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Abstract

A Mahonian d-function is a Mahonian statistic that can be expressed as a linear
combination of vincular pattern functions of length at most d. Babson and Ste-
ingŕımsson classified all Mahonian 3-functions up to trivial bijections and identified
many of them with well-known Mahonian statistics in the literature. We prove a
host of Mahonian 3-function equidistributions over permutations in Sn avoiding a
single classical pattern in S3. Tools used include block decomposition, Dyck paths
and generating functions.
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1 Introduction

A combinatorial statistic on a set S is a map stat : S → N. The distribution of stat
over S is given by the coefficients of the generating function

∑
σ∈S q

stat(σ). Let Sn be
the set of permutations σ = a1a2 · · · an of the letters [n] = {1, 2, . . . , n} and let σ(k)
denote the entry ak. Let S =

⋃
n>0 Sn. The inversion set of σ ∈ Sn is defined by

Inv(σ) = {(i, j) : i < j and σ(i) > σ(j)}. A particularly well-studied statistic on Sn is
inv : Sn → N, given by inv(σ) = | Inv(σ)|. An elegant formula for the distribution of the
inversion statistic was found in 1839 by Rodrigues [27]∑

σ∈Sn

qinv(σ) = [n]q!,

where [n]q! = [1]q[2]q · · · [n]q and [n]q = 1 + q + q2 + · · · + qn−1. The descent set of σ
is defined by Des(σ) = {i : σ(i) > σ(i + 1)}. In 1915 MacMahon [25] showed that
inv has the same distribution as another statistic, now called the major index (due to
MacMahon’s profession as a major in the british army) [17], given by maj(σ) =

∑
i∈Des(σ) i.

We also write imaj(σ) = maj(σ−1). In honor of MacMahon any permutation statistic
with the same distribution as maj is called Mahonian. Mahonian statistics are well-
studied in the literature. Since MacMahon’s initial work, many new Mahonian statistics
have been identified. Babson and Steingŕımsson [1] showed that almost all (at the time)
known Mahonian statistics can be expressed as linear combinations of statistics counting
occurrences of vincular patterns. They made several further conjectures regarding new
vincular pattern-based Mahonian statistics. These have since been proved and reproved at
various levels of refinement by a number of authors (see e.g., [4, 7, 18, 33]). Two sequences
of integers a1a2 · · · an and b1b2 · · · bn are said to be order isomorphic provided ai < aj if
and only if bi < bj for all 1 6 i < j 6 n. A vincular pattern (also known as generalized
pattern) of length m is a pair (π,X) where π is a permutation in Sm and X ⊆ {0, 1, . . . ,m}
is a set of adjacencies. Adjacencies are indicated by underlining the adjacent entries in
π (see Example 1). If 0 ∈ X (respectively, m ∈ X), then we denote this by adding a
square bracket at the beginning (respectively, end) of the pattern π. If X = ∅, then (π,X)
coincides with the definition of a classical pattern. A permutation σ = a1a2 · · · an ∈ Sn
contains the vincular pattern (π,X) if there is an m-tuple 1 6 i1 < i2 < · · · < im 6 n
such that the following criteria are satisfied

• ai1ai2 · · · aim is order-isomorphic to π,

• ij+1 = ij + 1 for each j ∈ X \ {0,m} and

• i1 = 1 if 0 ∈ X and im = n if m ∈ X.

We also say that ai1ai2 · · · aim is an occurrence of π in σ. We say that σ avoids π if
σ contains no occurrences of π. We denote the set of permutations in Sn avoiding the
pattern π by Sn(π). Moreover if Π is a set of patterns, then we set Sn(Π) =

⋂
π∈Π Sn(π).

In this paper we shall also need an additional generalization of vincular patterns,
allowing us to restrict occurrences to particular value requirements. Let υ = (υ1, . . . , υm)
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where υi ∈ N t {-}. Define a value-restricted vincular pattern (π,X)
∣∣
υ

to be a triple
(π,X, υ) where (π,X) is a vincular pattern. We say that ai1ai2 · · · aim is an occurrence of
(π,X)

∣∣
υ

in σ if it is an occurrence of the vincular pattern (π,X) and aij = υj whenever

υj ∈ N for j = 1, . . . ,m. Note in particular that (π,X)
∣∣
(-,...,-)

= (π,X). Every value-

restricted vincular pattern (π,X)
∣∣
υ

gives rise to a permutation statistic (π,X)
∣∣
υ

: Sn →
N called a pattern function counting the number of occurrences of (π,X)

∣∣
υ

in a given

permutation σ ∈ Sn (see Example 1). The length of (π,X)
∣∣
υ

: Sn → N is defined as the
length of the underlying vincular pattern (π,X).

Example 1. Let σ = 246153.

Pattern π X Occurrences in σ
231 ∅ 241, 261, 461, 463, 453
[231 {0} 241, 261
231 {1} 241, 461, 463
231 {2} 261, 461, 453
231 {1, 2} 461
231] {2, 3} 453
231
∣∣
(-,6,-)

{1} 461, 463

We also have (231)σ = 5, [231)σ = 2, (231)σ = 3, (231)σ = 3, (231)σ = 1, (231]σ = 1
and (231)

∣∣
(-,6,-)

σ = 2. On the other hand, the permutation σ = 215346 avoids the pattern

π = 231 (and hence all the patterns in the table above).

In this paper we mainly study equidistributions of the form∑
σ∈Sn(Π1)

qstat1(σ) =
∑

σ∈Sn(Π2)

qstat2(σ) (1)

where Π1,Π2 are sets of patterns and stat1, stat2 are permutation statistics. We will almost
exclusively focus on the case where Πi consists of a single classical pattern of length three
and stati is a Mahonian statistic. The equidistributions we prove are summarized in §5,
Table 2. Although Mahonian statistics are equidistributed over Sn, they need not be
equidistributed over pattern avoiding sets of permutations. For instance maj and inv are
not equidistributed over Sn(π) for any classical pattern π ∈ S3. Neither do the existing
bijections in the literature for proving equidistribution over Sn necessarily restrict to
bijections over Sn(π) (cf. [1, 4, 7, 18, 33]). Therefore whenever such an equidistribution is
present, we must usually seek a new bijection which simultaneously preserves statistic and
pattern avoidance. Another motivation for studying equidistributions over permutations
avoiding a classical pattern of length three is that |Sn(π)| = Cn for all π ∈ S3 where
Cn = 1

n+1

(
2n
n

)
is the nth Catalan number (see [22]). Therefore equidistributions of this

kind induce equidistributions between statistics on other Catalan objects (and vice versa)
whenever we have bijections where the statistics translate in an appropriate fashion. We
prove several results in this vein where an exchange between statistics on Sn(π), Dyck
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paths and polyominoes takes place. In general, studying the generating function (1)
provides a rich source of interesting q-analogues to well-known sequences enumerated by
pattern avoidance and raises new questions about the coefficients of such polynomials.

Equidistributions such as (1) has been studied in the past. For instance, Burstein and
Elizalde proved the following result involving the Mahonian Denert statistic

den(σ) = inv(Exc(σ)) + inv(NExc(σ)) +
∑
i∈[n]
σ(i)>i

i,

where Exc(σ) = (σ(i))σ(i)>i and NExc(σ) = (σ(i))σ(i)6i.

Theorem 2 (Burstein-Elizalde [5]). For any n > 1,∑
σ∈Sn(231)

qmaj(σ) =
∑

σ∈Sn(321)

qden(σ).

Two sets of patterns Π1 and Π2 are said to be Wilf-equivalent if |Sn(Π1)| = |Sn(Π2)| for
all n > 0. Sagan and Savage [28] coined a q-analogue of this concept. Two sets of patterns
Π1 and Π2 are said to be st-Wilf equivalent with respect to the statistic st : S → N if (1)
holds with stat1 = st = stat2 for any n > 0. Let [Π]st denote the st-Wilf class of the set
Π. This concept have been studied at several places in the literature. An overview of the
st-Wilf classification of single and multiple classical patterns of length three can be found
in the table below.

st Reference
maj, inv Dokos-Dwyer-Johnson-Sagan-Selsor [14]

charge Killpatrick [20]

fp, exc, des Elizalde [15, 16]

peak, valley Baxter [2]

peak, valley, head, last, lir, rir,
lrmin, rank, comp, ldr

Claesson-Kitaev [11]

In particular it was shown in [14] that In(132; q) = In(213; q) = Cn(q) and In(231; q) =
In(312; q) = C̃n(q) where

In(π; q) =
∑

σ∈Sn(π)

qinv(σ),

Cn(q) =
n−1∑
k=0

q(k+1)(n−k)Ck(q)Cn−k−1(q), C0(q) = 1,

C̃n(q) =
n−1∑
k=0

qkC̃k(q)C̃n−k−1(q), C̃0(q) = 1.
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The polynomial Cn(q) is known as the Carlitz-Riordan q-analogue of the Catalan numbers
and have been studied by numerous authors (though no explicit formula is known). Similar
recursions for maj have been studied in [8, 14].

To decompose pattern avoiding permutations we will require some notation. Given
permutations τ ∈ Sk and σ1, σ2 . . . , σk ∈ S, the inflation of τ by σ1, σ2 . . . , σk is the
permutation τ [σ1, σ2, . . . , σk] obtained by replacing each entry τ(i) by a block of length
|σi| order isomorphic to σi for i = 1, . . . , k such that the blocks are externally order-
isomorphic to τ .

Example 3. 231[21, 1, 213] = 546213.

Let σ ∈ Sn. Recall that the descent set of σ is given by Des(σ) = {i : σ(i) > σ(i + 1)}.
The set of descent bottoms (resp. descent tops) of σ is given by DB(σ) = {σ(i + 1) : i ∈
Des(σ)} (resp. DT(σ) = {σ(i) : i ∈ Des(σ)}). Likewise the ascent set of σ is given by
Asc(σ) = {i : σ(i) < σ(i+ 1)} and we define the set of ascent bottoms (resp. ascent tops)
of σ to be AB(σ) = {σ(i) : i ∈ Asc(σ)} (resp. AT(σ) = {σ(i+1) : i ∈ Asc(σ)}). An entry
σ(j) is called a left-to-right maxima if σ(j) > σ(i) for all i < j. Let LRMax(σ) denote
the set of left-to-right maxima in σ and let lrmax(σ) = |LRMax(σ)|. Similarly an entry
σ(j) is called a left-to-right minima if σ(j) < σ(i) for all i < j. Let LRMin(σ) denote the
set of left-to-right minima in σ and let lrmin(σ) = |LRMin(σ)|. We call σ(i) a pinnacle
if σ(i− 1) < σ(i) > σ(i+ 1) and σ(i) a trough if σ(i− 1) > σ(i) < σ(i+ 1).

Example 4. Let σ = 271985346. Then Des(σ) = {2, 4, 5, 6}, DB(σ) = {1, 3, 5, 8},
DT(σ) = {5, 7, 8, 9}, Asc(σ) = {1, 3, 7, 8}, AB(σ) = {1, 2, 3, 4}, AT(σ) = {4, 6, 7, 9},
LRMax(σ) = {2, 7, 9}, LRMin(σ) = {2, 1}. The pinnacles of σ are given by {7, 9} and
the troughs of σ by {1, 3}.

If σ = a1a2 · · · an−1an, then the reverse of σ is given by σr = anan−1 · · · a2a1 and the
complement of σ by σc = (n−a1+1)(n−a2+1) · · · (n−an−1+1)(n−an+1). The inverse of
σ (in the group theoretical sense) is denoted by σ−1. The operations complement, reverse
and inverse are often referred to as trivial bijections and together they generate a group
isomorphic to the Dihedral group D4 of order 8 acting on Sn. If π is a classical pattern
and g ∈ D4, then it is not difficult to see that σ ∈ Sn(π) if and only if σg ∈ Sn(πg).
However if π is a non-classical pattern, then avoidance is not necessarily closed under
inverse in any similar way. E.g. σ = 6274251 avoids the vincular pattern π = 123,
but σ−1 = 7254613 avoids no vincular pattern (π,X) of length three with X = {1} or
X = {2}. Therefore taking the inverse should not be viewed as a ‘trivial bijection’ in the
same sense as complement and reverse when it comes to vincular patterns.

In Table 1 we list the vincular pattern definitions of the Mahonian statistics that we
shall consider from [1]. The references in Table 1 indicate where the Mahonian nature
of the statistics was first proved. Some of these statistics where originally defined in a
slightly different form. See [1] for their translation into vincular pattern functions.

For example, Foata and Zeilberger introduced the Mahonian statistic mak in [18] where
it was essentially defined as

mak(σ) =
∑

α∈DB(σ)

α + (312)σ. (2)
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Name Vincular pattern definition Reference

maj (132) + (231) + (321) + (21) MacMahon [25]

inv (231) + (312) + (321) + (21) MacMahon [25]

mak (132) + (312) + (321) + (21) Foata-Zeilberger [19]

makl (132) + (231) + (321) + (21) Clarke-Steingŕımsson-Zeng [13]

mad (231) + (231) + (312) + (21) Clarke-Steingŕımsson-Zeng [13]

bast (132) + (213) + (321) + (21) Babson-Steingŕımsson[1]

bast′ (132) + (312) + (321) + (21) Babson-Steingŕımsson[1]

bast′′ (132) + (312) + (321) + (21) Babson-Steingŕımsson[1]

foze (213) + (321) + (132) + (21) Foata-Zeilberger [18]

foze′ (132) + (231) + (231) + (21) Foata-Zeilberger [18]

foze′′ (231) + (312) + (312) + (21) Foata-Zeilberger [18]

sist (132) + (132) + (213) + (21) Simion-Stanton [28]

sist′ (132) + (132) + (231) + (21) Simion-Stanton [28]

sist′′ (132) + (231) + (231) + (21) Simion-Stanton [28]

Table 1: Mahonian 3-functions.

It is easy to see that ∑
α∈DB(σ)

α = ((132) + (321) + (21))σ.

The statistic mad introduced by Clarke-Steingŕımsson-Zeng in [13] is defined similarly by
replacing the sum of descent bottoms by the sum of descent differences, i.e., the sum of
the differences between the two letters of a descent.

According to [1], Table 1 is the complete list of Mahonian 3-functions (up to trivial
bijections), i.e., Mahonian statistics that can be written as a sum of vincular pattern func-
tions of length at most three. Since some of these statistics have received no conventional
name in the literature, we will take the liberty of naming them according to the initials
of the authors who first proved their Mahonian nature.

2 Equidistributions via direct bijection

The equidistributions proved in this section are shown by directly exhibiting a bijection.
The bijections are based on standard decompositions of pattern avoiding permutations, or
rely on specifying data by which pattern avoiding permutations are uniquely determined.
In many cases we are able to find a more refined equidistribution. We begin by proving

the electronic journal of combinatorics 25(1) (2018), #P1.7 6



that maj and mak are related via the inverse map over certain pattern avoiding sets of
permutations. This may seem unexpected given that vincular patterns do not behave as
straightforwardly under the inverse map as they do under complement and reverse.

Proposition 5. Let σ ∈ Sn(π) where π ∈ {132, 213, 231, 312}. Then

mak(σ) = imaj(σ).

Moreover for any n > 1,∑
σ∈Sn(π)

qmaj(σ)tdes(σ) =
∑

σ∈Sn(π−1)

qmak(σ)tdes(σ).

Proof. Let σ ∈ Sn(231). If Des(σ) = {i1, . . . , ik}, then by [32, Lemma 3.1] we have that

Des(σ−1) = {σ(i1)− 1, . . . , σ(ik)− 1}.

In particular des(σ) = des(σ−1). Note that

σ(ij) = σ(ij + 1) + (312)
∣∣
(σ(ij),σ(ij+1),-)

σ + 1, (3)

for j = 1, . . . , k. Indeed if σ(ij + 1) < α < σ(ij), then α must appear to the right of the
descent ij in σ, otherwise ασ(ij)σ(ij + 1) is an occurrence of 231 (which is forbidden).
Therefore σ(ij)σ(ij +1)α is an occurrence of (312)

∣∣
(σ(ij),σ(ij+1),-)

in σ for every α such that

σ(ij + 1) < α < σ(ij). Thus (3) follows.
Hence by (3) and (2) we have

imaj(σ) =
k∑
j=1

(σ(ij)− 1)

=
k∑
j=1

(
σ(ij + 1) + (312)

∣∣
(σ(ij),σ(ij+1),-)

)
=

∑
α∈DB(σ)

α + (312)σ

= mak(σ).

The statement is proved similarly for remaining choices of π and those analogous
arguments are omitted.

Remark 6. By Proposition 5 and [32, Corollary 4.1] it follows that∑
σ∈Sn(231)

qmaj(σ)+mak(σ) =
1

[n+ 1]q

[
2n

n

]
q

(4)

where
[
n
k

]
q

= [n]q !

[n−k]q ![k]q !
. The right hand side of (4) is known as MacMahon’s q-analogue

of the Catalan numbers [26].
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The following lemma regarding the structure of Sn(321) is part of the folklore of
pattern avoidance (see e.g., [22]).

Lemma 7. We have σ ∈ Sn(321) if and only if the elements of [n] \ LRMax(σ) form an
increasing subsequence of σ.

Theorem 8. For any n > 1,∑
σ∈Sn(321)

qmaj(σ)xDB(σ)yDT(σ) =
∑

σ∈Sn(321)

qmak(σ)xDB(σ)yDT(σ),

∑
σ∈Sn(123)

qmaj(σ)xAB(σ)yAT(σ) =
∑

σ∈Sn(123)

qmak(σ)xAB(σ)yAT(σ).

Proof. Let σ ∈ Sn(321). By Lemma 7 we may decompose σ as

σ = u1v1u2v2 · · ·utvt,

where u1, . . . , ut are non-empty factors of left-to-right maxima in σ and v1, . . . , vt are
non-empty factors (except possibly vt) such that v1v2 · · · vt is an increasing subword.
Assume first that vt 6= ∅. Let Mi = max(ui) and mi = min(vi) for i = 1, . . . , t. Clearly
DB(σ) = {mi : 1 6 i 6 t} and DT(σ) = {Mi : 1 6 i 6 t}. Let ūi = ui \ Mi and
v̄i = vi \mi for i = 1, . . . , t. Write ū = ū1 · · · ūt and v̄ = v̄1 · · · v̄t.

We now define an involution

φ : Sn(321)→ Sn(321) (5)

such that maj(φ(σ)) = mak(σ), preserving all pairs of descent top and descent bottoms.
For convenience, set M0 = −∞ and Mt+1 =∞. Let u′k denote the unique increasing word
of the letters in the set

{α ∈ v̄ : Mk−1 < α < Mk} ,

with Mk adjoined at the end and let v′k denote the unique increasing word of the letters
in the set

{β ∈ ū : mk < β < Mk+1} ,

with mk adjoined at the beginning for k = 1, . . . , t. Define

φ(σ) =

{
u′1v

′
1 · · ·u′tv′t if vt 6= ∅

φ(u1v1 · · ·ut−1vt−1)ut if vt = ∅
.

Thus φ effectively swaps ū = LRMax(σ) \ DT(σ) with v̄ = [n] \ (LRMax(σ) ∪ DB(σ))
(when vt 6= ∅) and DB(φ(σ)) = DB(σ), DT(φ(σ)) = DT(σ). Hence φ is an involution.
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We have

(231)σ =
∑
β∈ū

(231)
∣∣
(β,-,-)

σ

=
∑
β∈ū

(max{k : mk < β} −min{k : Mk > β}+ 1)

=
∑
β∈ū

(max{k : mk < φ(β)} −min{k : Mk > φ(β)}+ 1)

=
∑
β∈ū

(312)
∣∣
(-,-,φ(β))

φ(σ)

= (312)φ(σ),

since under the involution φ, each β ∈ LRMax(σ) \ DT(σ) precisely passes the number
of descent bottoms that are less than it to its right. Therefore β is involved in the same
number of 231 occurrences in σ as φ(β) is involved in 312 occurrences in φ(σ). Hence

mak(φ(σ)) = ((132) + (321) + (21))φ(σ) + (312)φ(σ)

=
∑

α∈DB(φ(σ))

α + (312)φ(σ)

=
∑

α∈DB(σ)

α + (231)σ

= maj(σ).

The statement is proved analogously over S(123).

Example 9. Let φ be the involution (5) in Theorem 8 and let σ = 561237948 ∈ S9(321).
Then

561237948
φ

236189457,

where the black letters indicate the fixed pairs of descent tops and descent bottoms, red
letters denote non-descent top left-to-right maxima and blue letters denote non-descent
bottom non-left-to-right maxima. The involution swaps the role of red and blue letters
while keeping consecutive pairs of black letters together in the same relative order.

Proposition 10. We have

[123]mak = {123},
[321]mak = {321},
[132]mak = {132, 312} = [312]mak,

[213]mak = {213, 231} = [231]mak.

Proof. As shown in [14, Theorem 2.6] the map φ : Sn(132)→ Sn(231) recursively defined
by

φ(231[σ1, 1, σ2]) = 132[φ(σ1), 1, φ(σ2)],
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is a descent preserving bijection implying that [132]maj = [231]maj. Thus by Proposition
5 we have ∑

σ∈Sn(132)

qmak(σ) =
∑

σ∈Sn(132)

qmaj(σ) =
∑

σ∈Sn(231)

qmaj(σ) =
∑

σ∈Sn(312)

qmak(σ).

Hence [132]mak = [312]mak. The remaining mak-Wilf equivalence is proved similarly in-
voking Proposition 5. The inequivalences between the four classes is easily verified by
hand or with computer.

Remark 11. The charge statistic is also a Mahonian statistic related to maj via trivial
bijections by maj(σ) = charge(((σr)c)−1) (see [20]). It is worth noting that the mak-Wilf
classes in Proposition 10 coincide with the charge-Wilf classes identified in [20].

Remark 12. It can be checked that maj, inv and mak are the only statistics in Table 1
with non-singleton st-Wilf classes for single classical patterns of length three.

The bijection (5) in Theorem 8 induces an interesting equidistribution on shortened
polyominoes. A shortened polyomino is a pair (P,Q) of N (north), E (east) lattice paths
P = (Pi)

n
i=1 and Q = (Qi)

n
i=1 satisfying

i. P and Q begin at the same vertex and end at the same vertex.

ii. P stays weakly above Q and the two paths can share E-steps but not N -steps.

Denote the set of shortened polyominoes with |P | = |Q| = n by Hn. For (P,Q) ∈ Hn, let
ProjQP (i) denote the step j ∈ [n] of P that is the projection of the ith step of Q on P . Let

Valley(Q) = {i : QiQi+1 = EN}

denote the set of indices of the valleys in Q and let nval(Q) = |Valley(Q)|. Moreover for
each i ∈ [n] define

area(P,Q)(i) = #squares between the ith step of Q and the jth step of P,

where j = ProjQP (i). Consider the statistics valley-column area and valley-row area of
(P,Q) given by

vcarea(P,Q) =
∑

i∈Valley(Q)

area(P,Q)(i),

vrarea(P,Q) =
∑

i∈Valley(Q)

area(P,Q)(i+ 1).
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Q

P

(a) vcarea(P,Q) = 2 + 3 + 2 = 7

Q

P

(b) vrarea(P,Q) = 2 + 4 + 3 = 9

1

2

3 4 5

6 7

8

9

3 4
1

6

2

5
9

7

8

Q

P

The bijection Υ. Here Υ(P,Q) = 341625978 ∈ S9(321).

Theorem 13. For any n > 1,∑
(P,Q)∈Hn

qvcarea(P,Q)tnval(Q) =
∑

(P,Q)∈Hn

qvrarea(P,Q)tnval(Q).

Proof. We begin by recalling a bijection Υ : Hn → Sn(321) due to Cheng-Eu-Fu [9].
Given (P,Q) ∈ Hn, set LabelP (i) = i and LabelQ(i) = LabelP (ProjQP (i)). Then

Υ(P,Q) = LabelQ(1) · · ·LabelQ(n) ∈ Sn(321)

is a bijection.
Let (P,Q) ∈ Hn and i ∈ Valley(Q). The definition of Υ immediately gives

Valley(P,Q) = Des(Υ(P,Q)).

In particular LabelQ(i + 1) < LabelQ(i). Let s = ProjQP (i + 1) and t = ProjQP (i). Then
s < t and

area(P,Q)(i) = |{j : Pj = N, s 6 j 6 t}|
= |{j : LabelQ(i+ 1) 6 LabelQ(j) < LabelQ(i), j > i}|
= 1 + (312)

∣∣
(LabelQ(i),LabelQ(i+1), -)

Υ(P,Q).
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Similarly,

area(P,Q)(i+ 1) = |{j : Pj = E, s 6 j 6 t}|
= |{j : LabelQ(i+ 1) < LabelQ(j) 6 LabelQ(i), j 6 i}|
= 1 + (231)

∣∣
(-,LabelQ(i),LabelQ(i+1))

Υ(P,Q).

Let φ : Sn(321)→ Sn(321) be the bijection (5) from Theorem 8. Recall that (312)φ(σ) =
(231)σ and des(φ(σ)) = des(σ) for all σ ∈ Sn(321). Let Φ : Hn → Hn be the bijection

Φ = Υ−1 ◦ φ ◦Υ,

and set (P ′, Q′) = Φ(P,Q). Then

vcarea(Φ(P,Q)) =
∑

i∈Valley(Q′)

area(P ′,Q′)(i)

=
∑

i∈Valley(Q′)

(
1 + (312)

∣∣
(LabelQ′ (i),LabelQ′ (i+1), -)

Υ(P ′, Q′)
)

=
∑

i∈Des(φ(Υ(P,Q)))

(
1 + (312)

∣∣
(φ(LabelQ(i)), φ(LabelQ(i+1)), -)

φ(Υ(P,Q))
)

= (des +(312))φ(Υ(P,Q))

= (des +(231))Υ(P,Q)

=
∑

i∈Valley(Q)

(
1 + (231)

∣∣
(-,LabelQ(i),LabelQ(i+1))

Υ(P,Q)
)

=
∑

i∈Valley(Q)

area(P,Q)(i+ 1)

= vrarea(P,Q).

Since Valley(P,Q) = Des(Υ(P,Q)) and des(φ(σ)) = des(σ) it follows that nval(Q′) =
nval(Q). This concludes the proof.

Below we provide a brief account for a well-known lemma due to Simion and Schmidt
which will be used to justify the bijection in the next theorem.

Lemma 14 (Simion-Schmidt [29]). A permutation σ ∈ S(132) is uniquely determined by
the values and positions of its left-to-right minima.

Proof. It is clear that the left-to-right minima are positioned in decreasing order relative
to each other. Now fill in the remaining numbers from left to right, for each empty position
i choosing the smallest remaining entry that is larger than the closest left-to-right minima
m in position before i. If the remaining numbers are not entered in this unique way and
y is placed before x where y > x, then myx is an occurrence of the pattern 132.
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Theorem 15. For any n > 1,∑
σ∈S(132)

qmaj(σ)xLRMin(σ) =
∑

σ∈S(132)

qfoze(σ)xLRMin(σ)

Proof. Let σ ∈ Sn(132). It is not difficult to see that LRMin(σ) = DB(σ)∪{σ(1)}. Indeed
if σ(i) ∈ DB(σ) and σ(j) < σ(i) for some j < i, then σ(j)σ(i− 1)σ(i) is an occurrence of
132. Hence by Lemma 14 we have that σ is uniquely determined equivalently by its first
letter, Des(σ) and DB(σ). We define a map φ : Sn(132)→ Sn(132) by requiring

φ(σ)(1) = σ(1),

DB(φ(σ)) = DB(σ),

Des(φ(σ)) = {n− σ(i) + 1 : i ∈ Des(σ)}.

We claim that a permutation φ(σ) ∈ Sn(132) with the above requirements exists. If the
claim holds, then the image of σ is uniquely determined by the data above and therefore
φ is well-defined. It also immediately follows that φ is a bijection.

Let i1 < · · · < im be the descents of σ. Suppose

n− σ(ij1) + 1 < · · · < n− σ(ijm) + 1.

To show that φ is well-defined we show that the insertion procedure from Lemma 14 is
always valid. Given a descent bottom (i.e. left-to-right minima) σ(ik + 1) in position
n − σ(ijk) + 2 we must show that there exists enough remaining numbers greater than
σ(ik + 1) to fill in the gap to the next descent bottom σ(ik+1 + 1). Within the filling
procedure, next after the descent bottom σ(ik + 1), there exists

n− σ(ik + 1)− (n− σ(ijk) + 1) = σ(ijk)− σ(ik + 1)− 1

numbers remaining that are greater than σ(ik + 1). There are

(n− σ(ijk+1
) + 2)− (n− σ(ijk) + 2)− 1 = σ(ijk)− σ(ijk+1

)− 1

positions to fill in the gap between the descent bottoms σ(ik + 1) and σ(ik+1 + 1). By
minimality

σ(ijk)− σ(ijk+1
) 6 σ(ijk)− σ(ik) 6 σ(ijk)− σ(ik + 1),

so there are enough numbers remaining to fill in the gap. Hence φ is well-defined. Finally,

maj(φ(σ)) =
∑

i∈Des(φ(σ))

i

=
∑

i∈Des(σ)

(n− σ(i) + 1)

=
∑

α∈DT(σ)

(n− α) + des(σ)

= ((213) + (321))σ + (21)σ

= foze(σ).

Since also φ(LRMin(σ)) = LRMin(σ), the theorem follows.
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Below we provide an additional list of information uniquely determining permutations in
Sn(231).

Lemma 16. A permutation σ ∈ Sn(231) is uniquely determined by any of the following
data:

(i) The values and positions of right-to-left minima.

(ii) The last letter, ascents and ascent bottoms.

(iii) The pairs P (σ) = {(p, t) : p pinnacle and t its following trough}.

(iv) The pairs Q(σ) = {(α, β) : α descent top and β its following descent bottom}.

(v) The pairs R(σ) =
{(
α, (132)

∣∣
(-,α,-)

σ
)

: α descent top
}

.

Proof.

(i) Suppose the values and positions of right-to-left minima are fixed in σ. Then σr ∈
Sn(132) and the values and positions of the left-to-right minima in σr are fixed. By
Lemma 14 this information uniquely determines σr. Hence σ is uniquely determined.

(ii) Follows directly from (i) since the positions and values of right-to-left minima are
given by the positions and values of the ascents and ascent bottoms together with
the last letter.

(iii) Consider the pinnacle-trough decomposition

σ = a1p1d1t1 · · · am−1pm−1dm−1tm−1ampkdm

where pi and ti are pinnacles resp. troughs and ai and di are (possibly empty)
increasing resp. decreasing words for i = 1, . . . ,m.

We claim that the pairs in P are relatively positioned in increasing order of the
valleys. Indeed let (p, t), (p′, t′) ∈ P (σ). Without loss assume t < t′. Suppose (for a
contradiction) that (p′, t′) is ordered before (p, t) in σ. Note that t′ < p, otherwise
t′αp is an occurrence of 231, where α is the ascent top following t′. This in turn
implies that t′pt is an occurrence of 231 giving a contradiction. Therefore (p, t) is
ordered before (p′, t′) proving the claim.

Next we claim that the decreasing words dj are uniquely determined. Going from
right to left, let dj be the unique decreasing word of all remaining letters (in value)
between pj and tj for j = m, . . . , 1. If we do not insert the letters this way and
tj < σi < pj, where σi is positioned before pj (and hence tj) then σipjtj is an
occurrence of 231 which is forbidden.

Finally we show that the increasing words aj are uniquely determined. Suppose
aj contains a letter α such that α > tj. Since α < pj it follows that αpjtj is an
occurrence of 231. Therefore all letters of ai are smaller than tj. Hence aj is given by
the unique increasing word of all letters α such that tj−1 < α < tj for j = 1, . . . ,m.
Hence σ is uniquely determined.
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(iv) Partition the letters in DB(σ)∪DT(σ) into maximal consecutive decreasing subwords
d1, . . . , dm based on the pairs in Q(σ). The top element of each decreasing subword
di must be a pinnacle and the bottom element trough. This information uniquely
determines σ as per part (iii).

(v) Note that α ∈ DT(σ) is the largest letter in an occurrence of 132 in σ if and only if α
is a pinnacle. Therefore the pinnacles are the descent tops α with (132)

∣∣
(-,α,-)

σ > 0.

Given a pinnacle p and the closest trough t to its right, any letter σi such that
t < σi < p must be in position after v, otherwise σipt is an occurrence of 231. Hence
(132)

∣∣
(-,p,-)

σ precisely represents the difference between p and t. In other words

t = p− (132)
∣∣
(-,p,-)

σ. Hence σ is uniquely determined by part (iii).

Theorem 17. For n > 1,∑
σ∈Sn(231)

qmak(σ)tdes(σ) =
∑

σ∈Sn(231)

qfoze(σ)tdes(σ).

Proof. Let σ ∈ Sn(231). Note that for α ∈ DT(σ) we have (132)
∣∣
(-,α,-)

σ 6 α − 2 since

there are at most α− 2 numbers between α and its immediately preceding ascent bottom
(if present). Thus the function

fσ : DT(σ)→ [n]

α 7→ (n− α + 2) + (132)
∣∣
(-,α,-)

σ

is well-defined.
We claim that fσ is injective by induction on n. Consider the inflation form σ =

132[σ1, 1, σ2] where σ1 ∈ Sk(231) and σ2 ∈ Sn−k−1(231). Let DT6k(σ) = {α ∈ DT(σ) :
α 6 k} and DT>k(σ) = {α ∈ DT(σ) : α > k}. By induction fσ1 : DT(σ1) → [k] is
injective and fσ(α) = n− k+ fσ1(α) for every α ∈ DT6(σ). Hence fσ

∣∣
DT6k(σ)

is injective.

By induction fσ2 : DT(σ2)→ [n− k− 1] is injective and fσ(α) = 1 + fσ2(α− k) for every
α ∈ DT>k(σ). Hence fσ

∣∣
DT>k(σ)

is injective. Finally note that fσ(n) = 2 + |σ2| if σ1 6= ∅
and fσ(n) = 2 if σ1 = ∅. Therefore for all α ∈ DT6k(σ) and β ∈ DT>k(σ) we have

fσ(α) > (n− k + 2) > fσ(n) > n− k > fσ(β),

if σ1 6= ∅ and
fσ(α) > (n− k + 2) > fσ(β) > 2 = fσ(n),

if σ1 = ∅. Hence fσ is injective on all of DT(σ).
Define a map φ : Sn(231)→ Sn(231) by setting the pairs of descent tops and descent

bottoms in φ(σ) to Q(φ(σ)) = {(fσ(α), n− α + 1) : α ∈ DT(σ)}. By Lemma 16 (iv) this
data uniquely determines φ(σ). Note that the pairs are well-defined since fσ is injective
and fσ(α) > n− α + 1 for all α ∈ DT(σ).

We claim that φ is a bijection. By Lemma 16 (iv) we may uniquely associate σ

with a set of pairs R(σ) =
{(
α, (132)

∣∣
(-,α,-)

σ
)

: α ∈ DT(σ)
}

. It suffices to show that φ is
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injective. Let π1, π2 ∈ Sn(231) such that π1 6= π2. If DT(π1) 6= DT(π2), then DB(φ(π1)) 6=
DB(φ(π2)), so φ(π1) 6= φ(π2). Assume therefore DT(π1) = DT(π2). Since π1 6= π2 we have
by uniqueness that R(π1) 6= R(π2). Therefore there exists α ∈ DT(π1) = DT(π2) such
that fπ1(α) 6= fπ2(α). Thus Q(φ(π1)) 6= Q(φ(π2)) which again implies that φ(π1) 6= φ(π2).
Hence φ is injective and therefore a bijection.

It remains to show that mak(φ(σ)) = foze(σ). Note that

((132) + (321) + (21))σ =
∑

β∈DB(σ)

β.

Since there are no occurrences of 231 in σ by assumption, the letters between each pair
of descent top and descent bottom occur to the right of the pair. Therefore the number
of occurrences of 312 in σ is given precisely by∑

(α,β)∈Q(σ)

(α− β − 1).

Hence
mak(σ) =

∑
α∈DT(σ)

(α− 1).

On the other hand note that

((213) + (321) + (21))σ =
∑

α∈DT(σ)

(n− α + 1).

Thus

foze(σ) =
∑

α∈DT(σ)

(n− α + 1) + (132)σ

=
∑

α∈DT(σ)

(
n− α + 1 + (132)

∣∣
(-,α,-)

σ
)

=
∑

α∈DT(σ)

(fσ(α)− 1).

Hence
mak(φ(σ)) =

∑
α′∈DT(φ(σ))

(α′ − 1) =
∑

α∈DT(σ)

(f(α)− 1) = foze(σ).

Finally since des(φ(σ)) = des(σ), the theorem follows.

Remark 18. By combining Theorem 17 with Proposition 5 we may deduce further equidis-
tributions between maj and foze, see Table 2 in §5 for a summary.
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3 Equidistributions via Dyck paths

A Dyck path of length 2n is a lattice path in Z2 between (0, 0) and (2n, 0) consisting of
up-steps (1, 1) and down-steps (1,−1) which never go below the x-axis. For convenience
we denote the up-steps by U and the down-steps by D enabling us to encode a Dyck path
as a Dyck word (we will refer to the two notions interchangeably). Let Dn denote the set
of all Dyck paths of length 2n and set D =

⋃
n>0Dn. For P ∈ Dn, let |P | = 2n denote

the length of P . There are many statistics associated with Dyck paths in the literature.
Here we will consider several Dyck path statistics that are intimately related with the inv
statistic on pattern avoiding permutations.

Let P = s1 · · · s2n ∈ Dn. A double rise in P is a subword UU and a double fall in
P a subword DD. Let dr(P ) (resp. df(P )) denote the number of double rises (resp.
double falls) in P . A peak in P is an up-step followed by a down-step, in other words,
a subword of the form UD. Let Peak(P ) = {p : spsp+1 = UD} denote the set of indices
of the peaks in P and npea(P ) = |Peak(P )|. For p ∈ Peak(P ) define the position of p,
posP (p), resp. the height of p, htP (p), to be the x resp. y-coordinate of its highest point.
A valley in P is a down step followed by an up step, in other words, a subword of the
form DU . Let Valley(P ) = {v : svsv+1 = DU} denote the set of indices of the valleys
in P and nval(P ) = |Valley(P )|. For v ∈ Valley(P ) define the position of v, posP (v),
resp. the height of v, htP (v), to be the x resp. y-coordinate of its lowest point. For
each v ∈ Valley(P ), there is a corresponding tunnel which is the subword si · · · sv of P
where i is the step after the first intersection of P with the line y = htP (v) to the left
of step v (see Figure 2). The length, v − i, of a tunnel is always an even number. Let
Tunnel(P ) = {(i, j) : si · · · sj tunnel in P} denote the set of pairs of beginning and end
indices of the tunnels in P . Cheng et.al. [8] define the statistics sumpeaks and sumtunnels
given respectively by

spea(P ) =
∑

p∈Peak(P )

(htP (p)− 1),

stun(P ) =
∑

(i,j)∈Tunnel(P )

(j − i)/2.

Let Up(P ) = {i : si = U} denote the indices of the set of U -steps in P and Down(P ) =
{i : si = D} the set of indices of the D-steps in P . Given i ∈ [2n] define the height of
the step i in P , htP (i), to be the y-coordinate of its lowest point. Define the statistics
sumups and sumdowns by

sups(P ) =
∑

i∈Up(P )

dhtP (i)/2e

sdow(P ) =
∑

i∈Down(P )

bhtP (i)/2c

Define the area of P , denoted area(P ), to be the number of complete
√

2×
√

2 tiles that
fit between P and the x-axis (cf [21]).
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Figure 1: area(P ) = 8.

Burstein and Elizalde [5] define a statistic which they call the ‘mass’ of P . We will
define two versions of it, one pertaining to the U -steps and one to the D-steps. For each
i ∈ Up(P ) define the mass of i, massP (i), as follows. If si+1 = D, then massP (i) = 0. If
si+1 = U , then P has a subword of the form siUP1DP2D where P1, P2 are Dyck paths
and we define massP (i) = |P2|/2. In other words, the mass is half the number of steps
between the matching D-steps of two consecutive U -steps. The part of the Dyck path P
contributing to the mass of each of the first three U -steps is highlighted with matching
colours in Figure 2. Define

massU(P ) =
∑

i∈Up(P )

massP (i).

The statistic massU coincides with the mass statistic defined by Burstein and Elizalde
[5]. Analogously if i ∈ Down(P ), define massP (i) = 0 if si−1 = U . If si−1 = D, then
P has a subword of the form UP1UP2Dsi where P1, P2 are Dyck paths and we define
massD(s) = |P1|/2. In other words, the mass is half the number of steps between the
matching U -steps of two consecutive D-steps. Define

massD(P ) =
∑

i∈Down(P )

massP (i).

Figure 2: The tunnel lengths of a Dyck path (indicated with dashes) and the mass asso-
ciated with the first three up-steps is highlighted with matching colours.

Next we give a description of the various Dyck path bijections that will be referenced.
The standard bijection ∆ : Sn(231)→ Dn can be defined recursively by

∆(σ) = U∆(σ1)D∆(σ2),

where σ = 213[1, σ1, σ2]. We will also (with abuse of notation) define the standard bijection
∆ : Sn(312)→ Dn recursively by

∆(σ) = ∆(σ1)U∆(σ2)D,
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Figure 3: The Dyck path Γ(σ) corresponding to σ = 341625978.

where σ = 132[σ1, σ2, 1]. There is also a non-recursive description of ∆ due to Kratten-
thaler, see [23].

We now define another well-known map Γ : Sn(321) → Dn due to Krattenthaler [23]
which also appears in a slightly different form in the work of Elizalde [15]. Let σ ∈ Sn(321)
and consider an n× n array with crosses in positions (i, πi) for 1 6 i 6 n, where the first
coordinate is the column number, increasing from left to right, and the second coordinate
is the row number, increasing from bottom to top. Consider the path with north and east
steps from the lower-left corner to the upper-right corner of the array, whose right turns
occur at the crosses (i, σi) with σi > i. Define Γ(σ) to be the Dyck path obtained from
this path by reading a U -step for every north step and a D-step for every east step of the
path. The bijection is illustrated in Figure 3.

Theorem 19 (Krattenthaler [23], Elizalde [15]).
For each n > 1 the map Γ : Sn(321)→ Dn is a bijection.

Theorem 20 (Cheng-Elizalde-Kasraoui-Sagan [8]).
We have inv(σ) = spea(Γ(σ)) and lrmax(σ) = npea(Γ(σ)) for all σ ∈ Sn(321).

Next we define a Dyck path bijection Ψ : Dn → Dn due to Cheng et.al. [8] that is weight
preserving between the statistics spea and stun.

First we define a bijection δ :
⊔n−1
k=0 Dk×Dn−k−1 → Dn as follows. Given two Dyck

paths

Q = Ua1Db1Ua2Db2 · · ·UasDbs ∈ Dk and R = U c1Dd1U c2Dd2 · · ·U ctDdt ∈ Dn−k−1

where all exponents are positive, define δ(Q,R) by

δ(Q,R) = Ua1+1Db1+1Ua2Db2 · · ·UasDbs ,

if R = ∅ and define

δ(Q,R) = Ua1+1DUa2Db1Ua3Db2 · · ·UasDbs−1U c1Dbs+d1U c2Dd2 · · ·U ctDdt ,

if R 6= ∅. If Q = ∅ the same definition works with the convention that a1 = b1 = 0.
Let P ∈ Dn and (Q,R) = δ−1(P ). Define Ψ(∅) = ∅ and for n > 1

Ψ(P ) =


UDΨ(Q) if R = ∅
UΨ(R)D if Q = ∅,
UΨ(Q)DΨ(R) otherwise.
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Theorem 21 (Cheng-Elizalde-Kasraoui-Sagan [8]). The map Ψ : Dn → Dn is a bijection
such that spea(P ) = stun(Ψ(P )) and npea(P ) = n − nval(Ψ(P )) for all P ∈ Dn. In
particular ∑

P∈Dn

qspea(P )tnpea(P ) =
∑
P∈Dn

qstun(P )tn−nval(P )

for all P ∈ Dn.

We will now interpret mad over both Sn(231) and Sn(312) in terms of Dyck path
statistics under ∆. The following theorem is a straightforward modification of Theorem
3.11 in [5].

Theorem 22. For all σ ∈ Sn(231), π ∈ Sn(312) and P ∈ Dn we have

(i) mad(σ) = massU(∆(σ)) + dr(∆(σ)),

(ii) mad(π) = 2 massD(∆(π)) + df(∆(π)),

(iii) a bijection Θ : Dn → Dn such that sups(P ) = massU(Θ(P )) + dr(Θ(P )).

Proof.

(i) Let σ ∈ Sn(231) and decompose σ = 213[1, σ1, σ2]. If we assume σ1 6= ∅, then
we may further decompose σ1 and write σ = 42135[1, 1, σ3, σ4, σ2]. In particular
(312)

∣∣
(σ(1),σ(2),-)

σ = |σ4|. Since

∆(σ) = UU∆(σ3)D∆(σ4)D∆(σ2),

we have by induction that

massU(∆(σ)) = massU(∆(σ3)) + massU(∆(σ4)) + massU(∆(σ2)) + |∆(σ4)|/2
= (312)σ3 + (312)σ4 + (312)σ2 + |σ4|
= (312)σ.

and

dr(∆(σ)) = dr(∆(σ1)) + dr(∆(σ2)) + 1

= des(σ1) + des(σ2) + 1

= des(σ).

Hence massU(∆(σ)) + dr(∆(σ)) = mad(σ).

(ii) Let π ∈ Sn(312) and decompose π = 132[π1, π2, 1]. Assuming π2 6= ∅ we may write
π = 13542[π1, π3, π4, 1, 1]. In particular (231)

∣∣
(-,π(n−1),π(n))

π = |π3|. Since

∆(π) = ∆(π1)U∆(π3)U∆(π4)DD,

it follows by an induction similar to part (i) that massD(∆(π)) = (231)π and
df(∆(π)) = des(π). Hence 2 massD(∆(π)) + df(∆(π)) = mad(π).
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(iii) Construct a recursive bijection Θ : Dn → Dn as follows. Let P ∈ Dn. If P =
P1 · · ·Pr where Pi is a Dyck path returning to the x-axis for the first time at its
endpoint, then define Θ(P ) = Θ(P1) · · ·Θ(Pr). Assume therefore r = 1 and write

P = UUQ1DUQ2D · · ·UQsDD,

provided P 6= UD, where Q1, . . . , Qs are Dyck paths. Define

Θ(P ) =


∅ if P = ∅,
UD if P = UD,

U s+1DΘ(Q1)DΘ(Q2)D · · ·Θ(Qs)D otherwise.

The map Θ is clearly a bijection. Note that

sups(P ) =
s∑
i=1

sups(Qi) +
1

2

s∑
i=1

|Qi|+ s,

massU(Θ(P )) + dr(Θ(P )) =
s∑
i=1

(massU(Θ(Qi)) + dr(Θ(Qi)) +
1

2

s∑
i=1

|Θ(Qi)|+ s.

Hence by induction it follows that massU(Θ(P )) + dr(Θ(P )) = sups(P ).

Theorem 23. There exists a bijection Φ : Dn → Dn such that stun(P ) = massU(Φ(P ))+
dr(Φ(P )). In particular, for any n > 1,∑

P∈Dn

qstun(P ) =
∑
P∈Dn

qmassU(P )+dr(P ).

Proof. Let P ∈ Dn and consider the decomposition

P = UP1D · · ·UPm−1DUPmD,

where P1, . . . , Pm−1, Pm are (possibly empty) Dyck paths. Define Φ : Dn → Dn recursively
by

Φ(P ) =


∅, if P = ∅
UDΦ(P1), if m = 1

UUUm−2Dm−2DΦ(P1) · · ·Φ(Pm−1)DΦ(Pm), if m > 1

It is not difficult to verify by induction that Φ is a bijection from the recursion. It
remains to show that stun(P ) = massU(Φ(P )) + dr(Φ(P )). We argue by induction on n.
The statement holds for P = ∅. If m = 1, then by induction

stun(P ) = stun(P1)

= massU(Φ(P1)) + dr(Φ(P1))

= massU(UDΦ(P1)) + dr(UDΦ(P1))

= massU(Φ(P )) + dr(Φ(P )).
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Suppose m > 1. Note that

massU(UUP0DP1 · · ·Pm−1DPm) =
m∑
i=0

massU(Pi) +
m−1∑
i=1

|Pi|/2

and that massU(UkDk) = 0 for all k > 0. Hence by induction

stun(P ) = stun(Pm) +
m−1∑
i=1

(stun(Pi) + (|Pi|+ 2)/2)

= massU(Φ(Pm)) + dr(Φ(Pm)) +
m−1∑
i=1

[(massU(Φ(Pi)) + dr(Φ(Pi)) + (|Pi|+ 2)/2)]

=

(
massU(Um−2Dm−2) +

m∑
i=1

massU(Φ(Pi)) +
m−1∑
i=1

|Φ(Pi)|/2

)

+

(
(m− 1) +

m∑
i=1

dr(Φ(Pi))

)
= massU(Φ(P )) + dr(Φ(P )),

as required.

Corollary 24. For any n > 1,∑
σ∈Sn(231)

qmad(σ) =
∑

σ∈Sn(321)

qinv(σ).

Proof. By Theorem 19, Theorem 20, Theorem 21, Theorem 22 (i) and Theorem 23 we
have the following diagram of weight preserving bijections

(Sn(321), inv) (Dn, spea) (Dn, stun)

(Sn(231),mad) (Dn,massU + dr)

Γ

φ

Ψ

Φ

∆

Thus
φ = ∆−1 ◦ Φ ◦Ψ ◦ Γ

is our sought bijection with inv(σ) = mad(φ(σ)) for all σ ∈ Sn(321).

The following corollary answers a question of Burstein and Elizalde in [5].

Corollary 25. There exists a bijection Λ : Dn → Dn such that spea(P ) = sups(Λ(P )).
In particular for any n > 1, ∑

P∈Dn

qspea(P ) =
∑
P∈Dn

qsups(P ).
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Proof. By Theorem 21, Theorem 22 (iii) and Theorem 23 we have the following diagram
of weight preserving bijections

(Dn, spea) (Dn, stun)

(Dn, sups) (Dn,massU + dr)

Ψ

Λ Φ

Θ

Hence
Λ = Θ−1 ◦ Φ ◦Ψ

is the required bijection.

Example 26. The below diagram shows an example of the intermediate images under
the bijections φ and Λ from Corollary 24 and Corollary 25.

451623897

615324978

φ

Γ

Λ

Ψ

Φ

Θ−1

∆−1

For each Dyck path P ∈ Dn, Kim et.al. [21] construct two bijections DTS(P, ·) and
DTR(P, ·) from the set of linear extensions of the chord poset of P to the set of cover-
inclusive Dyck tilings with lower path P (see [21] for terminology). In the special case
where P = (UD)n and the set of linear extensions is restricted to Sn(312), it follows from
[21, Theorem 2.3] that DTS(P, ·) and DTR(P, ·) induce bijections θDTS : Sn(312) → Dn
and θDTR : Sn(312) → Dn. We remark that the restriction is over Sn(231) in [21] due to
difference in notation. By [21, Theorem 2.4] and [21, Theorem 6.1] it moreover follows
that

inv(σ) = area(θDTS(σ)), (6)

mad(σ) = area(θDTR(σ)) (7)

for all σ ∈ Sn(312). Therefore we get a bijection θ : Sn(312)→ Sn(312) given by

θ = θ−1
DTS ◦ θDTR,

satisfying mad(θ(σ)) = inv(σ). Hence we obtain the following theorem.
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Theorem 27 (Kim-Mésáros-Panova-Wilson [21]).
For any n > 1, ∑

σ∈Sn(312)

qmad(σ) =
∑

σ∈Sn(312)

qinv(σ).

Corollary 28. For any n > 1,∑
P∈Dn

qarea(P ) =
∑
P∈Dn

q2 massD(P )+df(P ).

Proof. Combine Theorem 22 (ii) with (7).

Below we find an interpretation of Theorem 2 in terms of Dyck path statistics. Part of
the answer is given by a bijection Ω : Sn(231) → Dn due to Stump [32] which we now
define. Let σ ∈ Sn(231). Suppose Des(σ) = {i1, . . . , ik} and iDes = {i′j ∈ Des(σ−1)} such
that i1 < · · · < ik and i′1 < · · · < i′k (recall that des(σ) = des(σ−1) via e.g. the argument
in Proposition 5). For notational purposes set ik+1 = n = i′k+1. Define a Dyck path Ω(σ)
by starting with i′1 U -steps, followed by i1 D-steps, followed by i′2 − i′1 U -steps, followed
by i2 − i1 D-steps, followed by i′3 − i′2 U -steps, and so on, ending with ik+1 − ik D-steps.
Define the statistic

β(P ) =
∑

v∈Valley(P )

|{j 6 posP (v) : sj = D}|,

for each Dyck path P = s1 · · · s2n ∈ Dn.

Theorem 29 (Stump [32]). The map Ω : Sn(231) → Dn is a well-defined bijection such
that maj(σ) = β(Ω(σ)) for all σ ∈ Sn(231).

Proposition 30. For all σ ∈ Sn(231) and π ∈ Sn(321) we have

maj(σ) =
∑

v∈Valley(Ω(σ))

posΩ(σ)(v)− htΩ(σ)(v)

2
,

den(π) = npea(Γ(π)) +
∑

p∈Peak(Γ(π))

posΓ(π)(p)− htΓ(π)(p)

2
.

Proof. As in [5, Theorem 2.5], observe that

den(π) =
∑
i∈[n]
π(i)>i

i,

for all π ∈ Sn(321). In the definition of Krattenthaler’s bijection Γ, each i ∈ [n] such that
π(i) > i corresponds to a column i in the array containing a box above the main diagonal.
In other words it corresponds to the number of east steps in the lattice path that occur
to the left of the box. In the Dyck path Γ(π) = s1 · · · s2n this is reflected in the statistic

|{j 6 posΓ(π)(p) : sj = D}|+ 1,
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associated with each p ∈ Peak(Γ(π)). We have the following two obvious relations

|{j 6 posΓ(π)(p) : sj = U}| − |{j 6 posΓ(π)(p) : sj = D}| = htΓ(π)(p),

|{j 6 posΓ(π)(p) : sj = U}|+ |{j 6 posΓ(π)(p) : sj = D}| = posΓ(π)(p),

for each p ∈ Peak(Γ(π)). Hence

den(π) =
∑

p∈Peak(Γ(π))

(|{j 6 posΓ(π)(p) : sj = D}|+ 1)

= npea(Γ(π)) +
∑

p∈Peak(Γ(π))

posΓ(π)(p)− htΓ(π)(p)

2
.

The first statement in the proposition follows from Theorem 29 and a similar observation
to above.

Remark 31. By Theorem 2, the Dyck path statistics in Proposition 30 are equidistributed
over Dn.

4 Equidistributions via generating functions

In this section we use generating functions to derive the equidistributions (albeit non-
bijectively) between Mahonian statistics over Sn(π). We also provide a recursion for a
more general statistic involving arbitrary linear combinations of vincular pattern functions
of length three. This recursion generalizes for instance the recursions in [14].

Theorem 32. We have∑
σ∈S(231)

qmad(σ)z|σ| =
∑

σ∈S(132)

qsist(σ)z|σ| =
1

1−
z

1−
qz

1−
qz

1−
q2z

1−
q2z

. . .

(8)

∑
σ∈S(312)

qmad(σ)z|σ| =
∑

σ∈S(213)

qsist(σ)z|σ| =
1

1−
z

1−
qz

1−
q2z

1−
q3z

1−
q4z

. . .

. (9)
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Proof. Note that over S(231) we have mad = (312) + (21). The reverse of sist (i.e. the
statistic obtained by reversing all vincular patterns) is given by rsist = (312)+(12). Hence
(8) is equivalent to proving∑

σ∈S(231)

qmad(σ)z|σ| =
∑

σ∈S(231)

qrsist(σ)z|σ|.

Let σ ∈ S(231) and decompose σ = 213[1, σ1, σ2]. Then we obtain the recursion

rsist(σ) = [12)σ1 + δσ2 6=∅ + rsist(σ1) + rsist(σ2),

[12)σ = |σ2|,

where δ denotes the Kronecker delta. Let

F (q, t, z) =
∑

σ∈S(231)

qrsist(σ)t[12)σz|σ|.

Then

F (q, t, z) = 1 + z

 ∑
σ1∈S(231)

qrsist(σ1)q[12)σ1z|σ1|


+ qz

 ∑
σ1∈S(231)

qrsist(σ1)q[12)σ1z|σ1|

 ∑
σ2∈S(231)

qrsist(σ2)(zt)|σ2| − 1


= 1 + zF (q, q, z) + qzF (q, q, z)(F (q, 1, zt)− 1).

Substituting t = 1 and t = q we obtain the equation system{
F (q, 1, z) = 1 + zF (q, q, z) + qzF (q, q, z)(F (q, 1, z)− 1)

F (q, q, z) = 1 + zF (q, q, z) + qzF (q, q, z)(F (q, 1, qz)− 1)

Eliminating F (q, q, z) and solving for F (q, 1, z) we obtain

F (q, 1, z) =
1

1−
z

1− qzF (q, 1, qz)

,

which gives the continued fraction in the theorem. Similarly letting

G(q, z, t) =
∑

σ∈S(231)

qmad(σ)t[12)z|σ|,

then we obtain the recursive relation

G(q, t, z) = 1 + zG(q, 1, zt) + qzG(q, 1, zt)(G(q, q, z)− 1).
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Substituting t = 1 and t = q as before and solving for G(q, 1, z) we obtain the same
continued fraction expansion as above, proving the desired equidistribution.

The second statement in the theorem is proved similarly. Over S(312) we have mad =
(231) + (231) + (21). Let σ ∈ S(312) and decompose σ = 132[σ1, σ2, 1]. Then we obtain
the recursion

mad(σ) = 2 · (12]σ2 + δσ2 6=∅ + mad(σ1) + mad(σ2),

(12]σ = |σ1|.

Letting F (q, t, z) =
∑

σ∈S(312) q
mad(σ)t(12]σz|σ| we thus obtain

F (q, t, z) = 1 + zF (q, 1, zt) + qzF (q, 1, zt)(F (q, q2, z)− 1).

Putting t = 1 and t = q2, eliminating F (q, q2, z) from the resulting equation system and
solving for F (q, 1, z) we obtain the continued fraction expansion in the theorem.

A similar argument for rsist over S(312) gives a matching continued fraction expansion.
We leave the details to the reader.

Remark 33. In [8, Corollary 8.6] it was proved that the continued fraction expansion of
the generating function of inv over S(321) matches that of (8). This gives an alternative
proof of Corollary 24.

Remark 34. For mad, the continued fractions (8) and (9) may also be deduced from the
following more refined continued fraction in [12, Theorem 22] by specializing (x, y, p, q) =
(1, q, 0, q) = 1 resp. (x, y, p, q) = (1, p, p2, 0) and using the fact that σ ∈ S(231) if and
only if σ ∈ S(231) (see [10, Lemma 2]),∑

σ∈S

xδσ 6=∅+(12)σy(21)σp(231)σq(312)σz|σ| =
1

1−
x[1]p,qz

1−
y[1]p,qz

1−
x[2]p,qz

1−
y[2]p,qz

1−
x[3]p,qz

. . .

where [n]p,q = qn−1 + pqn−2 + · · ·+ pn−2q + pn−1 and δ denotes the Kronecker delta.

Using almost identical arguments to Theorem 32 we may moreover prove the following
equidistributions.

Theorem 35. For any n > 1∑
σ∈Sn(231)

qmad(σ) =
∑

σ∈Sn(132)

qsist′(σ) =
∑

σ∈Sn(231)

qsist′′(σ),

∑
σ∈Sn(312)

qmad(σ) =
∑

σ∈Sn(132)

qfoze′(σ) =
∑

σ∈Sn(231)

qsist′(σ) =
∑

σ∈Sn(132)

qsist′′(σ).

the electronic journal of combinatorics 25(1) (2018), #P1.7 27



By combining Theorem 32 and Theorem 35 with Theorem 27 and Corollary 24 we may
deduce further equidistributions between inv and the statistics foze′, sist, sist′ and sist′′,
see Table 2 in §5 for a summary.

For each k > 1, let ιk−1 = (12 · · · k) denote the statistic that counts the number of
increasing subsequences of length k in a permutation. Define ι−1 by ι−1(σ) = 1 for all
σ ∈ S (i.e. we declare all permutations to have exactly one subsequence of length 0). We
will now find a statistic expressed as a linear combination of ιk’s which is equidistributed
with the continued fraction (8). We will derive this statistic using the Catalan continued
fraction framework of Brändén-Claesson-Steingŕımsson[3]. Let

A = {A : N× N→ Z : Ank = 0 for all but finitely many k for each n}
be the ring of infinite matrices with a finite number of non-zero entries in each row. Note
in particular that the matrices in A are indexed starting from 0. With each A ∈ A
associate a family of statistics {〈ι, Ak〉}k>0 where ι = (ι0, ι1, . . . ), Ak is the kth column of
A, and

〈ι, Ak〉 =
∞∑
i=0

Aikιi.

Let q = (q0, q1, . . . ), where q0, q1, . . . are indeterminates. For each A ∈ A define

FA(q) =
∑

σ∈S(132)

∏
k>0

q
〈ι,Ak〉(σ)
k ,

CA(q) =
1

1−
∏
qA0k
k

1−
∏
qA1k
k

1−
∏
qA2k
k

1−
∏
qA3k
k

1−
∏
qA4k
k

. . .

Theorem 36 (Brändén-Claesson-Steingŕımsson[3]). Let A ∈ A and B =
((

i
j

))
i,j>0

. Then

FA(q) = CBA(q),

and conversely
CA(q) = FB−1A(q).

In particular, all continued fractions CA(q) are generating functions of statistics on S(132)
expressed as (possibly infinite) linear combinations of ιk’s.

Define the permutation statistic

inc = ι1 +
∞∑
k=2

(−1)k−12k−2ιk.

Note that inc is not a Mahonian statistic.
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Proposition 37. We have

∑
σ∈S(132)

qinc(σ)z|σ| =
1

1−
z

1−
qz

1−
qz

1−
q2z

1−
q2z

. . .

(10)

Proof. Comparing (10) with the definition of CA(q) we get

A =



0 1 0 0 . . .
1 1 0 0 . . .
1 1 0 0 . . .
2 1 0 0 . . .
2 1 0 0 . . .
...

...
...

...
. . .


.

Note that B−1 =
(

(−1)i−j
(
i
j

))
i,j>0

. In B−1A we see that columns 2, 3, . . . are zero

columns and that column 1 is equal to (1, 0, 0, . . . )T since
∑

k>0(−1)n−k
(
n
k

)
= δn0 where

δij denotes the Kronecker delta. The entries (B−1A)k0 in column 0 are given by

(B−1A)n0 =
∑
i>0

b(i+ 1)/2c(−1)k−i
(
k

i

)
=


0, if k = 0

1, if k = 1

(−1)k−12k−2, if k > 1.

Hence the proposition follows from Theorem 36.

Remark 38. Applying the same argument to the continued fraction (9) it is easy to see
that Theorem 36 gives equidistribution with∑

σ∈S(132)

qι1(σ)z|σ| =
∑

σ∈S(312)

qinv(σ)z|σ|.

Corollary 39. For any n > 1,∑
σ∈Sn(132)

qinc(σ) =
∑

σ∈Sn(321)

qinv(σ)

Proof. Follows by combining Corollary 24, Theorem 32 and Proposition 37.
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Proposition 40. Let ∆ : S(132) → D denote the standard bijection defined by ∆(σ) =
U∆(σ1)D∆(σ2) where σ = 231[σ1, 1, σ2] ∈ S(132). Then

inc(σ) = sdow(∆(σ))

for all σ ∈ S(132).

Proof. In [23] (see also [3]) Krattenthaler shows that

ιk(σ) =
∑

i∈Down(∆(σ))

(
ht∆(σ)(i)− 1

k

)
,

for all σ ∈ S(132). Hence

inc(σ) =
∑

i∈Down(∆(σ))

((
ht∆(σ)(i)− 1

1

)
+
∞∑
k=2

(−1)k−12k−2

(
ht∆(σ)(i)− 1

k

))
=

∑
i∈Down(∆(σ))

bht∆(σ)(i)/2c

= sdow(∆(σ)),

for all σ ∈ S(132).

Since the Mahonian statistics in Table 1 are linear combinations of vincular patterns
of length at most three, it is natural to consider the following more general statistic.

Definition 41. Let P = {abc : abc ∈ S3} ∪ {abc : abc ∈ S3} ∪ {21} and α = (αρ) ∈ NP .
Define the statistic statα : S → N by

statα(σ) =
∑
ρ∈P

αρ(ρ)σ,

for all σ ∈ S.

Let head and last be the statistics defined by head(σ) = σ(1) and last(σ) = σ(n) for all
σ ∈ Sn. We associate to statα the following generating function for each set Π of patterns

Fn(Π,α; q, t, u, v) =
∑

σ∈Sn(Π)

qstatα(σ)tdes(σ)uhead(σ)vlast(σ).

Theorem 42. We have

Fn(312,α; q, t, u, v)

= qC(0)uvFn−1

(
312,α; q, qA2(0)t, qB2 , v

)
+ qC(n−1)tuvFn−1

(
312,α; q, qA1(n−1)t, u, qB1

)
+

n−2∑
k=1

qC(k)tuvkFk
(
312,α; q, qA1(k)t, u, qB1

)
Fn−k−1

(
312,α; q, qA2(k)t, qB2 , v

)
,
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where

A1(k) = α321 − α231 + (n− k − 1) (α213 − α123) ,

A2(k) = (k + 1) (α132 − α123) ,

B1 = α231 − α321,

B2 = α132 − α123,

C(k) = (kα123 − α213)(n− k − 1)− δk<n−1α132 + δk>0(n− k − 1)α213

+ δk>0(k − 1)α231 + δk<n−1(k + 1)(n− k − 2)α123

+ δk<n−1kα213 − δk>0α231 + kα321 + δk>0α21,

and δ denotes the Kronecker delta.

Proof. Let σ ∈ Sn(312) and consider the inflation form σ = 213[σ1, 1, σ2] where σ1 ∈
Sk(312) and σ2 ∈ Sn−k−1(312). Then for each ρ ∈ P we get the recursive relations

(ρ)σ = (ρ)σ1 + (ρ)σ2 +mρ,

where

m123 = [12)σ2 + |σ2|(12)σ1, m123 = (|σ1|+ 1)(12)σ2,

m132 = [21)σ2, m132 = (|σ1|+ 1)(21)σ2,

m213 = ((21) + δσ1 6=∅)|σ2|, m213 = |σ1|δσ2 6=∅,
m231 = (12)σ1, m231 = (12]σ1,

m321 = (21)σ1, m321 = (21]σ1

and m21 = δσ1 6=∅. It follows that statα satisfies the following recursion

statα(σ) = statα(σ1) + statα(σ1) +
∑
ρ∈P

mρ.

We note that |σ1| = k, |σ2| = n− k − 1, (21)σ = des(σ), (12)σ = δσ 6=∅(|σ| − 1)− des(σ),
[21)σ = head(σ) − δσ 6=∅, [12)σ = |σ| − head(σ), (12]σ = last(σ) − δσ 6=∅ and (21]σ =
|σ| − last(σ) for all σ ∈ Sn(312). Converting these statements into generating functions
proves the theorem.

Remark 43. If α231 = α312 = α321 = α21 = 1 and αρ = 0 otherwise, then statα = inv

and F (312,α; q, 1, 1, 1) = In(q) = C̃n(q). Similarly if we choose α such that statα = maj,
then we recover the recursion in [14, Theorem 3.4] via the recursion for F (312,α; q, t, 1, 1)
in Theorem 42.

Recall the Simion-Schmidt bijection φ : Sn(123) → Sn(132) which maps σ ∈ Sn(123)
to the unique permutation in Sn(132) with the same left-to-right minima in the same
positions as σ (cf Lemma 14). As explicitly noted by Claesson and Kitaev [11] this
bijection clearly preserves the head statistic and hence [123]head = [132]head. Although
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head is not a Mahonian statistic we complete its st-Wilf classification below for all subsets
of S3 of size at most three. Equivalences for subsets of larger size can easily be found
using similar analysis on the inflation forms. These are less interesting and omitted for
brevity. We note in particular that the single pattern distributions with respect to the
head statistic are given by well-known refinements of the Catalan numbers.

Proposition 44. We have

[123]head = {123, 132} = [132]head,

[321]head = {321, 312} = [312]head,

[231]head = {213, 231} = [213]head

[123, 213]head = {{123, 213}, {132, 213}, {132, 231}}
[231, 321]head = {{231, 321}, {213, 312}, {231, 312}}

[213, 231, 321]head = {{213, 231, 321}, {213, 231, 312}}
[132, 213, 231]head = {{132, 213, 231}, {123, 213, 231}}
[132, 213, 321]head = {{132, 213, 321}, {132, 213, 312}, {132, 231, 321},

{132, 231, 312}, {123, 213, 312}}.
Remaining subsets Π ⊆ S3 of size at most three have singleton head-Wilf class. Moreover
for any n > 1 ∑

σ∈Sn(123)

qhead(σ) =
n∑
k=1

Cn−1,k−1q
k,

∑
σ∈Sn(213)

qhead(σ) =
n∑
k=1

Ck−1Cn−kq
k,

∑
σ∈Sn(123,213)

qhead(σ) = q +
n∑
k=2

2k−2qk.

where Cn = 1
n+1

(
2n
n

)
and Cn,k = n−k+1

n+1

(
n+k
n

)
(A009766 [31]).

Proof. The map ψ : Sn(321) → Sn(312) given by ψ(σ) = φ(σc)c, where φ : Sn(123) →
Sn(132) is the Simion-Schmidt bijection, clearly satisfies head(ψ(σ)) = head(σ). Hence
[321]head = [312]head. Let σ = a1a2 · · · an ∈ Sn(132). According to the non-recursive
description of the standard bijection ∆ : Sn(132)→ Dn (due to Krattenthaler [23]), when
ai is read from left to right we adjoin as many U -steps as necessary to the path obtained
thus far to reach height hj + 1, followed by a D-step to height hj. Here hj is the number
of letters in aj+1 · · · an which are larger than aj. As such, the number of permutations
σ ∈ Sn(132) with head(σ) = k is given by the number of Dyck paths starting with exactly
n− k+ 1 number of U -steps. These are equivalently enumerated by the number of lattice
paths with steps (1, 0) and (0, 1) from (1, n − k + 1) to (n, n) staying weakly above the
line y = x. By [24, Theorem 10.3.1] the number of such paths are given by(

n+ n− 1− (n− k + 1)

n− (n− k + 1)

)
−
(
n+ n− 1− (n− k + 1)

n− 1 + 1

)
= Cn−1,k−1.
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The map ϕ : Sn(231)→ Sn(213) recursively defined by

ϕ(213[1, σ1, σ2]) = 231[1, ϕ(σ1), ϕ(σ2)],

where σ1 ∈ Sk−1(231) and σ2 ∈ Sn−k(231), is clearly a head-preserving bijection. Hence
[231]head = [213]head. Since |Sk(231)| = Ck it follows from the inflation form that there
are Ck−1Cn−k permutations σ ∈ Sn(231) with head(σ) = k.

If σ ∈ Sn(132, 231), then σ is either decomposed as 12[σ1, 1] or as 21[1, σ1] where
σ1 ∈ Sn−1(132, 231). Thus the letters 1, 2, . . . , n are in reverse order recursively placed
at the beginning or at the end of the permutation. For σ to have head(σ) = k, the
letters k+ 1, . . . , n must be placed in increasing order at the end and k at the beginning.
Remaining k − 1 letters may be placed on either end giving two choices each (except for
the last letter). Hence there exists 2k−2 permutations σ ∈ Sn(132, 231) with head(σ) = k
for k > 1.

Let ιk = 12 · · · k and δk = k · · · 21 for k > 1. If σ ∈ Sn(123, 213) and head(σ) = k, then
σ = 231[1, δn−k, σ1] for some σ1 ∈ Sk−1(123, 213). It is easy to see that |Sk(123, 213)| =
2k−1 by induction. Hence [132, 231]head = [123, 213]head.

If σ ∈ Sn(132, 213), then σ = 231[1, ιn−k, σ1] where σ1 ∈ Sk−1(132, 213). The map
χ : Sn(132, 213)→ Sn(123, 213) recursively given by

χ(231[1, ιn−k, σ1]) = 231[1, δn−k, χ(σ1)],

is clearly a head-preserving bijection. Hence [132, 213]head = [123, 213]head. Remaining
equivalences and their distributions may be deduced from the fact that head(σc) = n −
head(σ) + 1. The equivalences between the size three subsets can be proved similarly
via bijections between their corresponding inflation forms (the inflation forms can be
referenced in [14]). The details for these are left to the reader.

5 Summary and conjectures

In Table 2 we summarize the equidistributions proved in this paper (highlighted in black).
In a given cell corresponding to statrow and statcol, a pair of patterns π1, π2 denotes the
equidistribution ∑

σ∈Sn(π1)

qstatrow(σ)
∑

σ∈Sn(π2)

qstatcol(σ).

The equidistributions in Table 2 highlighted in blue were established in [14, 21]. The
equidistributions between maj, bast′ and bast′′ can be proved in a similar way to Propo-
sition 5, since the inverse map is the right bijection in two of the cases and the rest can
be deduced via the maj-Wilf equivalences from [14]. Remaining equidistributions were
either proved directly or follow by combining equidistributions proved in this paper. For
instance

∑
σ∈Sn(213) q

maj(σ) =
∑

σ∈Sn(231) q
foze(σ) is deduced by combining Proposition 5

and Theorem 17.

Conjecture 45. Table 2 is the complete table of Mahonian 3-function equidistributions
over permutations avoiding a single classical pattern of length three.
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We have verified all entries in Table 2 by computer for n 6 10. Other than than the
entries in Table 2 there are no additional equidistributions (over permutations avoiding a
single classical pattern of length three) between the statistics in Table 1.

maj inv mak makl mad bast bast′ bast′′ foze foze′ foze′′ sist sist′ sist′′

maj
132, 231
213, 312

123, 123
132, 132
132, 312
213, 213
213, 231
231, 132
231, 312
312, 213
312, 231
321, 321

132, 231
213, 312
231, 231
312, 312
321, 321

132, 213
213, 231
231, 213
312, 231

132, 132
231, 132

213, 231
312, 231

132, 132
213, 231
231, 132
312, 231

inv • 132, 213
231, 312

231, 312
312, 312
321, 231

231, 132
312, 132
321, 213

231, 132
312, 132
321, 213

231, 213
312, 213
321, 132

231, 231
312, 231
321, 132

231, 132
312, 132
321, 231

mak • • 132, 312
213, 231

132, 231
213, 312
231, 312
312, 231
321, 321

132, 213
213, 231
231, 231
312, 213

132, 132
312, 132

213, 231
231, 231

132, 132
213, 231
231, 231
312, 132

makl • • •
132, 132
231, 213
312, 231

231, 132 312, 231
132, 213
231, 132
312, 231

mad • • • • 231, 213
312, 132

231, 213
312, 132

231, 132
312, 213

132, 213
231, 132
312, 231

213, 213
231, 231
312, 132

bast • • • • • 213, 132 231, 231

123, 123
213, 132
132, 213
231, 231
312, 312
321, 321

bast′ • • • • • • 132, 132
bast′′ • • • • • • • 231, 231

foze • • • • • • • •

foze′ • • • • • • • • • 132, 132
213, 213

132, 213
213, 132

132, 231
213, 132

132, 132
213, 231

foze′′ • • • • • • • • • • 213, 132
132, 213

213, 132
132, 231

132, 132
213, 231

sist • • • • • • • • • • •
132, 132
213, 231
312, 312

132, 231
213, 132
231, 312

sist′ • • • • • • • • • • • • 132, 231
231, 132

sist′′ • • • • • • • • • • • • •

Table 2: Previously established equidistributions in blue, equidistributions proved in this
paper in black and conjectured equidistributions in red.

Note. The conjectured equidistributions in Table 2 between maj and bast (and con-
sequently between mak and bast) were recently established by J. N. Chen [6].
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