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Abstract

Let G be a graph of order n > 4k, where k is a positive integer. Suppose that the
minimum degree of G is at least dn/2e. We show that G contains k vertex-disjoint
cycles covering all the vertices of G such that k − 1 of them are quadrilaterals.
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1 Introduction

Let G be a graph. A set of subgraphs of G is said to be independent if no two of them have
any common vertex in G. Corrádi and Hajnal [3] investigated the maximum number of
independent cycles in a graph. They proved that if G is a graph of order at least 3k with
minimum degree at least 2k, then G contains k independent cycles. In particular, when
the order of G is exactly 3k, then G contains k independent triangles. A cycle of length 4
is called a quadrilateral. Erdős and Faudree [6] conjectured that if G is a graph of order
4k with minimum degree at least 2k, then G contains k independent quadrilaterals. Alon
and Yuster [1] proved that for any ε > 0, there exists k0 such that if G is a graph of order
4k and has minimum degree at least (2 + ε)k with k > k0, then G contains k independent
quadrilaterals. We proved this conjecture in [11], that is

Theorem A [11] If G is a graph of order 4k and the minimum degree of G is at least 2k,
then G contains k independent quadrilaterals.

In [9], we proved the following theorem.

Theorem B [9] Let G be a graph of order n with 4k + 1 6 n 6 4k + 4, where k is
a positive integer. Suppose that the minimum degree of G is at least 2k + 1. Then G
contains k independent quadrilaterals.

In [4], El-Zahar conjectured that if G is a graph of order n = n1 + n2 + · · · + nk,
where each ni is an integer at least 3, such that δ(G) > dn1/2e + dn2/2e + · · · + dnk/2e,
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then G contains k independent cycles of lengths n1, n2, . . . , nk, respectively. Clearly, this
conjecture generalizes the above conjecture by Erdős and Faudree. In [8], we confirmed
the El-Zahar’s conjecture for the case n1 = · · · = nk−1 = 3 and nk > 3. In this paper, we
will prove the following theorem:

Theorem C Let G be a graph of order n > 4k, where k is a positive integer. Suppose
that the minimum degree of G is at least dn/2e. Then G contains k independent cycles
covering all the vertices of G such that k − 1 of them are quadrilaterals.

The minimum degree condition in the theorem is sharp. To see this, we just need to
observe K(n−1)/2,(n+1)/2 when n is odd and K(n−2)/2,(n+2)/2 when n is even.

We discuss only finite simple graphs and use standard terminology and notation from
[2] except as indicated. Let G be a graph. For a vertex u ∈ V (G) and a subgraph H
of G or a subset H of V (G), N(u,H) is the set of neighbors of u contained in H. We
let d(u,H) = |N(u,H)|. Thus d(u,G) is the degree of u in G. For a subset U of V (G),
G[U ] denotes the subgraph of G induced by U . For a subset X of V (G), we use G −X
to denote G[V (G)−X]. If u ∈ V (G), we also write G− {u} as G− u.

If C = x1x2 . . . xmx1 is a cycle, then the subscripts of xi’s will be taken modulo by m
in {1, 2, . . . ,m}. A chord of a cycle C in G is an edge of G−E(C) that joins two vertices
of C. We use τ(C) to denote the number of chords of C in G.

2 Lemmas

In the following, G = (V,E) is a graph of order n > 3.

Lemma 2.1. Let P = x1 . . . xk be a path and u a vertex in G such that u 6∈ V (P ) and
d(u, P ) + d(xk, P ) > k. Then either G has a path P ′ from x1 to u such that V (P ′) =
V (P ) ∪ {u}, or k > 2, x1u ∈ E and d(xk, P ) + d(u, P ) = k.

Proof. Let I = {xi+1|xixk ∈ E, 1 6 i 6 k}. Clearly, x1 6∈ I. If N(u, P ) ∩ I 6= ∅,
say xi+1 ∈ N(u, P )∩ I, then x1 . . . xixkxk−1 . . . xi+1u is the required path from x1 to u. If
N(u, P )∩I = ∅, then N(u, P )∪I = V (P ) since d(xk, P )+d(u, P ) > k and |I| = d(xk, P ),
and then the lemma follows. �

Lemma 2.2. Let Q be a quadrilateral and let x and y be two distinct vertices of G not
on Q. Suppose d(x,Q) + d(y,Q) > 5, then G[V (Q) ∪ {x, y}] contains a quadrilateral Q′

and an edge e such that Q′ and e are independent and e is incident with exactly one of x
and y.

Proof. The lemma is clearly true if d(x,Q) = 4 or d(y,Q) = 4. So we may assume
w.l.o.g. that d(x,Q) = 3 and d(y,Q) > 2. Label Q = a1a2a3a4a1 such that N(x,Q) =
{a1, a2, a3}. Then we see that the lemma is true if either a2y ∈ E or a4y ∈ E. If a2y 6∈ E
and a4y 6∈ E, then Q′ = a1a4a3ya1 and e = a2x satisfy the requirement. �

Lemma 2.3. Let Q be a quadrilateral and let x and y be two distinct vertices of G not
on Q. Suppose that d(x,Q) + d(y,Q) > 5 and G[V (Q)∪{x, y}] is not hamiltonian. Then
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G[V (Q) ∪ {x, y}] contains a quadrilateral Q′ with τ(Q′) > τ(Q) and an edge e such that
Q′ and e are independent and e is incident with exactly one of x and y.

Proof. Let Q = a1a2a3a4a1. We may assume that d(x,Q) > d(y,Q) and {a1, a2, a3} ⊆
N(x,Q). Clearly, the lemma is true if ya4 ∈ E or d(x,Q) = 4. Hence we may assume
that ya4 6∈ E and d(x,Q) = 3. Thus d(y,Q) > 2. As G[V (Q)∪{x, y}] is not hamiltonian,
we see that {a1, a2} 6⊆ N(y) and {a2, a3} 6⊆ N(y). It follows that N(y,Q) = {a1, a3}, and
therefore a2a4 6∈ E for otherwise G[V (Q)∪{x, y}] is hamiltonian. Let Q′ = ya1a4a3y and
P ′ = xa2. Clearly, τ(Q′) = τ(Q), and so the lemma holds. �

Lemma 2.4. Suppose that n > 5 and d(x,G) + d(y,G) > n for every two nonadjacent
vertices x and y of G. Then for each x ∈ V (G), G has a quadrilateral Q such that
G − V (Q) has a hamiltonian path starting at x unless that n 6 6, and in addition, if
n = 5 then d(u,G) + d(v,G) = 5 for some two nonadjacent vertices u and v of G, and if
n = 6 then G has an edge uv such that G has a hamiltonian path from u to v, G− u− v
has a quadrilateral and d(u,G) + d(v,G) = 6.

Proof. For the proof, we suppose that the lemma fails. Let x0 be a vertex of G
such that G does not have a quadrilateral Q such that G− V (Q) has a hamiltonian path
starting at x0.

First, suppose that G−x0 does not have a quadrilateral. Let x and y be two arbitrary
nonadjacent vertices of G − x0. Then |N(x,G − x0) ∩ N(y,G − x0)| 6 1. As d(x,G) +
d(y,G) > n, we see that N(x,G) ∪ N(y,G) = V (G) − {x, y}, x0 ∈ N(x,G) ∩ N(y,G)
and |N(x,G − x0) ∩ N(y,G − x0)| = 1. Say N(x,G) ∩ N(y,G) = {x0, z}. Assume
w.l.o.g. d(x) > d(y). Suppose d(x,G − x0) > 4. Let {x1, x2} ⊆ N(x,G − x0 − z) with
x1 6= x2. Then either x1z 6∈ E or x2z 6∈ E for otherwise G − x0 has a quadrilateral.
Say x1z 6∈ E. For the same reason, x1y 6∈ E and x2y 6∈ E. Similarly, we must have
N(x1, G) ∪ N(y,G) = V (G) − {x1, y} and |N(x1, G) ∩ N(y,G)| = 2. In particular, we
also have that x1x2 ∈ E. Let y1 ∈ N(y,G − x0 − z) be such that x1y1 ∈ E. Clearly,
x2z 6∈ E and x2y1 6∈ E for otherwise G − x0 has a quadrilateral. Similarly, we have that
|N(x2, G) ∩ N(y,G)| = 2 and N(x2, G) ∪ N(y,G) = V (G) − {x2, y}. Let y2 ∈ N(y,G)
be such that x2y2 ∈ E. Similarly, we can show y1y2 ∈ E, and thus x1x2y2y1x1 is a
quadrilateral in G − x0, a contradiction. Therefore we must have d(x,G) = 3. Thus
n 6 6. If n = 5, we have that d(x,G) + d(y,G) = 5 and we are done. Hence we
assume n = 6. Thus d(x) = d(y) = 3. Let V (G) − {x0, x, y, z} = {x1, y1} be such that
{xx1, yy1} ⊆ E. As xy1 6∈ E and yx1 6∈ E, we can show, as before, that {x0x1, x0y1} ⊆ E.
If x1y1 6∈ E, then z ∈ N(x1) ∩ N(y1) as d(x1, G) + d(y1, G) > 6, and consequently,
the second statement of the lemma holds with {u, v} = {y, y1}. Thus we assume that
x1y1 ∈ E. Then zx1 6∈ E and zy1 6∈ E for otherwise G − x0 has a quadrilateral. Then
x0z ∈ E as d(x1, G) + d(z,G) > 6. Again, we see that the second statement of the lemma
holds with {u, v} = {x1, y1}.

Next, suppose that G−x0 has a quadrilateral. We now choose a quadrilateral Q from
G− x0 such that

The length of a longest path starting at x0 in G− V (Q) is maximum. (1)

the electronic journal of combinatorics 25(1) (2018), #P1.67 3



Let P be a longest path starting at x0 in G− V (Q). Subject to (1), we choose Q and P
such that

τ(Q) is maximum. (2)

Let P = x0x1 . . . xt and Q = a1a2a3a4a1. We need to show that t = n − 5. On the
contrary, suppose t < n− 5. Let D = G−V (P ∪Q) and r = |V (D)|. Then t = n− 5− r.
Let y0 ∈ V (D). By Lemma 2.1, we have

d(y0, P ) + d(xt, P ) 6 t+ 1. (3)

Therefore

d(y0, Q) + d(xt, Q) > n− (t+ 1)− (r − 1) = 5. (4)

We claim the following:

Claim A. For each i ∈ {1, 2}, {ai, ai+2} 6⊆ N(y0, Q).
Proof of Claim A. On the contrary, say w.l.o.g. {a1, a3} ⊆ N(y0, Q). By (1), we

see that {a2, a4} ∩ N(xt, Q) = ∅. Hence d(y0, Q) > 3 by (4). Say a2y0 ∈ E. As
τ(y0a1a2a3y0) 6 τ(Q) by (2), we must have a2a4 ∈ E. Thus G[{a1, a2, a3, a4, y0} −
{ai}] contains a quadrilateral for each i ∈ {1, 2, 3, 4}, and therefore d(xt, Q) = 0 by (1),
contradicting with (4). Hence the claim holds.

We now divide the proof into the following two cases.

Case 1. d(y0, Q) = 2.
In this case, d(xt, Q) > 3. By Claim A, we may assume w.l.o.g. N(y0, Q) = {a1, a2}.

We may also assume w.l.o.g. {a2, a4} ⊆ N(xt, Q) as d(xt, Q) > 3. Then a1a3 6∈ E for
otherwise y0a1a3a2y0 is a quadrilateral and P + xta4 is longer than P in G. As y0a3 6∈ E,
d(y0, G) + d(a3, G) > n and so |N(y0, G) ∩ N(a3, G)| > 2. Then it is easy to see that
t > 1. Set Q1 = xta2a3a4xt. Then we see that xt−1y0 6∈ E and xt−1a1 6∈ E by (1). For
the same reason, d(y0, P − xt) + d(xt−1, P − xt) 6 t and N(y0, D) ∩ N(xt−1, D) = ∅. It
follows that d(y0, P ∪D) + d(xt−1, P ∪D) 6 n− 5, and therefore d(y0, Q) + d(xt−1, Q) >
5. Therefore N(xt−1, Q) = {a2, a3, a4}. Furthermore, we see that d(xt−1, P − xt) +
d(y0, P − xt) = t. By Lemma 2.1, t − 1 > 1. Let Q2 = xt−1xta3a4xt−1. Then we see
that {y0, a1, a2} ∩ N(xt−2, G) = ∅ and N(y0, D) ∩ N(xt−2, D) = ∅. This implies that
d(y0, P − xt − xt−1) + d(xt−2, P − xt − xt−1) > n − 5 − (r − 1) = t + 1. By Lemma 2.1,
G[V (P )∪ {y0}− {xt, xt−1}] has a hamiltonian path P ′ from x0 to y0. Therefore P ′y0a1a2
is longer than P and independent of Q2, contradicting (1).

Case 2. d(y0, Q) = 1.
We have that d(xt, Q) = 4. Say y0a1 ∈ E. As |N(y0, G) ∩ N(a3, G)| > 2, we see

that t > 1. By (1), a1xt−1 6∈ E and y0xt−1 6∈ E. We also have, by (1), that N(y0, D) ∩
N(xt−1, D) = ∅. It follows that d(y0, P − xt) + d(xt−1, P − xt) > n− 5− (r− 1) = t+ 1.
By Lemma 2.1, G[V (P ) ∪ {y0} − {xt}] has a hamiltonian path P ′′ from x0 to y0. Then
P ′′y0a1 is longer than P and independent of xta2a3a4xt, contradicting (1). This proves
the lemma. �
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Lemma 2.5. Suppose that d(x,G)+d(y,G) > n for every two nonadjacent vertices x and
y of G. Then for any two distinct vertices u and v, G has a hamiltonian path from u to
v unless either {u, v} is a vertex-cut of G or G has an independent set X with |X| > n/2
and {u, v} ⊆ V (G)−X.

Proof. For the proof, we suppose that there exist two distinct vertices u and v
such that G does not have a hamiltonian path from u to v and {u, v} is not a vertex-
cut of G. Then we shall prove that G has an independent set X with |X| > n/2 and
{u, v} ⊆ V (G)−X.

Let P be a longest path of G starting at one of u and v but not passing through the
other. Let {u, v} = {x0, x1} and P = x1x2 . . . xt. Set D = G− V (P ) and r = |V (D)|. If
r = 1, then x0xt 6∈ E and so d(x0, P )+d(xt, P ) > n. By Lemma 2.1, G has a hamiltonian
path from x1 to x0, a contradiction. Hence r > 2. As {x0, x1} is not a vertex-cut of
G, we let s be the smallest integer in {2, 3, . . . , t − 1} such that d(xs, D − x0) > 1. Let
y0 ∈ V (D) − {x0} such that y0xs ∈ E. For each y ∈ V (D) − {x0}, we must have
that d(y, P ) + d(xt, P ) 6 t by Lemma 2.1, and therefore d(y,D) + d(xt, D) > r. Thus
d(xt, D) > 0. It follows that N(xt, D) = {x0} and D is a complete subgraph of G.
Furthermore, d(y, P ) + d(xt, P ) = t for each y ∈ V (D) − {x0}. Let L1 = x1x2 . . . xs and
L2 = xs+1xs+2 . . . xt. Set I = {xi−1|xiy0 ∈ E, s + 1 6 i 6 t − 1}. Clearly, y0xs+1 6∈ E
and N(xt, L2) ∩ I = ∅ for otherwise G[V (P ) ∪ {y0}] has a hamiltonian path starting
at x1. This implies that d(y0, L2) + d(xt, L2) 6 |V (L2)| − 1 = t − s − 1, and thus
d(y0, L1)+d(xt, L1) > s+1. As x0y0xsxs+1xs+2 . . . xt is a path in G and by the maximality
of P , we must have s > 3. Clearly, xs−1xt 6∈ E for otherwise x1x2 . . . xs−1xtxt−1 . . . xsy0
is a longer path than P in G. Therefore N(xt, L1) = V (L1) − {xs−1} and y0x1 ∈ E. If
s > 4, then x0y0xsxs+1 . . . xtx2x3 . . . xs−1 is a longer path than P in G, a contradiction.
Hence s = 3. If r > 3 then x0y

′y0x3x4 . . . xt is a longer path than P in G with y′ ∈
V (D) − {x0, y0}, a contradiction. Hence r = 2. Let P ′ = x0y0x3x4 . . . xt. Then P ′ is a
path in G starting at x0 without passing through x1. Furthermore, P ′ and P have the same
length. Therefore we may assume w.l.o.g. that d(y0, G) > n/2 as d(y0, G) + d(x2, G) > n.
Let X = {xi+1|xiy0 ∈ E, 1 6 i 6 t− 1} ∪ {y0}. We see that X is an independent set of G
for otherwise G[V (P ) ∪ {y0}] has a hamiltonian path starting at x1. Clearly, |X| > n/2
and {x0, x1} ⊆ V (G)−X. This proves the lemma. �

Lemma 2.6. [7] If P = x1x2 . . . xm is a path of G with m > 3 such that d(x1, P ) +
d(xm, P ) > m, then G has a cycle C such that V (C) = V (P ). Moreover, if d(x,G) +
d(y,G) > n for any two nonadjacent vertices x and y of G, then G is hamiltonian.

Lemma 2.7. Let t be a positive integer and let G be a graph of order n > 4t. Suppose that
d(x) > dn/2e for each x ∈ V (G). Then G has t independent quadrilaterals Q1, Q2, . . . , Qt

such that G− V (∪t
i=1Qi) has a hamiltonian path.

Proof. Let r = n−4t. We use induction on r to prove the lemma. When r ∈ {0, 1, 4},
the lemma is true by Theorem A and Theorem B. Suppose r = 2. Then G has t
independent quadrilateralsQ1, . . . , Qt by Theorem B. If the two vertices ofG−V (∪ti=1Qi),
say x and y, are not adjacent, then we would have that d(x,∪ti=1Qi)+d(y,∪ti=1Qi) > 4t+2,
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and therefore d(x,Qi)+d(y,Qi) > 5 for some i ∈ {1, 2, . . . , t}. By Lemma 2.2, the lemma
holds. Next, suppose r = 3. Using the above proof, we see that G has t independent
quadrilaterals Q1, . . . , Qt such that G− V (∪ti=1Qi) has at least one edge. Subject to this,
we let

∑t
i=1 τ(Qi) be as large as possible. Let V (G) − V (∪ti=1Qi) = {x1, x2, x3} be such

that x1x2 ∈ E. If x3x1 ∈ E or x3x2 ∈ E, we have nothing to prove. Hence we assume
that x3x1 6∈ E and x3x2 6∈ E. Then we see that there exists Qi, say Qi = Q1, such that
d(x1, Q1) + d(x3, Q1) > 5. By Lemma 2.2, G[V (Q1) ∪ {x1, x3}] contains a quadrilateral
Q′1 and an edge e such that Q′1 and e are indepedent and e is incident with exactly
one of x1 and x3. If e is incident with x1, then e and x1x2 together contains a path
of order 3 and we are done. Therefore we may assume that e is incident with x3. Say
y1 ∈ V (Q1) with y1x3 ∈ E. Let Q1 = a1a2a3a4a1. Suppose that d(x3, Q1) > 3. Say
N(x3, Q1) ⊇ {a1, a2, a3}. Then τ(x3a1a2a3x3) > τ(Q1) with equality only if a2a4 ∈ E. By
our choice of Qi(1 6 i 6 t), we must have that a2a4 ∈ E. Thus for each i ∈ {1, 2, 3, 4},
G[{a1, a2, a3, a4, x3} − {ai}] contains a quadrilateral. As d(x1, Q1) > 1, we see that the
lemma holds. Hence we may assume that d(x3, Q1) 6 2. Thus d(x1, Q1) > 3. Suppose
that we also have that d(x2, Q1) + d(x3, Q1) > 5. Then d(x2, Q1) > 3. This implies
that there exists {i, j} ⊆ {1, 2, 3, 4} with i 6= j such that x1aiai+1x2x1 and x1ajaj+1x2x1
are two quadrilaterals in G. Thus the lemma holds if x3 is adjacent to some vertex of
{ai+2, ai+3, aj+2, aj+3}. Hence we may assume that x3 is not adjacent to any vertex of
this set, which implies that d(x3, Q1) 6 1. It follows that d(x1, Q1) = d(x2, Q1) = 4 and
d(x3, Q1) = 1, and clearly, the lemma holds in this situation, too. To finish the proof,
we finally assume that d(x2, Q1) + d(x3, Q1) 6 4. Then d(x2,∪ti=2Qi) + d(x3,∪t

i=2Qi) >
4t + 2 − 5 = 4(t − 1) + 1. This implies that there exists Qi with i > 2, say i = 2, such
that d(x2, Q2) + d(x3, Q2) > 5. As above, with Q2 and x2 in place of Q1 and x1, we may
assume that Q2 has a vertex y2 such that G[V (Q2)∪{x2}−{y2}] contains a quadrilateral
Q′2 and x3y2 ∈ E. Since y1x3y2 is a path in G, we see the lemma holds. Therefore the
lemma holds if r 6 4. We now assume that the lemma is true if the value of (n − 4t) is
less than r with r > 5. Say n − 4t = r. Then n − 4(t + 1) = r − 4. By the induction
hypothesis, G has t+ 1 independent quadrilaterals Q1, . . . , Qt+1 such that G−V (∪t+1

i=1Qi)
has a path P of order r − 4. Let P = x1x2 . . . xr−4. Then we may assume that for each
j ∈ {1, 2, . . . , t + 1}, d(x1, Qj) = d(xr−4, Qj) = 0 holds for otherwise G[V (Qj ∪ P )] has a
hamiltonian path and we are done. Thus d(x1, P ) + d(xr−4, P ) > n, and by Lemma 2.6,
G[V (P )] is hamiltonian. As G is connected, there exists Qj such that

∑r−4
i=1 d(xi, Qj) > 0

and therefore G[V (Qj∪P )] has a hamiltonian path. Thus the lemma is true for n−4t = r.
This proves the lemma. �

Lemma 2.8. [5] Let C = x1x2 . . . xmx1 be a cycle of G. Let xi, xj ∈ V (C) with i 6= j. If
d(xi, C)+d(xj, C) > m+1, then G has a path P from xi+1 to xj+1 such that V (P ) = V (C).

Lemma 2.9. Suppose that G has a hamiltonian path and that d(x,G) + d(y,G) > n+ s
for any two endvertices x and y of a hamiltonian path of G, where s is a fixed nonnegative
integer. Then for any two distinct vertices u and v of G, d(u,G) + d(v,G) > n+ s holds.

Proof. By Lemma 2.6, G is hamiltonian. Let C = x1x2 . . . xnx1 be a hamiltonian
cycle. Suppose, for a contradiction, that d(xi, G) + d(xj, G) 6 n+ s− 1 for some 1 6 i <
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j 6 n. By the hypothesis, d(xi−1, G) +d(xi, G) > n+ s and d(xj−1, G) +d(xj, G) > n+ s.
Then we see that d(xi−1, G)+d(xj−1, G) > n+s+1. By Lemma 2.8, G has a hamiltonian
path from xi to xj, and by the hypothesis again, d(xi, G)+d(xj, G) > n+s, a contradiction.
�

3 Proof of Theorem C

Let k be a positive integer and G a graph of order n > 4k. Assume δ(G) > dn/2e.
Suppose, for a contradiction, that G does not contain k independent cycles covering all
the vertices of G such that k − 1 of them are quadrilaterals. By Theorem A, n > 4k.

Let t = n− 4(k − 1). By Lemma 2.7, G has k independent quadrilaterals Q1, . . . , Qk

such that G−V (∪ki=1Qi) has a hamiltonian path P . If t− 4 = 1, then we readily see that
d(u,Qi) > 3 where V (P ) = {u} for some i ∈ {1, . . . , k} because δ(G) > dn/2e and so
G[V (Qi ∪P )] is hamiltonian, a contradiction. Hence we have t− 4 > 2. For convenience,
let r = t − 4. As G[V (Qi ∪ P )] is not hamiltonian, for any two endvertices u and v of a
hamiltonian path of G− V (∪k

i=1Qi), we have

d(u,Qi) + d(v,Qi) 6 4 for all i ∈ {1, . . . , k} (5)

and therefore

d(u,G− V (∪ki=1Qi)) + d(v,G− V (∪ki=1Qi)) > r + σ (6)

where σ = 1 if r is odd and otherwise σ = 0. By Lemma 2.6, G−V (∪ki=1Qi) is hamiltonian
if r > 3. Let H = ∪ki=1Qi and D = G− V (H). By (6) and Lemma 2.9, we have

d(x,D) + d(y,D) > r + σ for all {x, y} ⊆ V (D) with x 6= y. (7)

We now divide the proof into the following two cases.

Case 1. r > 5.
In this case, By (7), D is hamiltonian. We choose a hamiltonian path P of D as follows.

If for each x ∈ V (D), D has a quadrilateral Q such that D−V (Q) has a hamiltonian path
starting at x, let P be a hamiltonian path with an endvertex u such that d(u,Qi) > 1
for some i ∈ {1, . . . , k}. Such a path exists because G is connected. We may assume
e(u,Q1) > 1 in this case. Otherwise by (7) and Lemma 2.4, we see that σ = 0 and D has
order 6. Furthermore, D has an edge uv such that D has a hamiltonian path P from u to
v, D−u−v has a quadrilateral and d(u,D)+d(v,D) = 6. Then equality holds in (5) and
(6) with respect to {u, v}, and therefore d(u,Qi) + d(v,Qi) > 1 for some i ∈ {1, . . . , k}.
In this case, we may assume d(u,Q1) > 1. In the former case, let Q′1 be a quadrilateral of
D such that D− V (Q′1) has a hamiltonian path starting at u. Subject to this, we further
choose Q′1 such that D − V (Q′1) does not contain a vertex-cut of cardinality 2 if there
exists such a choice. In the latter, let Q′1 be a quadrilateral of D−u− v and P = uv. Set
D′ = G[V (D ∪Q1)− V (Q′1)]. As d(u,Q1) > 1, D′ has a hamiltonian path.

Replacing Q′1 and D′ in the above proof of (5), (6) and (7), we see that D′ is hamil-
tonian, too. Let L be a hamiltonian cycle of D′. Then the number of edges of L in
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between Q1 and D′ − V (Q1) must be even. This allows us to see that there exist two
independent edges x1y1 and x2y2 between Q1 and D′−V (Q1) with {y1, y2} ⊆ V (Q1) such
that G[V (Q1)] has a hamiltonian path from y1 to y2. If D has a hamiltonian path from
x1 to x2, then G[V (D ∪Q1)] is hamiltonian and we are done. By Lemma 2.5, we see that
either {x1, x2} is a vertex-cut of D or D has an independent set X with |X| > r/2 and
{x1, x2} ⊆ V (D)−X. Let us first assume that {x1, x2} is a vertex-cut of D. By (7), we see
that D−x1−x2 has exactly two components, say D1 and D2 such that D1

∼= D2
∼= K(r−2)/2

and d(x1, D1 ∪ D2) = d(x2, D1 ∪ D2) = r − 2. As D1 ∪ D2 ⊇ Q′1, we see that r > 10.
Let Q′′1 be a quadrilateral in D1 + x1 with x1 ∈ V (Q′′1). Let z1 ∈ V (D1) − V (Q′′1) and
z2 ∈ V (D2). Clearly, d(z1, D) + d(z2, D) = r and D − V (Q′′1) has a hamiltonian path
from z1 to z2. Then equality holds in (5) and (6) with respect to {z1, z2}. It follows that
d(zj, Qi) > 1 for some j ∈ {1, 2} and i ∈ {1, . . . , k}. But D − V (Q′′1) does not contain
a vertex-cut of D with cardinality 2. This contradicts the choice of Q′1. Therefore D
has an independent set X with |X| > r/2 and {x1, x2} ⊆ V (D) − X. By (7), we see
that |X| = r/2 and D contains a complete bipartite subgraph with (X, V (D) − X) as
its bipartition. As mentioned in the beginning of this paragraph, D′ is hamiltonian and
so we readily see that d(x,Q1) > 0 for some x ∈ X. It follows that G[V (D ∪ Q1)] is
hamiltonian, a contradiction.

Case 2. 2 6 r 6 4.
In this case, we choose the k independent quadrilaterals Q1, . . . , Qk and the path P

of order r such that

k∑
i=1

τ(Qi) is maximum. (8)

By (6), D is hamiltonian if r > 3. We break into the following three cases.

Case 2.1. r = 3.
Then D is a triangle, say D = x1x2x3x1. We have that

∑3
i=1 d(xi, H) > 3dn/2e − 6 =

3(2k + 2) − 6 = 6k. This implies that there exists Qi in H, say Qi = Q1, such that∑3
i=1 d(xi, Q1) > 6. This further implies that there exist two independent edges e1 and e2

between D and Q1. Say Q1 = a1a2a3a4a1. As G[V (D ∪Q1)] is not hamiltonian, we may
assume that e1 = a1x1 and e2 = a3x2, and then we see that d(a2, D) = d(a4, D) = 0 and
a2a4 6∈ E. Consequently, d(a1, D) = d(a3, D) = 3. Let Q′1 be a quadrilateral of D + a1
and P ′ = a2a3a4. Clearly, τ(Q′1) > τ(Q1), contradicting (8).

Case 2.2. r = 4.
Since G is hamiltonian, we have nothing to prove when k = 1. Therefore k > 2.

Let Q0 = x1x2x3x4x1 be a quadrilateral of D. Clearly,
∑4

i=1 d(xi, H) > 4dn/2e − 12 =
8(k + 1) − 12 = 6k + 2k − 4. This implies that there exists Qi in H, say Qi = Q1,
such that

∑4
i=1 d(xi, Q1) > 6. This further implies that there exists two independent

edges, say u1w1 and u2w2 with {u1, u2} ⊆ V (Q0) and {w1, w2} ⊆ V (Q1), between Q0

and Q1 such that either u1u2 ∈ E(Q0) or w1w2 ∈ E(Q1). We may assume w.l.o.g. that
w1w2 ∈ E(Q1). Therefore u1u2 6∈ E(Q0) as G[V (Q0∪Q1)] is not hamiltonian. Say w.l.o.g.
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{u1, u2} = {x1, x3}. Then for the same reason, we see that d(x2, Q1) = d(x4, Q1) = 0 and
x2x4 6∈ E. Thus d(x2, H − V (Q1)) + d(x4, H − V (Q1)) > 2dn/2e − 4 = 4(k− 1) + 4. This
implies that there exists Qi in H−V (Q1), say Qi = Q2, such that d(x2, Q2)+d(x4, Q2) > 5.
As G[V (Q0 ∪ Q2)] is not hamiltonian, we see that x1x3 6∈ E. Then equality holds in
(5) and (6) with respect to {xj, xj+1} for each j ∈ {1, 2, 3, 4} and i ∈ {1, 2, . . . , k},
that is, d(xj, Qi) + d(xj+1, Qi) = 4 for each j ∈ {1, 2, 3, 4} and j ∈ {1, 2, . . . , k}. Thus
d(x1, Q1) = d(x3, Q1) = 4. As d(x2, Q2) + d(x4, Q2) > 5, it is also easy to see that
d(x1, Q2) = d(x3, Q2) = 0 for otherwise G[V (Q0 ∪Q2)] is hamiltonian. Thus d(x2, Q2) =
d(x4, Q2) = 4 and d(x1, Q1) = d(x3, Q1) = 4. Let y be an arbitrary vertex of Q1 and z an
arbitrary vertex of Q2. Clearly, Q1−y+x3 and Q2−z+x4 are hamiltonian and yx1x2z is
a path in G. Similar to the proof of (6), we see that G[{y, x1, x2, z}] must be hamiltonian.
Consequently, yz ∈ E. This argument implies that d(w,Q2) = 4 for all w ∈ V (Q1). It
follows that G[V (Q0 ∪Q1 ∪Q2)− {y, x1, x2, z}] is hamiltonian and we are done.

Case 2.3. r = 2.
LetD = x1x2. As δ(G) > 2k+1 and by (5) and (6), we see that d(x1, Qi)+d(x2, Qi) = 4

for all i ∈ {1, 2, . . . , k}. We claim that for each i ∈ {1, 2, . . . , k}, either d(x1, Qi) = 0 or
d(x2, Qi) = 0. If this is not true, say d(x1, Q1) > 0 and d(x2, Q1) > 0. LetQ1 = a1a2a3a4a1
with x1a1 ∈ E. As G[V (D∪Q1)] is not hamiltonian, we see that N(x1, Q1) = N(x2, Q1) =
{a1, a3} and a2a4 6∈ E. Let Q′1 = x1a1x2a3x1. Clearly, τ(Q′1) = τ(Q1) + 1. We also have
that d(a2, H − V (Q1)) + d(a4, H − V (Q1)) > 2(2k + 1)− 4 = 4(k − 1) + 2. This implies
that there exists Qi in H − V (Q1), say Qi = Q2, such that d(a2, Q2) + d(a4, Q2) > 5.
As G[V (Q2) ∪ {a2, a4}] is not hamiltonian and by Lemma 2.3, G[V (Q2) ∪ {a2, a4}] has a
quadrilateralQ′2 and a path P ′ of order 2 such that τ(Q′2) > τ(Q2) and V (Q′2)∩V (P ′) = ∅.
Replacing Q1 and Q2 by Q′1 and Q′2, we see that (8) is violated. Therefore our claim holds.

Next, we claim that G[N(x1, G−x2)] is a complete subgraph of G and G[N(x2, G−x1)]
is a complete subgraph of G. For the proof, let u be an arbitrary vertex of N(x1, G−x2).
We shall show that u is adjacent to every vertex of N(x1, G−x2−u). Let Q1 = a1a2a3a4a1.
Say w.l.o.g. u = a1. Let G1 = G[V (D ∪ Q1)] and H1 = H − V (Q1). Then d(x2, H1) +
d(a1, H1) > 2(2k + 1) − 5 = 4(k − 1) + 1. This implies that there exists Qi in H1,
say Qi = Q2, such that d(x2, Q2) + d(a1, Q2) > 5. Thus we must have d(x2, Q2) = 4 and
d(x1, Q2) = 0. If d(a1, Q2) > 2, then G[V (Q2)∪{x2, a1}] is hamiltonian. As Q1−a1+x1 is
hamiltonian, the theorem holds, a contradiction. Hence d(a1, Q2) = 1. LetQ2 = b1b2b3b4b1
with a1b1 ∈ E. Similarly, we must have that d(b1, Q1) = 1. Replacing Q1 and Q2 by
Q′1 = x1a2a3a4x1 and Q′2 = x2b2b3b4x2, we see, by (8), that {a1a3, b1b3} ⊆ E. Note that
this argument implies that G[V (Qi)] is a complete graph of order 4 for all i ∈ {1, . . . , k}.
With respect to the choice of {a1b1, Q′1, Q′2, Q3, . . . , Qk}, we can also show that for each
i ∈ {3, . . . , k}, either d(a1, Qi) = 4 or d(b1, Qi) = 4. If there exists Qi in {Q3, . . . , Qk}
such that d(x1, Qi) = d(b1, Qi) = 4, then we would see that each of Qi + x1 + b1 and
Q2 − b1 + x2 is hamiltonian and we are done. Hence we must have d(a1, Qi) = 4 for each
i ∈ {3, . . . , k} with d(x1, Qi) = 4. Therefore G[N(x1, G − x2)] is a complete subgraph of
G. Similarly, G[N(x2, G − x1)] is a complete subgraph of G. The above argument also
implies that d(w,G[N(xi, G − xj)]) = 1 for each w ∈ N(xj, G − xi) with {i, j} = {1, 2},
that is, there are 2k independent edges between N(x1, G − x2) and N(x2, G − x1). It is
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easy to see that G contains k required independent cycles in this case. This completes
the proof of the theorem.
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[6] P. Erdős, Some recent combinatroial problems, Technical Report, University of Biele-
feld, Nov. 1990.

[7] O. Ore, Note on Hamilton circuits, Am. Math. Monthly, 67 (1960), 55.

[8] H. Wang, Covering a graph with cycles, Journal of Graph Theory, 20(1995), 203-221.

[9] H. Wang, Vertex-disjoint quadrilaterals in graphs, Discrete Mathematics, 288(2004),
149–166.

[10] H. Wang, Disjoint triangles and quadrilaterals in a graph, Central European Journal
of Mathematics, 6(2008), 543-558.
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