
Rook placements and Jordan forms of

upper-triangular nilpotent matrices

Martha Yip∗

Department of Mathematics
University of Kentucky

Lexington, U.S.A.

martha.yip@uky.edu

Submitted: Mar 14, 2017; Accepted: Jan 17, 2018; Published: Mar 29, 2018

Mathematics Subject Classifications: 05E15, 05A19

Abstract

The set of n by n upper-triangular nilpotent matrices with entries in a finite
field Fq has Jordan canonical forms indexed by partitions λ ` n. We present a
combinatorial formula for computing the number Fλ(q) of matrices of Jordan type λ
as a weighted sum over standard Young tableaux. We construct a bijection between
paths in a modified version of Young’s lattice and non-attacking rook placements,
which leads to a refinement of the formula for Fλ(q).
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1 Introduction

In the beautiful paper Variations on the Triangular Theme [7], Kirillov studied various
structures on the set of triangular matrices. Let G = Gn(Fq) denote the group of n
by n invertible upper-triangular matrices over the field Fq having q elements, and let
g = gn(Fq) = Lie(Gn(Fq)) denote the corresponding Lie algebra of n by n upper-triangular
nilpotent matrices over Fq. The problem of determining the set On(Fq) of adjoint G-orbits
in g remains challenging, and a more tractable task is to study a decomposition of On(Fq)
via the Jordan canonical form. Let λ ` n be a partition of n with r positive parts

∗Simons Collaboration Grant 429920.
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λ1 > λ2 > · · · > λr > 0, and let

Jλ = Jλ1 ⊕ Jλ2 ⊕ · · · ⊕ Jλr , where Ji =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · 0 0


i×i

is the i by i elementary Jordan matrix with all eigenvalues equal to zero. If X ∈ gn(Fq)
is similar to Jλ under GLn(Fq), then X is said to have Jordan type λ. Each conjugacy
class contains a unique Jordan matrix Jλ, so these classes are indexed by the partitions
of n. Evidently, the Jordan type of X depends only on its adjoint G-orbit.

Let gn,λ(Fq) ⊆ gn(Fq) be the set of upper-triangular nilpotent matrices of fixed Jordan
type λ, and let

Fλ(q) = | gn,λ(Fq) | . (1)

Springer showed that gn,λ(Fq) is an algebraic manifold with fλ irreducible components,
where fλ is the number of standard Young tableaux of shape λ, and each of which has
dimension

(
n
2

)
− nλ, where nλ is an integer defined in Equation 10. These quantities

appear in the study of Fλ(q).
In Section 2, we show that the numbers Fλ(q) satisfy a simple recurrence equation,

and that they are polynomials in q with integer coefficients. As a consequence of the
recurrence equation in Theorem 8, it follows that the coefficient of the highest degree
term in Fλ(q) is fλ, and degFλ(q) =

(
n
2

)
− nλ. Equation (9) is a combinatorial formula

for Fλ(q) as a sum over standard Young tableaux of shape λ that can be derived from the
recurrence equation.

The cases F(1n)(q) = 1 and F(n)(q) = (q − 1)n−1q(
n−1
2 ) are readily computed, since

the matrix in gn(Fq) of Jordan type (1n) is the matrix of zero rank, and the matrices in
gn(Fq) of Jordan type (n) are the matrices of rank equal to n − 1. Section 2 concludes
with explicit formulas for Fλ(q) in several other special cases of λ, including hook shapes,
two-rowed partitions and two-columned partitions.

In Section 3, we explore a connection of Fλ(q) with rook placements. In their study
of a formula of Frobenius, Garsia and Remmel [4] introduced the q-rook polynomial

RB,k(q) =
∑

c∈C(B,k)

qinv(c),

which is a sum over the set C(B, k) of non-attacking placements of k rooks on a Ferrers
board B, and inv(c), defined in Equation (13), is the number of inversions of c. In
the case when B = Bn is the staircase-shaped board, Garsia and Remmel showed that
RBn,k(q) = Sn,n−k(q) is a q-Stirling number of the second kind. These numbers are defined
by the recurrence equation

Sn,k(q) = qk−1Sn−1,k−1(q) + [k]qSn−1,k(q) for 0 6 k 6 n,
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with initial conditions S0,0(q) = 1, and Sn,k(q) = 0 for k < 0 or k > n.
It was shown by Solomon [12] that non-attacking placements of k rooks on rectangular

m × n boards are naturally associated to m by n matrices with rank k over Fq. By
identifying a Ferrers board B inside an n by n grid with the entries of an n by n matrix,
Haglund [5] generalized Solomon’s result to the case of non-attacking placements of k
rooks on Ferrers boards, and obtained a formula for the number of n by n matrices with
rank k whose support is contained in the Ferrers board region. A special case of Haglund’s
formula shows that the number of n by n nilpotent upper-triangular matrices of rank k is

PBn,k(q) = (q − 1)kq(
n
2)−kRBn,k(q

−1). (2)

Now, a matrix in gn,λ(Fq) has rank n − `(λ), where `(λ) is the number of parts of λ,
so the number of matrices in gn(Fq) with rank k is

PBn,k(q) =
∑

λ`n: `(λ)=n−k

Fλ(q). (3)

Given Equations 2 and 3, it would be natural to ask whether it is possible to partition the
placements C(Bn, k) into disjoint subsets so that the sum over each subset of placements
gives Fλ(q). A central goal of this paper is to study the connection between upper-
triangular nilpotent matrices over Fq and non-attacking rook placements on the staircase-
shaped board Bn. Theorem 28 shows that there is a weight-preserving bijection Φ between
rook placements on Bn and paths in a graph Z (see Figure 5), which is a multi-edged
version of Young’s lattice. As a result, we obtain Corollary 30, which gives a formula for
Fλ(q) as a sum over certain rook placements that can be viewed as a generalization of
Haglund’s formula in Equation (2).

There is a classically known bijection between rook placements in C(Bn, k) and set
partitions of [n] with n − k parts, so it is logical to next study the connection between
Fλ(q) and set partitions. We do this in Section 4. Theorem 34 describes the construction
of a new (weight-preserving) bijection Ψ between rook placements and set partitions.
These bijections allow us to refine Equation (9) to a sum over set partitions (or rook
placements). We also discuss the significance of the polynomials FC(q) indexed by rook
placements in a special case.

This paper is the full version of the extended abstract [15].

2 Formulas for Fλ(q)

The recurrence equation for Fλ(q) in Theorem 8 can be found in [1, Division Theorem],
where Borodin considers the matrices as particles of a certain mass and studies the asymp-
totic behaviour of the formula. A preliminary version of the idea first appeared in [7].
In this section, we give an elementary proof of the formula, and investigate some of the
combinatorial properties of Fλ(q).
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2.1 The recurrence equation for Fλ(q)

A partition λ of a nonnegative integer n, denoted by λ ` n, is a non-increasing sequence
of nonnegative integers λ1 > λ2 > · · · > λn > 0 with |λ| =

∑n
i=1 λi = n. If λ has r

positive parts, write `(λ) = r. A partition λ can be represented by its Ferrers diagram in
the English notation, which is an array of λi boxes in the ith row, with the boxes justified
upwards and to the left. Let λ′j denote the size of the jth column of λ.

Young’s lattice Y is the lattice of partitions ordered by the inclusion of their Ferrers
diagrams; that is, µ 6 λ if and only if µi 6 λi for every i. In particular, µ is covered by λ
in the Hasse diagram of Y and we write µlλ if the Ferrers diagram of λ can be obtained
by adding a box to the Ferrers diagram of µ. See Figure 1.

Example 1. The partition

λ = (4, 2, 2, 1) ` 9 has diagram

and columns λ′1 = 4, λ′2 = 3, λ′3 = 1, λ′4 = 1.

Lemma 2. Let λ ` n be a partition whose Ferrers diagram has r rows and c columns.
The Jordan matrix Jλ satisfies

rank
(
Jkλ
)

=

{
λ′k+1 + · · ·+ λ′c, if 0 6 k < c,

0, if k > c.

Proof. The i by i elementary Jordan matrix Ji has rank
(
Jki
)

= i − k if 0 6 k 6 i, and
its rank is zero otherwise, so the Jordan matrix Jλ = Jλ1 ⊕ · · · ⊕ Jλr has

rank
(
Jkλ
)

=
r∑
i=1

rank
(
Jkλi
)

=
∑
i:λi>k

rank
(
Jkλi
)

=
c∑

j=k+1

λ′j,

for 0 6 k < c, which is the number of boxes in the last c− k columns of λ.

Remark 3. Matrices which are similar have the same rank, so if X ∈ gn,λ(Fq), then
rank

(
Xk
)

= rank
(
Jkλ
)

for all k > 0. Conversely, let λ, ν ` n. It follows from Lemma 2
that rank

(
Jkλ
)

= rank
(
Jkν
)

for all k > 0 if and only if λ = ν. Thus if X ∈ gn(Fq) is a
matrix such that rank

(
Xk
)

= rank
(
Jkλ
)

for all k > 0, then X is similar to Jλ.

Example 4. If a matrix X ∈ gn(Fq) has Jordan type λ = (4, 2, 2, 1), then rank(X) = 5,
rank(X2) = 2, rank(X3) = 1, and rank(X4) = 0.

If X ∈ gn(Fq) is a matrix of the form

X =

[
Jµ v
0 0

]
,

the electronic journal of combinatorics 25(1) (2018), #P1.68 4



where µ ` n − 1, and v = [v1, . . . , vn−1]T ∈ Fn−1
q , then the first order leading principal

submatrix of Xk is Jkµ , and for 1 6 k 6 n, we define column vectors vk = [vk1 , . . . , v
k
n−1]T ∈

Fn−1
q by

Xk =

[
Jkµ vk

0 0

]
.

For i > 1, let αi = µ1 + · · ·+ µi be the sum of the first i parts of µ. The (i, j)th entry of
Jkµ is nonzero if and only if j = i + k, and i, i + k 6 αb for all b > 1. It follows from this
that

vki =

{
vi+k−1, if i, i+ k − 1 6 αb for all b > 1,

0, otherwise.
(4)

There is a simple way to visualize the vectors vk, which we illustrate with an example.

Example 5. Let µ = (4, 2, 1, 1), so that α1 = 4, α2 = 6, α3 = 7, and α4 = 8. Let

X =



0 1 0 0 v1

0 0 1 0 v2

0 0 0 1 v3

0 0 0 0 v4

0 1 v5

0 0 v6

0 v7

0 v8

0


so that X2 =



0 0 1 0 v2

0 0 0 1 v3

0 0 0 0 v4

0 0 0 0 0
0 0 v6

0 0 0
0 0

0 0
0


.

We may visualize the vectors v and v2 as fillings of the Ferrers diagram for µ:

v =

v4 v3 v2 v1

v6 v5

v7

v8

and v2 =

0 v4 v3 v2

0 v6

0

0

.

This way, a basis of kerXk is the set of vectors filling the first k columns of the diagram.

Lemma 6. If X ∈ gn,λ(Fq) and its first order leading principal submatrix Y ∈ gn−1,µ(Fq),
then λm µ.

Proof. We first consider the case Y = Jµ. If µ has s parts, let αi = µ1 + · · · + µi for
1 6 i 6 s. Then

rank
(
Xk
)
− rank

(
Jkµ
)

=

{
0, if vαi = 0 for all i such that µi > k,

1, otherwise.
(5)

Let c 6 n be the smallest positive integer for which rank(Xc) − rank(J cµ) = 0. Then
Equation (5) implies that

rank(Xk)− rank(Jkµ) =

{
0, if k > c,

1, if k < c.
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Together with Lemma 2, we deduce that

λ′k − µ′k =
(
rank(Xk−1)− rank(Xk)

)
−
(
rank(Jk−1

µ )− rank(Jkµ)
)

=

{
1, if k = c,

0, if k 6= c.

Therefore, λm µ in the case Y = Jµ.
In the general case where Y is any matrix of Jordan type µ, then rank(Y k) = rank(Jkµ)

for all k > 0, so the argument is the same.

Let λ be the partition whose diagram is obtained by adding a box to the ith row and
jth column of the diagram of the partition µ. Define the coefficient

cµ,λ(q) =

{
q|µ|−µ

′
j , if j = 1,

q|µ|−µ
′
j−1

(
qµ
′
j−1−µ′j − 1

)
, if j > 2.

(6)

Note that in the case j > 2, we have µ′j−1 − µ′j > 1.

Lemma 7. Let Y be an upper-triangular nilpotent matrix of Jordan type µ ` n − 1. If
µlλ, then there are cµ,λ(q) upper-triangular nilpotent matrices X of Jordan type λ whose
first order leading principal submatrix is Y .

Proof. By similarity, it suffices to consider the case Y = Jµ = Jµ1 ⊕ · · · ⊕ Jµm , where
`(µ) = m. Suppose X is a matrix of the form

X =

[
Jµ v
0 0

]
of Jordan type λ such that λ is obtained by adding a box to µ in the ith row and jth
column.

First consider the case j > 2. Following the proof of Lemma 6, we know that j is the
unique integer where rank(Xj−1) = rank(J j−1

µ ) + 1, and rank(Xj) = rank(J jµ). In order
to satisfy the first condition, the entries in the vector vj−1 corresponding to the boxes in
the (j−1)th column and rows > i must not simultaneously be zero (refer to Equation (4)
and Example 5), while in order to satisfy the second condition, the entries in the vector
vj corresponding to the boxes in the jth column of µ must all be zero. The remaining
n− 1− µ′j−1 entries of the vector v are free to be any element in Fq, so there are

qn−1−µ′j−1

(
qµ
′
j−1−µ′j − 1

)
possible matrices X whose leading principal submatrix is Jµ.

The case j = 1 is simpler. The necessary and sufficient condition that X and Jµ
must satisfy is that rank(Xk) = rank(Jkµ) for all k > 1, so the entries in the vector v
corresponding to the boxes in the first column of the diagram for v1 must all be zero,
while the remaining n−1−µ′1 entries are free to be any element in Fq, so there are qn−1−µ′1

matrices X whose leading principal submatrix is Jµ in this case.
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q3−1 //

1

OO

q2−1 //

1

OO

(q−1)q2 //

q

OO

(q−1)q

<<

q−1 //

1

OO

(q−1)q //

q

OO

(q−1)q2 //

q2

OO

∅

1

<<

Figure 1: Young’s lattice with edge weights cµ,λ(q), up to n = 4.

The following recurrence equation for Fλ(q) was first obtained by Borodin [1, Divi-
sion Theorem]. Here, we provide an elementary proof before investigating some of the
combinatorial properties of Fλ(q).

Theorem 8. The number of n by n upper-triangular nilpotent matrices over Fq of Jordan
type λ ` n is

Fλ(q) =
∑
µ:µlλ

cµ,λ(q)Fµ(q),

with F∅(q) = 1.

Proof. Proceed by induction on n. For n = 1, the zero matrix is the only upper-triangular
nilpotent matrix, and it has Jordan type (1), agreeing with the formula c∅,(1)(q) = 1.

Suppose λ ` n. By Lemma 6, any matrix of Jordan type λ has a leading principal
submatrix of type µ ` n− 1 for some µl λ. Furthermore, by Lemma 7, for each matrix
Y ∈ gn−1,µ(Fq), there are cµλ(q) matrices X ∈ gn,λ(Fq) having Y as its leading principal
submatrix. Summing over all µl λ gives the desired formula.

Remark 9 (Formulation in terms of standard Young tableaux). The formula for Fλ(q) in
Theorem 8 can be re-phrased as a sum over the set PY(λ) of paths in Young’s lattice
Y from the empty partition ∅ to λ. If µ l λ in Y , we assign the weight cµ,λ(q) to the
corresponding edge in Y . Figure 1 shows Young’s lattice with weighted edges for partitions
with up to four boxes. Let P = (∅ = π(0), π(1), . . . , π(n) = λ) denote a path in Y from ∅ to
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λ, where π(i) is a partition of i. To simplify notation, let εi(q) = cπ(i−1),π(i)(q). Theorem 8
is equivalently re-phrased as

Fλ(q) =
∑

P∈PY (λ)

FP (q), (7)

where the weight of the path P is FP (q) =
∏n

i=1 εi(q).
The set of paths PY(λ) is in bijection with the set SYT(λ) of standard Young tableaux

of shape λ, so we can also give an equation for Fλ(q) as a sum over standard Young
tableaux.

A standard Young tableau T of shape λ is a filling of the Ferrers diagram of λ ` n with
the integers 1, . . . , n such that the integers increase weakly along each row and strictly
along each column. For 1 6 i 6 n, Let T (i) denote the Young tableau of shape λ(i)

consisting of the boxes containing 1, . . . , i, and define weights

T (i)(q) =

{
qi−`(λ

(i)), if the ith box is in the first column,

qi−λ
(i)
j

′

− qi−1−λ(i)j−1

′

, if the ith box is in the jth column, j > 2.
(8)

Then
Fλ(q) =

∑
T∈SYT(λ)

FT (q), (9)

where the weight of the standard Young tableau T is FT (q) =
∏n

i=1 T
(i)(q).

2.2 Properties of Fλ(q)

Several properties of Fλ(q) follow readily from Theorem 8. For λ ` n, let

nλ =
∑
i>1

(i− 1)λi =
∑
b∈λ

coleg(b), (10)

where if a box b ∈ λ lies in the ith row of λ, then coleg(b) = i− 1.

Corollary 10. Let λ ` n. As a polynomial in q,

degFλ(q) =

(
n

2

)
− nλ.

Moreover, the coefficient of the highest degree term in Fλ(q) is fλ, the number of standard
Young tableaux of shape λ.

Proof. Suppose P = (∅ = π(0), π(1), . . . , π(n) = λ) is a path in Y such that π(k) is obtained
by adding a box to the ith row and jth column of π(k−1). Then deg cπ(k−1),π(k)(q) = k − i,
and therefore

degFP (q) =
n∑
k=1

deg cπ(k−1),π(k)(q) =
n∑
k=1

k −
∑
k>1

kλk =

(
n

2

)
− nλ.

In particular, every polynomial FP (q) arising from a path P ∈ PY(λ) has the same degree,
so degFλ(q) =

(
n
2

)
− nλ. Moreover, each FP (q) is monic, so the coefficient of the highest

degree term in Fλ(q) is the number of paths in Y from ∅ to λ, which is fλ.
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Corollary 11. Let λ ` n. The multiplicity of the factor q − 1 in Fλ(q) is n− `(λ).

Proof. The weight cπ(k−1),π(k)(q) corresponding to the kth step in the path P contributes
a single factor of q− 1 to FP (q) if and only if the kth box added is not in the first column
of λ. Therefore, the multiplicity of q − 1 in FP (q) is n − `(λ), and it follows that the
multiplicity of q − 1 in Fλ(q) is n− `(λ).

Example 12. There are two partitions of 4 with two parts, namely (3, 1) and (2, 2).
There are three paths from ∅ to (3, 1) in Y , giving

F(3,1)(q) = (q − 1) · (q − 1)q · q2 + (q − 1) · q · (q − 1)q2 + ·(q2 − 1) · (q − 1)q2

= (q − 1)2
(
3q3 + q2

)
,

and there are two paths from ∅ to (2, 2) in Y , giving

F(2,2)(q) = (q − 1) · q · (q − 1)q + (q2 − 1) · (q − 1)q

= (q − 1)2(2q2 + q).

Summing these gives a shift of the q-Stirling polynomial (q−1)2q4S4,2(q−1) = (q−1)2(3q3+
3q2 + q).

2.3 Explicit formulas

In this section, we derive non-recursive formulas for some special cases of λ. Previously,

we have noted the simple cases F(1n) = 1 and F(n) = q(
n−1
2 )(q − 1)n−1.

Proposition 13 (Hook shapes). Let n > k > 2, and let λ = (n − k + 1, 1k−1) be a
hook-shaped partition of n with `(λ) = k parts. Then

Fλ(q) = (q − 1)n−k
k−1∑
i=0

(
n− i− 1

k − i− 1

)
qα−i, where α =

(
n− 1

2

)
−
(
k − 1

2

)
.

Proof. We make use of Equation (7). We enumerate paths from ∅ to λ according to the
first time a box is added to the second column, so for 0 6 r 6 k − 1, let Sr be the set
of paths in the sublattice [∅, λ] which contains the edge ((1, 1r), (2, 1r)). Such paths are
formed by the concatenation of the unique path between ∅ and ν = (2, 1r), which has
weight qr+1−1, with any path in the sublattice [ν, λ]. The sublattice [ν, λ] is the Cartesian
product of a (n − k)-chain and a (k − r − 1)-chain, so it forms a rectangular grid, and
therefore |Sr| =

(
n−r−1
k−r−1

)
. Notice that in any sublattice of the form

(a, 1b+1)
(q−1)qa+b// (a+ 1, 1b+1)

(a, 1b)
(q−1)qa+b−1

//

qa−1

OO

(a+ 1, 1b)

qa

OO
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the product of the edge weights is (q − 1)q2a+b−1 no matter which path is taken from
(a, 1b) to (a + 1, 1b+1), so it follows that every path from ν to λ has the same weight.
By considering the path (ν, 21r+1, . . . , 21k−1, 31k−1, . . . , λ), this weight is easily seen to be
(q − 1)n−k−1qα−r, for α =

(
n−1

2

)
−
(
k−1

2

)
. Altogether,

Fλ(q) = (q − 1)n−k
k−1∑
r=0

(
n− r − 1

k − r − 1

)(
qα + qα−1 + · · ·+ qα−r

)
.

For 0 6 i 6 k − 1, the coefficient of qα−i in Fλ(q)/(q − 1)n−k is

k−1∑
r=i

(
n− r − 1

k − r − 1

)
=

k−i−1∑
u=0

(
n− k + u

u

)
=

(
n− i− 1

k − i− 1

)
,

since
∑M

u=0

(
N+u
u

)
=
(
N+M+1

M

)
. Therefore,

Fλ(q) = (q − 1)n−k
k−1∑
i=0

(
n− i− 1

k − i− 1

)
qα−i,

as claimed.

We next consider the case when λ is a partition with two parts. For n > k > 1, let

Cn,k =

(
n+ k

k

)
−
(
n+ k

k − 1

)
, (11)

and let Cn,0 = 1 for all n > 0. These generalized Catalan numbers Cn,k (see OEIS [10,
A009766]) enumerate lattice paths from (0, 0) to (n, k), using the steps (1, 0) and (0, 1),
which do not rise above the line y = x. In the remainder of this section, we shall refer to
these as Dyck paths.

The generalized Catalan numbers satisfy the simple recursive formula Cn,k = Cn,k−1 +
Cn−1,k. Also, these are the usual Catalan numbers Cn = 1

n+1

(
2n
n

)
= Cn,n = Cn,n−1 when

k = n or n− 1. These facts will be used in the computations which follow.

Proposition 14 (Partitions with two parts). If λ = (r, s) ` n such that r > s > 1, then

F(r,s)(q) = (q − 1)r+s−2q(
r+s−1

2 )−2s+1
s∑
i=0

Cr+s−i,iq
i.

If r = s, then

F(r,r)(q) = (q − 1)2r−2q(
2r−2

2 )
r−1∑
i=0

C2r−1−i,iq
i.

Proof. Proceed by induction on r + s. The base cases are F(r)(q) = (q − 1)r−1q(
r−1
2 ) for

r > 1 and F(1,1)(q) = 1.
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n\k 0 1 2 3 4 5 6
0 1
1 1 1
2 1 2 2
3 1 3 5 5
4 1 4 9 14 14
5 1 5 14 28 42 42
6 1 6 20 48 90 132 132

Figure 2: The Catalan triangle Cn,k.

We first handle the case s = 1 separately. For r > 2,

F(r,1)(q) = qr−1F(r)(q) + (q − 1)qr−1F(r−1,1)(q)

= qr−1 · (q − 1)r−1q(
r−1
2 ) + (q − 1)qr−1 · (q − 1)r−2q(

r−1
2 )−1 ((r − 1)q + 1)

= (q − 1)r−1q(
r
2)−1 (rq + 1) .

Next, consider the case s = r. For r > 2,

F(r,r)(q) = (q − 1)q2r−3F(r,r−1)(q)

= (q − 1)q2r−3 · (q − 1)2r−3q(
2r−2

2 )−2(r−1)+1
r−1∑
i=0

C2r−1−i,iq
i

= (q − 1)2r−2q(
2r−2

2 )
r−1∑
i=0

C2r−1−i,iq
i.

The case s = r − 1 is obtained as follows. For r > 3,

F(r,r−1)(q) = (q − 1)q2r−4F(r,r−2)(q) + (q2 − 1)q2r−4F(r−1,r−1)(q)

= (q − 1)2r−3q2r−4q(
2r−4

2 )

(
q
r−2∑
i=0

C2r−2−i,iq
i + (q + 1)

r−2∑
i=0

C2r−3−i,iq
i

)

= (q − 1)2r−3q(
2r−3

2 )

(
(Cr,r−2 + Cr−1,r−2) qr−1

+
r−2∑
i=1

(C2r−1−i,i−1 + C2r−2−i,i−1 + C2r−3−i,i) q
i + C2r−3,0q

0

)
.

Since Cn,n−1 = Cn,n, then Cr,r−2 + Cr−1,r−2 = Cr,r−1. Similarly, we obtain C2r−1−i,i−1 +
C2r−2−i,i−1 +C2r−3−i,i = C2r−1−i,i by applying the recurrence equation for the generalized
Catalan numbers. Lastly, Cn,0 = 1 for all n > 0, thus

F(r,r−1)(q) = (q − 1)2r−3q(
2r−3

2 )
r−1∑
i=0

C2r−1−i,iq
i,
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(q+1)q4 //

q5

OO

(q+1)q2 // //

q3

OO

q4

OO

q+1 // q2 //

q

OO

//

q2

OO

q3

OO

∅ 1 // 1 //

1

OO

q //

q

OO

q2 //

q2

OO

q3

OO

Figure 3: Factors of q−1 are omitted from the edge weights in this sublattice of partitions
with at most two rows.

which agrees with the formula for the case s = r − 1.
The last case to consider is the general case r − s > 2 where s > 2.

F(r,s) = (q − 1)qr+s−3F(r,s−1) + (q − 1)qr+s−2F(r−1,s)

= (q − 1)r+s−2qr+s−3q(
r+s−2

2 )−2s+1

(
q2

s−1∑
i=0

Cr+s−1−i,iq
i + q

s∑
i=0

Cr−1+s−i,iq
i

)

= (q − 1)r+s−2q(
r+s−1

2 )−2s+1

(
Cr+s,0q

0 +
s∑
i=1

(Cr+s−i,i−1 + Cr−1+s−i,i) q
i

)

= (q − 1)r+s−2q(
r+s−1

2 )−2s+1
s∑
i=0

Cr+s−i,iq
i.

The next equation is a formula for F(r,r)(q) with a different factorization.

Proposition 15 (Two equal parts). Let λ = (r, r) ` n, and r > 1. Then

F(r,r)(q) = (q − 1)2r−2

r−1∑
i=0

Cr−1,r−1−i q
2(r−1)2−i(q + 1)i.

Proof. The set of paths in the sublattice [∅, λ] are in bijection with the set of lattice paths
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from (0, 0) to (r, r). In any sublattice of the form

(a, b+ 1)
(q−1)qa+b// (a+ 1, b+ 1)

(a, b)
(q−1)qa+b−1

//

(q−1)qa+b−2

OO

(a+ 1, b)

(q−1)qa+b−1

OO

where b 6 a− 2, the product of the edge weights is (q− 1)2q2a+2b−2 no matter which path
is taken from (a, b) to (a+ 1, b+ 1). As for sublattices of the form

(a, a)
(q2−1)q2a−2

// (a+ 1, a)

(a, a− 1)
(q−1)q2a−2

//

(q−1)q2a−3

OO

(a+ 1, a− 1)

(q−1)q2a−2

OO

the product of the edge weights is (q − 1)2q4a−4 via the lower horizontal edge, versus
(q − 1)2q4a−5(q + 1) via the upper horizontal edge. It follows that if a path P from ∅ to
λ contains i partitions of the form (a, a), then it has the weight

Fp(q) = (q − 1)2r−2q2(r−1)2−i(q + 1)i.

Dyck paths may be enumerated according to the points at which they touch the
diagonal line y = x, and the set of touch points are indexed by compositions α =
(α1, . . . , αi+1) � r where αj > 1. The number of Dyck paths from (0, 0) to (r, r) which
touch the diagonal exactly i times, not including the initial and the end points, is

∑
α�r

`(α)=i+1

i+1∏
j=1

Cαj−1.

On the other hand, the number Cr−1,r−1−i of Dyck paths from (0, 0) to (r − 1, r − 1− i)
satisfies the same recurrence equation

Cr−1,r−1−i =
∑

β�r−1−i
`(β)=i+1

i+1∏
j=1

Cβj ,

but the sum is over the set of weak compositions so that βj > 0. Under the appropriate
shift in indices, it follows that the number of Dyck paths from (0, 0) to (r, r) which touch
the diagonal exactly i times is Cr−1,r−1−i. The result follows from this.

Corollary 16. For k > m > 0,

k∑
j=m

(
j

m

)
Ck,j = C2k+1−m,m.
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Proof. The two formulas for F(k+1,k+1)(q) yields the identity

k∑
i=0

Ck,k−i q
2k2−i(q + 1)i = q(

2k
2 )

k∑
i=0

C2k−i,iq
i.

Extracting the coefficient of q2k2−m in the above expressions yields the result.

Remark 17. The formula for F(r,r)(q) provided in Proposition 15 can be viewed as a sum
over Dyck paths, where each Dyck path π contributes a term of the form qs1(π)(q+ 1)s2(π)

for some statistics s1 and s2 on the Dyck paths. This particular factorization for F(r,r)(q)
is related to the work of Cai and Readdy on the q-Stirling numbers of the second kind,
since the polynomials Fλ(q) can be viewed as a refinement of Sn,k(q), as explained in
Section 3.

Cai and Readdy obtained a formula [2, Theorem 3.2] for S̃n,k(q) (they use a different
recursive formula to define the q-Stirling numbers, and the two are related by Sn,k(q) =

q(
k
2)S̃n,k(q)) as a sum over allowable restricted-growth words, where each allowable word

w gives rise to a term of the form qa(w)(q+ 1)b(w) for some statistics a(w) and b(w). They
also showed that this enumerative result has an interesting extension to the study of the
Stirling poset of the second kind, providing a decomposition of that poset into Boolean
sublattices.

For example, if we define polynomials Gλ(q) by letting Gλ(q) = Fλ(q)/(q−1)n−`(λ) (see

Equation (12)), then G(3,1)(q) + G(2,2)(q) = q3S̃4,2(q−1). The formula of Cai and Readdy
yields q3S4,2(q−1) = q(q + 1)2 + q2(q + 1) + q3, while our factorization yields G(3,1)(q) +
G(2,2)(q) = (q3 + q3 + q2(q + 1)) + (q2 + q(q + 1)). So, the result of Proposition 15 gives
a different expression for Sn,n−2(q) as a sum with terms of the form qs1(π)(q + 1)s2(π), and
it may be interesting to further investigate such factorizations of Fλ(q).

Example 18. The first few F(k,k) are

F(1,1) = 1

F(2,2) = (q − 1)2
(
q2 + q(q + 1)

)
= (q − 1)2

(
2q2 + q

)
F(3,3) = (q − 1)4

(
2q8 + 2q7(q + 1) + q6(q + 1)2

)
= (q − 1)4

(
5q8 + 4q7 + q6

)
F(4,4) = (q − 1)6

(
5q18 + 5q17(q + 1) + 3q16(q + 1)2 + q15(q + 1)3

)
= (q − 1)6

(
14q18 + 14q17 + 6q16 + q15

)
F(5,5) = (q − 1)8

(
14q32 + 14q31(q + 1) + 9q30(q + 1)2 + 4q29(q + 1)3 + q28(q + 1)4

)
= (q − 1)8

(
42q32 + 48q31 + 27q30 + 8q29 + q28

)
.

We end this section with one more closed formula for Fλ(q) where λ is a rectangular
shape with two columns. Let D(n, k) denote the set of Dyck paths from (0, 0) to (n, k).
The coarea of a Dyck path π is the number of whole unit squares lying between the path
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q3 //

q3[1]

OO

q2 // q2 //

q2[1]

OO

q2[2]

OO

q // q //

q[1]

OO

q //

q[2]

OO

q[3]

OO

∅ 1 // 1 //

[1]

OO

1 //

[2]

OO

1 //

[3]

OO

[4]

OO

Figure 4: Factors of q−1 are omitted from the edge weights in this sublattice of partitions
with at most two columns.

and the x-axis. For i = 1, . . . , n, let ρi(π) be one plus the number of unit squares lying
between the path and the line y = x+ 1 in the ith row. For example, the following Dyck
path π has coarea(π) = 12, and (ρ1(π), ρ2(π), ρ3(π), ρ4(π)) = (2, 2, 1, 1).
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For n > 1, let [n]q = 1 + q + · · ·+ qn−1.

Proposition 19. (Partitions with two columns) Let λ = (2r, 1s) ` n such that r, s > 0.
Then

F(2r,1s)(q) = (q − 1)rq(
r
2)

∑
π∈D(r+s,r)

qcoarea(π)

r∏
i=1

[ρi(π)]q .

Proof. By Corollary 11, we know the multiplicity of the factor q − 1 in F(2r,1s)(q) is
n − `(λ) = λ′2 = r, so we focus on computing F(2r,1s)(q)/(q − 1)r. The paths in Young’s
lattice from ∅ to (2r, 1s) are in bijection with the Dyck paths D(r + s, r), so we identify
these paths; adding a box in the first column of a partition corresponds to a (1, 0) step
in the Dyck path, and adding a box in the second column of a partition corresponds to
a (0, 1) step in the Dyck path. As seen in Figure 4, a vertical step (i, j) to (i, j + 1) has
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weight qj[i]q, while a horizontal step (i, j) to (i + 1, j) has weight qj. Thus the product

of the edge weights of the r vertical steps of a given Dyck path π is q(
r
2)
∏r

i=1[ρi(π)]q,
while the product of the edge weights of the r + s horizontal steps of a given Dyck path
is qcoarea(π). The result follows.

Example 20. The first few F(2n) are

F(2) = (q − 1)(q + 1)

F(22) = (q − 1)2q (q + (q + 1))

F(23) = (q − 1)3q3
(
q3 + 2q2(q + 1) + q(q + 1)2 + (q2 + q + 1)(q + 1)

)
F(24) = (q − 1)4q6

(
q6 + 3q5[2] + 3q4[2]2 + q3[2]3 + 2q3[3]! + 2q2[2][3]! + q[3][3]! + [4]!

)
.

Remark 21. Kirillov and Melnkov [8] considered the number An(q) of n by n upper-
triangular matrices over Fq satisfying X2 = 0. In their first characterization of these
polynomials, they considered the number Arn(q) of matrices of a given rank r, so that
An(q) =

∑
r>0A

r
n(q), and observed that Arn(q) satisfies the recurrence equation

Arn(q) = qrArn−1(q) +
(
qn−r − qr

)
Arn(q), A0

n(q) = 1.

We may think of An(q) as the sum of Fλ(q) over λ ` n with at most two columns, so
Theorem 8 is a generalization of this recurrence equation.

It was also conjectured in [8] that the same sequence of polynomials arise in a number
of different ways. Ekhad and Zeilberger [3] proved that one of the conjectured alternate
definitions of An(q), namely

Cn(q) =
∑
s

cn+1,sq
n2

4
+ 1−s2

12 ,

is a sum over all s ∈ [−n− 1, n+ 1] which satisfy s ≡ n+ 1 mod 2 and s ≡ (−1)n mod 3,
and cn+1,s are entries in the signed Catalan triangle, is indeed the same as An(q). It
would be interesting to see what other combinatorics may arise from considering the sum
of Fλ(q) over λ ` n with at most k columns for a fixed k.

3 Jordan canonical forms and q-rook placements

In light of Corollary 11, we define polynomials Gλ(q) ∈ Z[q] by

Fλ(q) = (q − 1)n−`(λ)Gλ(q). (12)

In fact, we can deduce from Corollary 11 that Gλ(q) ∈ N[q]. In this section, we explore
the connection between the nonnegative coefficients of Gλ(q) and rook placements.
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3.1 Background on rook polynomials

A board B is a subset of an n by n grid of squares. In this paper, we follow Haglund [5]
and Solomon [12], and index the squares using the convention for the entries of a matrix.
A Ferrers board is a board B where if a square s ∈ B, then every square lying north
and/or east of s is also in B. Our Ferrers boards have squares justified upwards and to
the right. Let Bn denote the staircase-shaped board with n columns of sizes 0, 1, . . . , n−1.
Let area(B) be the number of squares in B, so that in particular, area(Bn) =

(
n
2

)
.

A placement of k rooks on a board B is non-attacking if there is at most one rook in
each row and each column of B. Let C(B, k) denote the set of non-attacking placements
of k rooks on B. All rook placements considered in this article are non-attacking, so from
this point forward, we drop the qualifier. For a placement C ∈ C(B, k), let ne(C) be the
number of squares in B lying directly north or directly east of a rook. The inversion of
the placement is the number

inv(C) = area(B)− k − ne(C). (13)

As noted in [4], the statistic inv(C) is a generalization of the number of inversions of
a permutation, since permutations can be identified with rook placements on a square-
shaped board.

For i = 1, . . . , n, the weight of the ith column Ci of C is

Ci(q) = (q − 1)#rooks in Ciqne(Ci), (14)

and the weight of C is defined by FC(q) =
∏n

i=1Ci(q). Alternatively, if C ∈ C(B, k), then
FC(q) = (q − 1)kqne(C).

Example 22. We use × to mark a rook and use • to mark squares lying directly north or
directly east of a rook (these squares shall be referred to as the north-east squares of the
placement). The following illustration is a placement of four rooks on the staircase-shaped
board B7.

........................................................................................................................................................................................................

...........................................................................................................................................................................

...............................................................................................................................................

..................................................................................................................

......................................................................................

.........................................................

.............................

.............................

.........................................................

......................................................................................

..................................................................................................................

...............................................................................................................................................

...........................................................................................................................................................................

........................................................................................................................................................................................................

×
×

×
×

•

• •

•

•

•

• •

•

•

•

1 2 3 4 5 6 7

1

2

3

4

5

6

7

This rook placement has ne(C) = 11, inv(C) = 6, and weight FC(q) = (q − 1)4q11.

For k > 0, the q-rook polynomial of a Ferrers board B is defined by Garsia and
Remmel [4, I.4] as

RB,k(q) =
∑

C∈C(B,k)

qinv(C). (15)

The following result explains the role of rook polynomials in the enumeration of ma-
trices of given rank. The support of a matrix X is {(i, j) | xij 6= 0}. Given a Ferrers board
B with n columns, we may identify the squares in B with the entries in an n by n matrix.

the electronic journal of combinatorics 25(1) (2018), #P1.68 17



Theorem 23 (Haglund). If B is a Ferrers board, then the number PB,k(q) of n by n
matrices of rank k with support contained in B is

PB,k(q) = (q − 1)kqarea(B)−kRB,k(q
−1).

Looking ahead, it will be convenient to consider Theorem 23 in the following equivalent
form:

PB,k(q) =
∑

C∈C(B,k)

(q − 1)kqne(C) =
∑

C∈C(B,k)

FC(q). (16)

Example 24. We list the seven rook placements on B4 with two rooks, along with their
weights.

..................................................................................................................
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(q − 1)2q

(18)

Thus PB4,2(q) = (q − 1)2(3q3 + 3q2 + q).

3.2 Rook placements and Jordan forms

The purpose of this section is to generalize Haglund’s formula (16) to a formula for Fλ(q)
(Corollary 30) as a sum over a set of rook placements. We achieve this by defining a
multigraph Z that is related to Y , and show that paths in Z are equivalent to rook
placements.

The multigraph Z is constructed from Y by replacing each edge of Y by one or more

edges as follows. If there is an edge from µ to λ in Y of weight q|µ|−µ
′
j−1

(
qµ
′
j−1−µ′j − 1

)
,

then this edge is replaced by µ′j−1 − µ′j edges from µ to λ with weights

(q − 1)q|µ|−µ
′
j−1, . . . , (q − 1)q|µ|−µ

′
j−1 (19)

in Z. All other edges remain as before. See Figure 5.
Let PZ(λ) denote the set of paths in the graph Z from the empty partition ∅ to λ. For

a path P = (∅ = π(0), π(1), . . . , π(n) = λ) in PZ(λ), let εi(q) denote the weight of the ith
edge, for i = 1, . . . , n. Naturally, we define the weight of the path by FP (q) =

∏n
i=1 εi(q),

so that
Fλ(q) =

∑
P∈PZ(λ)

FP (q). (20)

Lemma 25. Let µ ` n− 1 be a partition with `(µ) = ` parts. Then there are `+ 1 edges
leaving µ in the graph Z, with weights

(q − 1)q|µ|−1, (q − 1)q|µ|−2, . . . , (q − 1)q|µ|−`, and q|µ|−`.
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(q−1)q2

''
(q−1)q //

q−1

77

1

OO

(q−1)q
++

q−1

33

1

OO

(q−1)q2 //

q

OO

(q−1)q

<<

q−1 //

1

OO

(q−1)q //

q

OO

(q−1)q2 //

q2

OO

∅
1

<<

Figure 5: The multigraph Z, up to n = 4.

Proof. If a partition λ ` n is obtained by adding a box to the first column of µ, then
there is a unique edge from µ to λ in Z with weight q|µ|−`. Otherwise, if we consider the
set of all partitions which can be obtained from µ by adding a box anywhere except in
the first column, then there are a total of∑

j>2

(
µ′j−1 − µ′j

)
= `

edges from µ to some partition of n. Moreover, by Equation (19), these ` weights are
(q − 1)q|µ|−i for i = 1, . . . , `.

A sequence of nonnegative integers is PZ-admissible if it is the degree sequence of a
path P = (∅, π(1), . . . , π(n)) in Z. That is, (d1, . . . , dn) = (deg ε1(q), . . . , deg εn(q)).

Corollary 26. A PZ-admissible sequence determines a unique path in Z.

Proof. Induct on n. When n = 1, the only path is the from ∅ to (1), and it has degree
sequence (0).

Given a PZ-admissible sequence (d1, . . . , dn), the subsequence (d1, . . . , dn−1) deter-
mines a unique path P ′ = (∅, π(1), . . . , π(n−1)). Suppose µ = π(n−1) has ` parts. Then
|µ| − ` + 1 6 dn 6 |µ|, and by Lemma 25, there is a unique edge leaving µ with de-
gree dn.
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3.3 The construction of Φ

Let PZ(n, n− k) denote the set of paths in Z from ∅ to a partition of n with n− k parts.
In this section, we define a weight-preserving bijection Φ : C(Bn, k)→ PZ(n, n− k).

Proposition 27. Let n > 1 and k = 0, . . . , n− 1. Let C ∈ C(Bn, k) be a rook placement
with columns C1, . . . , Cn. There exists a unique path P ∈ PZ(n, n− k) with edge weights
(ε1(q), . . . , εn(q)) = (C1(q), . . . , Cn(q)).

Proof. Proceed by induction on n + k. When n = 1 and k = 0, there is a unique rook
placement on the empty board B1 with no rooks having weight one, corresponding to the
unique path P = (∅, (1)) in Z with the same weight.

Assume the result holds for all rook placements in C(Bn−1, k) and C(Bn−1, k − 1).
Given a rook placement C ∈ C(Bn, k), let C ′ be the sub-placement consisting of the first
n−1 columns of C. By induction, the sequence (C1(q), . . . , Cn−1(q)) determines a unique
path (∅, π(1), . . . , π(n−1)) in Z such that εi(q) = Ci(q) for i = 1, . . . , n− 1.

There are now two cases two consider. The first case is if C ′ ∈ C(Bn−1, k), so that
`(π(n−1)) = n − k − 1. There are k rooks in C ′, so the nth column of C does not
contain any rooks, and Cn(q) = qk. By Lemma 25, there exists a unique edge in the
graph Z originating at π(n−1) with weight qk. Thus C corresponds to the path P =
(∅, π(1), . . . , π(n−1), π(n)) where π(n) is obtained from π(n−1) by adding a box to the first
column, and εn(q) = qk. Moreover, `(π(n)) = n− k.

The second case is if C ′ ∈ C(Bn−1, k − 1), so that `(π(n−1)) = n − k. There must be
k−1 ‘northeast’ squares in the nth column of C, and there are n−k remaining squares in
that column where a rook may be placed. Label these available squares a0, a1, . . . , an−k−1

from the top to the bottom. Observe that Cn(q) = (q − 1)qk−1+i if a rook is placed in
the square ai, for 0 6 i 6 n − k − 1. Again by Lemma 25, there exists n − k edges
in the graph Z originating at π(n−1) with the weights (q − 1)qh for k − 1 6 h 6 n − 2.
Thus if the kth rook of C is placed in the square ai, then C corresponds to the path
P = (∅, π(1), . . . , π(n−1), π(n)) with εn(q) = (q − 1)qk−1+i, and `(π(n)) = n− k.

Given a rook placement C ∈ C(Bn, k), let Φ(C) be the path in PZ(n, n− k) with edge
weights (ε1(q), . . . , εn(q)) = (C1(q), . . . , Cn(q)).

Theorem 28. The map Φ : C(Bn, k)→ PZ(n, n− k) is a weight-preserving bijection.

Proof. Proposition 27 shows that the map Φ is an injective weight-preserving map, since
each column of the rook placement determines each edge of the path Φ(C):

FC(q) =
n∏
i=1

Ci(q) =
n∏
i=1

εi(q) = FΦ(C)(q).

In fact, the proof of the Proposition also shows that Φ is surjective because the number
of possible ways to add a column to an existing rook placement is equal to the number
of possible ways to extend a path in Z by one edge. Therefore, Φ is a weight-preserving
bijection.
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A sequence of nonnegative integers is C-admissible if it is the degree sequence of a rook
placement. That is, (d1, . . . , dn) = (degC1(q)), . . . , degCn(q)) for a C ∈ C(Bn, k). The
next Corollary follows easily from Theorem 28.

Corollary 29. A C-admissible sequence determines a unique rook placement.

It follows from Theorem 28 that we may associate a partition type to each rook
placement on Bn. The partition type of a rook placement C is the partition at the endpoint
of the path Φ(C) in Z. Let C(λ) = Φ−1 (PZ(λ)) denote the set of rook placements of
partition type λ.

Corollary 30. Let λ ` n be a partition with `(λ) = n− k parts. Then

Fλ(q) =
∑

C∈C(λ)

FC(q) = (q − 1)n−`(λ)
∑

C∈C(λ)

qne(C).

Proof. The result follows from Equation 20 and the bijection Φ.

Remark 31. The polynomial Gλ(q) ∈ N[q] defined in Equation (12) is simply a sum over
the rook placements of type λ involving the north-east statistic.

4 A connection with set partitions

The results of the previous section naturally leads to a decomposition of FT (q), indexed
by some tableau T , into a sum of polynomials indexed by set partitions, which we explain
below.

A set partition is a set S = {s1, . . . , sk} of nonempty disjoint subsets of [n] such that⋃k
i=1 si = [n]. The si’s are the blocks of σ. Let `(S) denote the number of blocks of S,

and let S(n, n− k) denote the set of set partitions of [n] with n− k blocks. We adopt the
convention of listing the blocks in order so that

|s1| > |s2| > · · · > |sk|, and min si < min si+1 if |si| = |si+1|. (21)

This allows us to represent a set partition with a diagram similar to that of a standard
Young tableau; the ith row of the diagram consists of the elements in the block si listed
in increasing order, but there are no restrictions on the entries in each column of the
diagram. A set partition S = (s1, . . . , sm) has partition type λ if λ = (|s1|, . . . , |sm|).

For i = 1, . . . , n, let S(i) denote the sub-diagram of S consisting of the boxes containing
1, . . . , i, with rows ordered according to the convention set forth in Equation (21). If the
box containing i is not in the first column of the diagram, let u be the least element in the
same row as i in S(i), and suppose u is in the rth row of S(i−1) for some 1 6 r 6 `(S(i−1)).
The weight arising from the ith box is

S(i)(q) =

{
qi−1−`(S(i−1)), if the ith box is in the first column,

(q − 1)qi−1−r, if the ith box is in the jth column, j > 2.
(22)
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We define the weight of S as FS(q) =
∏n

i=1 S
(i)(q).

A sequence of nonnegative integers is S-admissible if it is the degree sequence of a set
partition. That is, (d1, . . . , dn) = (deg S(1)(q)), . . . , degS(n)(q)) for a S ∈ S(n).

Lemma 32. An S-admissible sequence determines a unique set partition.

Proof. Induct on n. When n = 1, the only set partition is {{1}}, and its degree sequence
is (0).

Given an S-admissible sequence (d1, . . . , dn), the subsequence (d1, . . . , dn−1) deter-

mines a unique set partition S(n−1) = (S
(n−1)
1 , . . . , S

(n−1)
m ). By Equation (22), n−1−m 6

dn 6 n−1, and each of the m+ 1 choices for dn determines the block of S(n−1) into which
n should be inserted.

We have already constructed a weight-preserving bijection Φ between rook place-
ments and paths in Z. We now construct a weight-preserving bijection Ψ between rook
placements and set partitions, effectively showing that paths in Z are equivalent to set
partitions, so that FZ(q) = FC(q) = FS(q) if Z ←→ C ←→ S for Z ∈ PZ(n, n − k),
C ∈ C(Bn, k), and S ∈ S(n, n− k).

Remark 33. There is a classically known bijection (see [14]) between the set of rook
placements on the staircase board Bn with k rooks and the set of set partitions of [n] =
{1, . . . , n} with n − k blocks: the placement C corresponds to the set partition where
the integers i and j are in the same block if and only if there is a rook in the square
(i, j) ∈ C. This bijection is different from the one described in Theorem 34. For example,
the classical bijection associates the rook placement

..................................................................................................................

......................................................................................

.........................................................

.............................

.............................

.........................................................

......................................................................................

..................................................................................................................

×

×

• •

•

1

1

2

2

3

3

4

4

to the set partition ({1, 2}, {3, 4}) and so has partition type (2, 2), but as we shall see
below, this placement is associated to the set partition ({1, 2, 4}, {3}) under the bijection
in Theorem 34 and has partition type (3, 1).

4.1 The construction of Ψ

Let C ∈ C(Bn, k) be a rook placement. The main idea is that the degree of Ci(q) arising
from the ith column of C determines the block of the set partition in which we place i.
In the construction of the set partition Ψ(C), we will create a sequence of intermediate
set partitions S(i) of [i] for i = 1, . . . , n.

The initial case is always deg(C1(q)) = deg(1) = 0, so S(1) = {{1}}. Assume that

S(i−1) = {S(i−1)
1 , . . . , S

(i−1)
m } is the set partition which corresponds to the first i−1 columns

of C, so that m = `(S(i−1)). Observe that there are m + 1 possible blocks in which to
insert i to obtain S(i). By Corollary 26, we know that

i− 1− `(S(i−1)) 6 deg(Ci(q)) 6 i− 1,
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so we construct S(i) by placing i in the jth block of S(i−1), where j = i− deg(Ci(q)), and
then rearranging the blocks to fit the convention in Equation (21) if necessary.

Theorem 34. The map Ψ : C(n, k)→ S(n, n− k) is a weight-preserving bijection.

Proof. Let S = Ψ(C). The map Ψ is weight-preserving, as Ci(q) = S(i)(q) by construction,
for each i = 1, . . . , n. Now, since the degrees degCi(q) = degS(i)(q), and by Corollary 29
and Lemma 32 the sequences of degrees completely determine C and S respectively, then
Ψ is injective. Finally, we note that |C(n, k)| = |S(n, n− k)|, so Ψ is a bijection.

Corollary 35. Let S(λ) denote the set of all set partitions of partition type λ. Then

Fλ(q) =
∑

S∈S(λ)

FS(q).

Example 36. Let C be the rook placement

.................................................................................................................................................................................................................................................................

....................................................................................................................................................................................................................................

........................................................................................................................................................................................................

...........................................................................................................................................................................

...............................................................................................................................................

..................................................................................................................

......................................................................................

.........................................................

.............................

.............................

.........................................................

......................................................................................

..................................................................................................................

...............................................................................................................................................

...........................................................................................................................................................................

........................................................................................................................................................................................................

....................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................

×

×

×

×

•

•

•

• •

•

•

•

•

•

•

•

•

•

1 2 3 4 5 6 7 8 9

The associated sequence of set partition diagrams associated to C is

∅ ε1 // 1
ε2 // 1

2
ε3 //

1
2
3

ε4 //

1
2
3
4

ε5 //

1 5
2
3
4

ε6 //

1 5
2
3
4
6

ε7 //

1 5
6 7
2
3
4

ε8 //

1 5
3 8
6 7
2
4

ε9 //

3 8 9
1 5
6 7
2
4

,

so the set partition associated to the rook placement C is

S = Ψ(C) = ({3, 8, 9}, {1, 5}, {6, 7}, {2}, {4}).

Remark 37. An intriguing question is to ask for a geometric interpretation of the polyno-
mials FC(q), indexed by rook placements (or set partitions or paths in Z).

The problem of determining the number of adjoint Gn(Fq) orbits on gn(Fq) remains
open. In the case q = 2, this number has been computed for n 6 16 by Pak and Soffer [11,
Appendix B]. Let On(k) denote the orbits of rank k matrices. When k = 1, it turns out
that the polynomials FC(q) indexed by rook placements with exactly one rook gives the
sizes of the

(
n
2

)
orbits in On(1). For 2 6 i < j 6 n, each orbit contains a unique matrix Eij

whose ijth entry is 1, and is zero everywhere else. The orbit containing Eij is associated
to the rook placement C(i, j) with a single rook in the ijth square, and the size of the
associated orbit is FC(i,j)(q) = (q − 1)qn−1−(j−i).
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∅ 1 // q−1 // (q−1)q // q2 //

..................................................................................................................

......................................................................................

.........................................................

.............................

.............................

.........................................................

......................................................................................

..................................................................................................................

×
×
• •

• 1 2 3
4

∅ 1 // q−1 // q // (q−1)q2 //

..................................................................................................................

......................................................................................

.........................................................

.............................

.............................

.........................................................

......................................................................................

..................................................................................................................

×

×

• •

• 1 2 4
3

∅ 1 // 1 // (q−1)q // (q−1)q2 //

..................................................................................................................

......................................................................................

.........................................................

.............................

.............................

.........................................................

......................................................................................

..................................................................................................................

×
×

• •

• 1 3 4
2

∅ 1 // 1 // q−1 // (q−1)q2 //

..................................................................................................................

......................................................................................

.........................................................

.............................

.............................

.........................................................

......................................................................................

..................................................................................................................

×

×

•

• 2 3 4
1

Figure 6: Paths, rook placements, and set partitions related to the computation of
F(3,1)(q) = (q − 1)2(3q3 + q2).

In particular, the formula in Proposition 13 applied to the partition λ = (2, 1n−2) gives
the generating function

F(2,1n−2)(q) = (q − 1)
(
(n− 1)qn−2 + (n− 2)qn−3 + · · ·+ 3q2 + 2q + 1

)
for rank one orbits of Gn(Fq) on gn(Fq).
Remark 38. To close, we mention a related problem which may provide a geometric
interpretation of FC(q) for every rook placement C. Let N be an n× n nilpotent matrix
with entries in an algebraically closed field k containing Fq, and suppose N has Jordan
type λ ` n. A complete flag f = (f1, . . . , fn) is a sequence of subspaces in kn such
that f1 ⊂ · · · ⊂ fn and dim fi = i for all i. A flag is N-stable if N(fi) ⊆ fi for all
i. Spaltenstein [13] showed that the variety Xλ of N -stable flags is a disjoint union of
fλ smooth irreducible subvarieties XT indexed by the standard Young tableaux of shape
λ. Moreover, the closures XT are the irreducible components of Xλ, each of which has
dimension nλ. The number of Fq-rational points in Xλ is given by Green’s polynomials
Qλ

(1n)(q) [9, III.7]. Evidently,(∏
i>1

[mi(λ)]q!

)−1

Qλ
(1n)(q) =

(
(q − 1)n−`(λ)qm

)−1
Fλ(q),

with m = minC∈C(λ) ne(C). Based on some computations for small values of n, we ex-
pect that FC(q) plays a role in counting points in certain intersections of the irreducible
components XT .
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