. Subject to this, we further choose $Q_{1}^{\prime}$ such that $D-V\left(Q_{1}^{\prime}\right)$ does not contain a vertex-cut of cardinality 2 if there exists such a choice. In the latter, let $Q_{1}^{\prime}$ be a quadrilateral of $D-u-v$ and $P=u v$. Set $D^{\prime}=G\left[V\left(D \cup Q_{1}\right)-V\left(Q_{1}^{\prime}\right)\right]$. As $d\left(u, Q_{1}\right) \geqslant 1, D^{\prime}$ has a hamiltonian path.

Replacing $Q_{1}^{\prime}$ and $D^{\prime}$ in the above proof of (5), (6) and (7), we see that $D^{\prime}$ is hamiltonian, too. Let $L$ be a hamiltonian cycle of $D^{\prime}$. Then the number of edges of $L$ in
between $Q_{1}$ and $D^{\prime}-V\left(Q_{1}\right)$ must be even. This allows us to see that there exist two independent edges $x_{1} y_{1}$ and $x_{2} y_{2}$ between $Q_{1}$ and $D^{\prime}-V\left(Q_{1}\right)$ with $\left\{y_{1}, y_{2}\right\} \subseteq V\left(Q_{1}\right)$ such that $G\left[V\left(Q_{1}\right)\right]$ has a hamiltonian path from $y_{1}$ to $y_{2}$. If $D$ has a hamiltonian path from $x_{1}$ to $x_{2}$, then $G\left[V\left(D \cup Q_{1}\right)\right]$ is hamiltonian and we are done. By Lemma 2.5, we see that either $\left\{x_{1}, x_{2}\right\}$ is a vertex-cut of $D$ or $D$ has an independent set $X$ with $|X| \geqslant r / 2$ and $\left\{x_{1}, x_{2}\right\} \subseteq V(D)-X$. Let us first assume that $\left\{x_{1}, x_{2}\right\}$ is a vertex-cut of $D$. By (7), we see that $D-x_{1}-x_{2}$ has exactly two components, say $D_{1}$ and $D_{2}$ such that $D_{1} \cong D_{2} \cong K_{(r-2) / 2}$ and $d\left(x_{1}, D_{1} \cup D_{2}\right)=d\left(x_{2}, D_{1} \cup D_{2}\right)=r-2$. As $D_{1} \cup D_{2} \supseteq Q_{1}^{\prime}$, we see that $r \geqslant 10$. Let $Q_{1}^{\prime \prime}$ be a quadrilateral in $D_{1}+x_{1}$ with $x_{1} \in V\left(Q_{1}^{\prime \prime}\right)$. Let $z_{1} \in V\left(D_{1}\right)-V\left(Q_{1}^{\prime \prime}\right)$ and $z_{2} \in V\left(D_{2}\right)$. Clearly, $d\left(z_{1}, D\right)+d\left(z_{2}, D\right)=r$ and $D-V\left(Q_{1}^{\prime \prime}\right)$ has a hamiltonian path from $z_{1}$ to $z_{2}$. Then equality holds in (5) and (6) with respect to $\left\{z_{1}, z_{2}\right\}$. It follows that $d\left(z_{j}, Q_{i}\right) \geqslant 1$ for some $j \in\{1,2\}$ and $i \in\{1, \ldots, k\}$. But $D-V\left(Q_{1}^{\prime \prime}\right)$ does not contain a vertex-cut of $D$ with cardinality 2 . This contradicts the choice of $Q_{1}^{\prime}$. Therefore $D$ has an independent set $X$ with $|X| \geqslant r / 2$ and $\left\{x_{1}, x_{2}\right\} \subseteq V(D)-X$. By (7), we see that $|X|=r / 2$ and $D$ contains a complete bipartite subgraph with $(X, V(D)-X)$ as its bipartition. As mentioned in the beginning of this paragraph, $D^{\prime}$ is hamiltonian and so we readily see that $d\left(x, Q_{1}\right)>0$ for some $x \in X$. It follows that $G\left[V\left(D \cup Q_{1}\right)\right]$ is hamiltonian, a contradiction.
Case $2.2 \leqslant r \leqslant 4$.
In this case, we choose the $k$ independent quadrilaterals $Q_{1}, \ldots, Q_{k}$ and the path $P$ of order $r$ such that

$$
\begin{equation*}
\sum_{i=1}^{k} \tau\left(Q_{i}\right) \text { is maximum. } \tag{8}
\end{equation*}
$$

By (6), $D$ is hamiltonian if $r \geqslant 3$. We break into the following three cases.
Case 2.1. $r=3$.
Then $D$ is a triangle, say $D=x_{1} x_{2} x_{3} x_{1}$. We have that $\sum_{i=1}^{3} d\left(x_{i}, H\right) \geqslant 3\lceil n / 2\rceil-6=$ $3(2 k+2)-6=6 k$. This implies that there exists $Q_{i}$ in $H$, say $Q_{i}=Q_{1}$, such that $\sum_{i=1}^{3} d\left(x_{i}, Q_{1}\right) \geqslant 6$. This further implies that there exist two independent edges $e_{1}$ and $e_{2}$ between $D$ and $Q_{1}$. Say $Q_{1}=a_{1} a_{2} a_{3} a_{4} a_{1}$. As $G\left[V\left(D \cup Q_{1}\right)\right]$ is not hamiltonian, we may assume that $e_{1}=a_{1} x_{1}$ and $e_{2}=a_{3} x_{2}$, and then we see that $d\left(a_{2}, D\right)=d\left(a_{4}, D\right)=0$ and $a_{2} a_{4} \notin E$. Consequently, $d\left(a_{1}, D\right)=d\left(a_{3}, D\right)=3$. Let $Q_{1}^{\prime}$ be a quadrilateral of $D+a_{1}$ and $P^{\prime}=a_{2} a_{3} a_{4}$. Clearly, $\tau\left(Q_{1}^{\prime}\right)>\tau\left(Q_{1}\right)$, contradicting (8).
Case 2.2. $r=4$.
Since $G$ is hamiltonian, we have nothing to prove when $k=1$. Therefore $k \geqslant 2$. Let $Q_{0}=x_{1} x_{2} x_{3} x_{4} x_{1}$ be a quadrilateral of $D$. Clearly, $\sum_{i=1}^{4} d\left(x_{i}, H\right) \geqslant 4\lceil n / 2\rceil-12=$ $8(k+1)-12=6 k+2 k-4$. This implies that there exists $Q_{i}$ in $H$, say $Q_{i}=Q_{1}$, such that $\sum_{i=1}^{4} d\left(x_{i}, Q_{1}\right) \geqslant 6$. This further implies that there exists two independent edges, say $u_{1} w_{1}$ and $u_{2} w_{2}$ with $\left\{u_{1}, u_{2}\right\} \subseteq V\left(Q_{0}\right)$ and $\left\{w_{1}, w_{2}\right\} \subseteq V\left(Q_{1}\right)$, between $Q_{0}$ and $Q_{1}$ such that either $u_{1} u_{2} \in E\left(Q_{0}\right)$ or $w_{1} w_{2} \in E\left(Q_{1}\right)$. We may assume w.l.o.g. that $w_{1} w_{2} \in E\left(Q_{1}\right)$. Therefore $u_{1} u_{2} \notin E\left(Q_{0}\right)$ as $G\left[V\left(Q_{0} \cup Q_{1}\right)\right]$ is not hamiltonian. Say w.l.o.g.
$\left\{u_{1}, u_{2}\right\}=\left\{x_{1}, x_{3}\right\}$. Then for the same reason, we see that $d\left(x_{2}, Q_{1}\right)=d\left(x_{4}, Q_{1}\right)=0$ and $x_{2} x_{4} \notin E$. Thus $d\left(x_{2}, H-V\left(Q_{1}\right)\right)+d\left(x_{4}, H-V\left(Q_{1}\right)\right) \geqslant 2\lceil n / 2\rceil-4=4(k-1)+4$. This implies that there exists $Q_{i}$ in $H-V\left(Q_{1}\right)$, say $Q_{i}=Q_{2}$, such that $d\left(x_{2}, Q_{2}\right)+d\left(x_{4}, Q_{2}\right) \geqslant 5$. As $G\left[V\left(Q_{0} \cup Q_{2}\right)\right]$ is not hamiltonian, we see that $x_{1} x_{3} \notin E$. Then equality holds in (5) and (6) with respect to $\left\{x_{j}, x_{j+1}\right\}$ for each $j \in\{1,2,3,4\}$ and $i \in\{1,2, \ldots, k\}$, that is, $d\left(x_{j}, Q_{i}\right)+d\left(x_{j+1}, Q_{i}\right)=4$ for each $j \in\{1,2,3,4\}$ and $j \in\{1,2, \ldots, k\}$. Thus $d\left(x_{1}, Q_{1}\right)=d\left(x_{3}, Q_{1}\right)=4$. As $d\left(x_{2}, Q_{2}\right)+d\left(x_{4}, Q_{2}\right) \geqslant 5$, it is also easy to see that $d\left(x_{1}, Q_{2}\right)=d\left(x_{3}, Q_{2}\right)=0$ for otherwise $G\left[V\left(Q_{0} \cup Q_{2}\right)\right]$ is hamiltonian. Thus $d\left(x_{2}, Q_{2}\right)=$ $d\left(x_{4}, Q_{2}\right)=4$ and $d\left(x_{1}, Q_{1}\right)=d\left(x_{3}, Q_{1}\right)=4$. Let $y$ be an arbitrary vertex of $Q_{1}$ and $z$ an arbitrary vertex of $Q_{2}$. Clearly, $Q_{1}-y+x_{3}$ and $Q_{2}-z+x_{4}$ are hamiltonian and $y x_{1} x_{2} z$ is a path in $G$. Similar to the proof of (6), we see that $G\left[\left\{y, x_{1}, x_{2}, z\right\}\right]$ must be hamiltonian. Consequently, $y z \in E$. This argument implies that $d\left(w, Q_{2}\right)=4$ for all $w \in V\left(Q_{1}\right)$. It follows that $G\left[V\left(Q_{0} \cup Q_{1} \cup Q_{2}\right)-\left\{y, x_{1}, x_{2}, z\right\}\right]$ is hamiltonian and we are done.
Case 2.3. $r=2$.
Let $D=x_{1} x_{2}$. As $\delta(G) \geqslant 2 k+1$ and by (5) and (6), we see that $d\left(x_{1}, Q_{i}\right)+d\left(x_{2}, Q_{i}\right)=4$ for all $i \in\{1,2, \ldots, k\}$. We claim that for each $i \in\{1,2, \ldots, k\}$, either $d\left(x_{1}, Q_{i}\right)=0$ or $d\left(x_{2}, Q_{i}\right)=0$. If this is not true, say $d\left(x_{1}, Q_{1}\right)>0$ and $d\left(x_{2}, Q_{1}\right)>0$. Let $Q_{1}=a_{1} a_{2} a_{3} a_{4} a_{1}$ with $x_{1} a_{1} \in E$. As $G\left[V\left(D \cup Q_{1}\right)\right]$ is not hamiltonian, we see that $N\left(x_{1}, Q_{1}\right)=N\left(x_{2}, Q_{1}\right)=$ $\left\{a_{1}, a_{3}\right\}$ and $a_{2} a_{4} \notin E$. Let $Q_{1}^{\prime}=x_{1} a_{1} x_{2} a_{3} x_{1}$. Clearly, $\tau\left(Q_{1}^{\prime}\right)=\tau\left(Q_{1}\right)+1$. We also have that $d\left(a_{2}, H-V\left(Q_{1}\right)\right)+d\left(a_{4}, H-V\left(Q_{1}\right)\right) \geqslant 2(2 k+1)-4=4(k-1)+2$. This implies that there exists $Q_{i}$ in $H-V\left(Q_{1}\right)$, say $Q_{i}=Q_{2}$, such that $d\left(a_{2}, Q_{2}\right)+d\left(a_{4}, Q_{2}\right) \geqslant 5$. As $G\left[V\left(Q_{2}\right) \cup\left\{a_{2}, a_{4}\right\}\right]$ is not hamiltonian and by Lemma 2.3, $G\left[V\left(Q_{2}\right) \cup\left\{a_{2}, a_{4}\right\}\right]$ has a quadrilateral $Q_{2}^{\prime}$ and a path $P^{\prime}$ of order 2 such that $\tau\left(Q_{2}^{\prime}\right) \geqslant \tau\left(Q_{2}\right)$ and $V\left(Q_{2}^{\prime}\right) \cap V\left(P^{\prime}\right)=\varnothing$. Replacing $Q_{1}$ and $Q_{2}$ by $Q_{1}^{\prime}$ and $Q_{2}^{\prime}$, we see that (8) is violated. Therefore our claim holds.

Next, we claim that $G\left[N\left(x_{1}, G-x_{2}\right)\right]$ is a complete subgraph of $G$ and $G\left[N\left(x_{2}, G-x_{1}\right)\right]$ is a complete subgraph of $G$. For the proof, let $u$ be an arbitrary vertex of $N\left(x_{1}, G-x_{2}\right)$. We shall show that $u$ is adjacent to every vertex of $N\left(x_{1}, G-x_{2}-u\right)$. Let $Q_{1}=a_{1} a_{2} a_{3} a_{4} a_{1}$. Say w.l.o.g. $u=a_{1}$. Let $G_{1}=G\left[V\left(D \cup Q_{1}\right)\right]$ and $H_{1}=H-V\left(Q_{1}\right)$. Then $d\left(x_{2}, H_{1}\right)+$ $d\left(a_{1}, H_{1}\right) \geqslant 2(2 k+1)-5=4(k-1)+1$. This implies that there exists $Q_{i}$ in $H_{1}$, say $Q_{i}=Q_{2}$, such that $d\left(x_{2}, Q_{2}\right)+d\left(a_{1}, Q_{2}\right) \geqslant 5$. Thus we must have $d\left(x_{2}, Q_{2}\right)=4$ and $d\left(x_{1}, Q_{2}\right)=0$. If $d\left(a_{1}, Q_{2}\right) \geqslant 2$, then $G\left[V\left(Q_{2}\right) \cup\left\{x_{2}, a_{1}\right\}\right]$ is hamiltonian. As $Q_{1}-a_{1}+x_{1}$ is hamiltonian, the theorem holds, a contradiction. Hence $d\left(a_{1}, Q_{2}\right)=1$. Let $Q_{2}=b_{1} b_{2} b_{3} b_{4} b_{1}$ with $a_{1} b_{1} \in E$. Similarly, we must have that $d\left(b_{1}, Q_{1}\right)=1$. Replacing $Q_{1}$ and $Q_{2}$ by $Q_{1}^{\prime}=x_{1} a_{2} a_{3} a_{4} x_{1}$ and $Q_{2}^{\prime}=x_{2} b_{2} b_{3} b_{4} x_{2}$, we see, by (8), that $\left\{a_{1} a_{3}, b_{1} b_{3}\right\} \subseteq E$. Note that this argument implies that $G\left[V\left(Q_{i}\right)\right]$ is a complete graph of order 4 for all $i \in\{1, \ldots, k\}$. With respect to the choice of $\left\{a_{1} b_{1}, Q_{1}^{\prime}, Q_{2}^{\prime}, Q_{3}, \ldots, Q_{k}\right\}$, we can also show that for each $i \in\{3, \ldots, k\}$, either $d\left(a_{1}, Q_{i}\right)=4$ or $d\left(b_{1}, Q_{i}\right)=4$. If there exists $Q_{i}$ in $\left\{Q_{3}, \ldots, Q_{k}\right\}$ such that $d\left(x_{1}, Q_{i}\right)=d\left(b_{1}, Q_{i}\right)=4$, then we would see that each of $Q_{i}+x_{1}+b_{1}$ and $Q_{2}-b_{1}+x_{2}$ is hamiltonian and we are done. Hence we must have $d\left(a_{1}, Q_{i}\right)=4$ for each $i \in\{3, \ldots, k\}$ with $d\left(x_{1}, Q_{i}\right)=4$. Therefore $G\left[N\left(x_{1}, G-x_{2}\right)\right]$ is a complete subgraph of $G$. Similarly, $G\left[N\left(x_{2}, G-x_{1}\right)\right]$ is a complete subgraph of $G$. The above argument also implies that $d\left(w, G\left[N\left(x_{i}, G-x_{j}\right)\right]\right)=1$ for each $w \in N\left(x_{j}, G-x_{i}\right)$ with $\{i, j\}=\{1,2\}$, that is, there are $2 k$ independent edges between $N\left(x_{1}, G-x_{2}\right)$ and $N\left(x_{2}, G-x_{1}\right)$. It is
easy to see that $G$ contains $k$ required independent cycles in this case. This completes the proof of the theorem.

## References

[1] N. Alon and R. Yuster, $H$-factors in dense graphs, Journal of Combinatorial Theory, Series B, 66(1996), 269-282.
[2] B. Bollobás, Extremal Graph Theory, Academic Press, London (1978).
[3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14(1963), 423-439.
[4] M.H. El-Zahar, On circuits in graphs, Discrete Mathematics, 50(1984), 227-230.
[5] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hung. 10(1959), 337-356.
[6] P. Erdős, Some recent combinatroial problems, Technical Report, University of Bielefeld, Nov. 1990.
[7] O. Ore, Note on Hamilton circuits, Am. Math. Monthly, 67 (1960), 55.
[8] H. Wang, Covering a graph with cycles, Journal of Graph Theory, 20(1995), 203-221.
[9] H. Wang, Vertex-disjoint quadrilaterals in graphs, Discrete Mathematics, 288(2004), 149-166.
[10] H. Wang, Disjoint triangles and quadrilaterals in a graph, Central European Journal of Mathematics, 6(2008), 543-558.
[11] H. Wang, Proof of the Erdős-Faudree Conjecture on Quadrilaterals, Graphs and Combinatorics, 26(2010), 833-877.

