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Abstract

Let F be a finite family of axis-parallel boxes in R? such that F contains no
k + 1 pairwise disjoint boxes. We prove that if F contains a subfamily M of k
pairwise disjoint boxes with the property that for every F € F and M € M with
F N M # 0, either F contains a corner of M or M contains 2¢~! corners of F, then
F can be pierced by O(k) points. One consequence of this result is that if d = 2 and
the ratio between any of the side lengths of any box is bounded by a constant, then
F can be pierced by O(k) points. We further show that if for each two intersecting
boxes in F a corner of one is contained in the other, then F can be pierced by at
most O(kloglog(k)) points, and in the special case where F contains only cubes
this bound improves to O(k).

1 Introduction

A matching in a hypergraph H = (V, E) on vertex set V' and edge set E is a subset
of disjoint edges in E, and a cover of H is a subset of V' that intersects all edges in
E. The matching number v(H) of H is the maximal size of a matching in H, and the
covering number T(H) of H is the minimal size of a cover. The fractional relaxations of
these numbers are denoted as usual by v*(H) and 7*(H). By LP duality we have that
v (H)=1"(H).
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Let F be a finite family of axis-parallel boxes in R?. We identify F with the hypergraph
with vertex set R? and edge set F. Thus a matching in F is a subfamily of pairwise disjoint
boxes (also called an independent set in the literature) and a cover in F is a set of points
in R? intersecting every box in F (also called a hitting set).

An old result due to Gallai is the following (see e.g. [8]):

Theorem 1 (Gallai). If F is a family of intervals in R (i.e., a family of bozes in R) then
7(F) = v(F).

For a family F of axis-parallel boxes in R? with v(F) = 1, Helly’s theorem [9] implies
that 7(F) = L.

Observation 2 (Helly [9]). Let F be a family of axis-parallel boxes in R with v(F) = 1.
Then 7(F) = 1.

A rectangle is an axis-parallel box in R?. In 1965, Wegner [14] conjectured that in
a hypergraph of axis-parallel rectangles in R?, the ratio 7/v is bounded by 2. Gyarfas
and Lehel conjectured in [7] that the same ratio is bounded by a constant. The best
known lower bound, 7 = |5r/3], is attained by a construction due to Fon-Der-Flaass and
Kostochka in [6]. Karolyi [10] proved that in families of axis-parallel boxes in R? we have
7(F) < v(F) (1 +1log (v(F))* ", where log = log,. Here is a short proof of Kérolyi’s
bound.

Theorem 3 (Kérolyi [10]). If F is a finite family of axis-parallel boxes in RY, then
T(F) < w(F) (1 +log (v(F)))"".

Proof. We proceed by induction on d and v(F). Note that if v(F) € {0, 1} then the result
holds for all d by Helly’s theorem [9]. Now let d,n € N. Let Fy : R — R be a function
for which 7(7) < Fy(v(T)) for every family T of axis-parallel boxes in R? with d' < d,
or with d = d' and v(T) < n.

Let F be a family of axis-parallel boxes in R? with v(F) = n. For a € R, let H,
be the hyperplane {z = (z1,...,24) : x1 = a}. Write L, = {z = (z1,...,24) : 21 < a},
and let F, = {F € F: F C L,}. Define a* = min{a : v(F,) > [v/2]}. The hyperplane
H,. gives rise to a partition F = Ule]-"i, where Fi = {F € F: F C Ly \ Hyx}, Fo =
{FeF:FNHy #0}, and F3 = F\ (F1 U Fy). It follows from the choice of a* that
v(F) < [v(F)/2] — 1, v(F2) < v(F), and v(F3) < [v(F)/2].

Therefore,

Fd( ( ))< (.Fl) (F3)+T({FﬂHa*2FEF2})
< Fa(v( +Fd( (F3)) + Far (v (F2))
< d( >+F ({V(2‘F>J)+Fd—1(y(}_))

<2 ”<2 ) (1+1 (@))dl + v (F) (1+Tlog (v (F)))"2

<v(F) (1 +log (v (F)",
implying the result. O
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Note that for v(F) = 2, we have that F; = 0, v(F2) =1 and so 7(F) < Fy_1(2) + 1.
Therefore, we have the following, which was also proved in [6].

Observation 4 (Fon-der-Flaass and Kostochka [6]). Let F be a family of azis-parallel
bozes in RY with v(F) =2. Then 7(F) < d+ 1.

The bound from Theorem 3 was improved by Akopyan [2] to 7(F) < (1.5logs;2 +
o(1))v(F) (log, (v(F)))* .

A corner of a box F in R? is a zero-dimensional face of F. We say that two boxes in
R? intersect at a corner if one of them contains a corner of the other.

A family F of connected subsets of R? is a family of pseudo-disks, if for every pair
of distinct subsets in F, their boundaries intersect in at most two points. In [4], Chan
and Har-Peled proved that families of pseudo-disks in R? satisfy 7 = O(v). It is easy to
check that if F is a family of axis-parallel rectangles in R? in which every two intersecting
rectangles intersect at a corner, then F is a family of pseudo-disks. Thus we have:

Theorem 5 (Chan and Har-Peled [4]). There ezists a constant ¢ such that for every family
F of axis-parallel rectangles in R? in which every two intersecting rectangles intersect at
a corner, we have that 7(F) < cv(F).

Here we prove a few different generalizations of this theorem. In Theorem 6 we prove
the bound 7(F) < cv(F)loglog(v(F)) for families F of axis-parallel boxes in R? in
which every two intersecting boxes intersect at a corner, and in Theorem 7 we prove
7(F) < cv(F) for families F of axis-parallel cubes in RY, where in both cases c is a
constant depending only on the dimension d. We further prove in Theorem 8 that in
families F of axis-parallel boxes in R satisfying certain assumptions on their pairwise
intersections, the bound on the covering number improves to 7(F) < cv(F). For d = 2,
these assumptions are equivalent to the assumption that there is a maximum matching
M in F such that every intersection between a box in M and a box in F \ M occurs at
a corner. We use this result to prove our Theorem 10, asserting that for every r, if F is a
family of axis-parallel rectangles in R? with the property that the ratio between the side
lengths of every rectangle in F is bounded by 7, then 7(F) < cv(F) for some constant ¢
depending only on r.

Let us now describe our results in more detail. First, for general dimension d we have
the following.

Theorem 6. There exists a constant ¢ depending only on d, such that for every family

F of azis-parallel boxes in R in which every two intersecting boxes intersect at a corner
we have 7(F) < cv(F)loglog(v(F)).

For the proof, we first prove the bound 7*(F) < 2%v(F) on the fractional covering num-
ber of F, and then use Theorem 11 below for the bound 7(F) = O(7*(F) log log(7*(F))).

An axis-parallel box is a cube if all its side lengths are equal. Note that if F consists
of axis-parallel cubes in R?, then every intersection in F occurs at a corner. Moreover,
for axis-parallel cubes we have 7(F) = O(7*(F)) by Theorem 11, and thus we conclude
the following.
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Theorem 7. If F is a family of axis-parallel cubes in R, then 7(F) < cv(F) for some
constant ¢ depending only on d.

To get a constant bound on the ratio 7/v in families of axis-parallel boxes in R? which
are not necessarily cubes, we make a more restrictive assumption on the intersections in

F.

Theorem 8. Let F be a family of axis-parallel bozes in R%. Suppose that there exists a
mazimum matching M in F such that for every ' € F and M € M, at least one of the
following holds:

1. F contains a corner of M;
2. FNM=0; or
3. M contains 24~ corners of F.
Then 7(F) < (24 + (4 + d)d)v(F).
For d = 2, this theorem implies the following corollary.

Corollary 9. Let F be a family of axis-parallel rectangles in R?. Suppose that there
exists a maximum matching M in F such that for every F' € F and M € M, if F' and
M intersect then they intersect at a corner. Then 7(F) < 16v(F).

Note that Corollary 9 is slightly stronger than Theorem 5. Here we only need that
the intersections with rectangles in some fixed maximum matching M occur at corners,
but we do not restrict the intersections of two rectangles F, F’ ¢ M.

Given a constant r > 0, we say that a family F of axis-parallel boxes in R? has an
r-bounded aspect ratio if every box F € F has [;(F)/[;(F) < r for all 4,5 € {1,...,d},
where [;(F) is the length of the orthogonal projection of F' onto the ith coordinate.

For families of rectangles with bounded aspect ratio we prove the following.

Theorem 10. Let F be a family of axis-parallel rectangles in R? that has an r-bounded
aspect ratio. Then 7(F) < (14 4 2r?)v(F).

A result similar to Theorem 10 was announced in [1], but to the best of our knowledge
the proof was not published.

An application of Theorem 10 is the existence of weak e-nets of size O (%) for axis-
parallel rectangles in R? with bounded aspect ratio. More precisely, let P be a set of n
points in R? and let F be a family of sets in R?, each containing at least en points of P.
A weak e-net for F is a cover of F, and a strong e-net for F is a cover of F with points of
P. The existence of weak e-nets of size O (%) for pseudo-disks in R? was proved by Pyrga
and Ray in [12]. Aronov, Ezra and Sharir in [3] showed the existence of strong e-nets of
size O (% log log %) for axis-parallel boxes in R? and R3, and the existence of weak e-nets
of size O (% log log %) for all d was then proved by Ezra in [5]. Ezra also showed that
for axis-parallel cubes in R? there exists an e-net of size O (%) These results imply the
following.
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Theorem 11 (Aronov, Ezra and Sharir [3]; Ezra [5]). If F is a family of awxis-parallel
bozes in R then 7(F) < er*(F)loglog(t*(F)) for some constant ¢ depending only on d.
If F consists of cubes, then this bound improves to 7(F) < c¢7*(F).

An example where the smallest strong e-net for axis-parallel rectangles in R? is of size
Q (% log log %) was constructed by Pach and Tardos in [11]. The question of whether weak
e-nets of size O(2) for axis-parallel rectangles in R? exist was raised both in [3] and in [11].

Theorem 10 implies a positive answer for the family of axis-parallel rectangles in R?
satisfying the r-bounded aspect ratio property:

Corollary 12. For every fized constant r, there exists a weak -net of size O(%) for the
family F of axis-parallel rectangles in R? with aspect ratio bounded by r.

Proof. Given a set P of n points, there cannot be é + 1 pairwise disjoint rectangles in F,
each containing at least en points of P. Therefore v(F) < % Theorem 10 implies that
there is a cover of F of size O(2). O

This paper is organized as follows. In Section 2 we prove Theorem 6. Section 3
contains definitions and tools. Theorem 8 is then proved in Section 4 and Theorem 10 is
proved in Section 5.

2 Proofs of Theorems 6 and 7

Let F be a finite family of axis-parallel boxes in R?, such that every intersection in F
occurs at a corner. By performing small perturbations on the boxes, we may assume that
no two corners of boxes of F coincide.

Proposition 13. We have 7*(F) < 2%v(F).

Proof. We let v(F) = k. Since an optimal fractional matching is an optimum solution
to a linear program with integer coefficients, and by [13, Theorem 10.1], there exists an
optimum fractional matching g : F — Q% for F. By choosing a common denominator r,
we may assume that g(F) = “2 for some kr € N for all F' € F. We now let 7’ be the
family of boxes that contains kp copies of each box F' € F. Let n be the number of boxes
in F'. It follows that 7*(F) = v*(F) = 2, and thus our aim is to show that 2 < 2.

For z € R%, we let F, be the set of ' € F containing z. Since g is a fractional matching,
it follows that » .. g(F) < 1. Thus, the number of boxes in F' that intersect x is at
most ZFGH krp <.

Since a matching of F' cannot contain two copies of the same box in F, it follows
that v(F') < v(F). Since v(F') < k, it follows from Turdn’s theorem that there are at
least n(n — k)/(2k) unordered intersecting pairs of boxes F'. Each such unordered pair
contributes at least two pairs of the form (z, F'), where x is a corner of a box F' € F,
Fis box in F’ different from F’, and x pierces F. Therefore, since there are altogether
29n, corners of boxes in F’, there must exist a corner = of a box F € F’ that pierces at
least (n — k)/2% boxes in F, all different from F. Together with F', x intersects at least
n/2%k boxes of F', implying that n/2% < r. Thus 2 < 27k, as desired. O
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Combining this bound with Theorem 11, we obtain the proofs of Theorems 6 and 7.

3 Definitions and tools

Let R be an axis-parallel box in R? with R = [x1,y1] X -+ X [z4,y4]. Fori € {1,...,d},
let p;(R) = [z;,y;] denote the orthogonal projection of R onto the i-th coordinate. Two
intervals [a, b], [c,d] C R, are incomparable if [a,b] € [c,d] and [c,d] € [a,b]. We say
that [a,b] < [c,d] if b < ¢. For two axis-parallel boxes () and R we say that Q <; R if
pi(Q) < pi(R).

Observation 14. Let Q, R be disjoint azis-parallel boxes in RY. Then there exists i €
{1,...,d} such that Q <; R or R <; Q.

Lemma 15. Let Q, R be azis-parallel bozes in R? such that Q contains a corner of R but
R does not contain a corner of Q. Then, for alli € {1,...,d}, either p;(R) and p;(Q) are
incomparable, or p;(R) C p;(Q), and there exists i € {1,...,d} such that p;(R) € pi(Q).

Moreover, if R € @, then there exists j € {1,...,d} \ {i} such that p;(R) and p;(Q)
are tncomparable.

Proof. Let x = (x1,...,x4) be a corner of R contained in (). By symmetry, we may assume
that z; = max(p;(R)) for all © € {1,...,d}. Since x; € p;(Q) for all : € {1,...,d}, it
follows that max(p;(Q)) > max(p;(R)) for all i € {1,...,d}. If min(p;(Q)) < min(p;(R)),
then p;(R) C p;(Q); otherwise, p;(Q) and p;(R) are incomparable. If p;(Q) and p;(R) are
incomparable for all ¢ € {1,...,d}, then y = (y1, ..., yqa) with y; = min(p;(Q)) is a corner
of @ and since min(p;(Q))) > min(p;(R)), it follows that y € R, a contradiction. It follows
that there exists an i € {1,...,d} such that p;(R) C p;(Q).

If p;(R) € pi(Q) for all i € {1,...,d}, then R C @; this implies the result. O

Observation 16. Let F be a family of azis-parallel boxes in R:. Let F' arise from F
by removing every boz in F that contains another box in F. Then v(F) = v(F') and

T(F) = 7(F').

Proof. Since F' C F, it follows that v(F') < v(F) and 7(F') < 7(F). Let M be a
matching in F of size v(F). Let M’ arise from M by replacing each box R in M \ F’
with a box in F’ contained in R. Then M’ is a matching in F’, and so v(F') = v(F).
Moreover, let P be a cover of F’. Since every box in F contains a box in F’ (possibly
itself) which, in turn, contains a point in P, we deduce that P is a cover of F. It follows

that 7(F') = 7(F). O

A family F of axis-parallel boxes is clean if no box in F contains another box in F.
By Observation 16, we may restrict ourselves to clean families of boxes.
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4 Proof of Theorem 8

Throughout this section, let F be a clean family of axis-parallel boxes in R?, and let M
be a matching of maximum size in F. We let F(M) denote the subfamily of F consisting
of those boxes R in F for which for every M € M, either M is disjoint from R or M
contains at least 277! corners of R. Our goal is to bound 7(F(M)).

Lemma 17. Let R € F(M). Then R intersects at least one and at most two bozes in
M. If R intersects two boxes My, My € M, then there exists j € {1,...,d} such that
M, <; My or My <; My, and for all i € {1,...,d} \ {j}, we have that p;(R) C p;(M;)
and p;(R) C p;(Ms).

Proof. If R is disjoint from every box in M, then M U {R} is a larger matching, a
contradiction. So R intersects at least one box in M. Let M; be in M such that
RN M; # (. We claim that there exists j € {1,...,d} such that M; contains precisely
the set of corners of R with the same jth coordinate.

By Lemma 15, there exists j € {1,...,d} such that p;(R) = [a,b] and p;(M;) are
incomparable. By symmetry, we may assume that a € p;(M;), b & pj(M;). This proves
that M, contains all 297! corners of R with a as their jth coordinate, and our claim
follows.

Consequently, p;(R) C p;(M;) for all i € {1,...,d} \ {j}. Since R has exactly 2¢
corners, and members of M are disjoint, it follows that there exist at most two boxes
in M that intersect R. If M; is the only one such box, then the result follows. Let
My € M\ {M;} such that RN M; # (). By our claim, it follows that M, contains 2471
corners of R; and since M; is disjoint from My, it follows that M, contains precisely
those corners of R with jth coordinate equal to b. Therefore, p;(R) C p;(Ms) for all
i€ {l,...,d} \ {j}. We conclude that p;(Ms) is not disjoint from p;(M;) for all i €
{1,...,d}\ {j}, and since My, M, are disjoint, it follows from Observation 14 that either
M, < My or M, < M. ]

For i € {1,...,d}, we define a directed graph G; as follows. We let V(G;) = M,
and for My, My € M we let MM, € E(G;) if and only if M; <; M, and there exists
R € F(M) such that RN M; # () and RN My # ). In this case, we say that R witnesses
the edge M;Ms. For i = {1,...,d}, we say that R is i-pendant at M; € M if M is
the only box of M intersecting R and p;(R) and p;(M;) are incomparable. Note that by
Lemma 17, every box R in F(M) satisfies exactly one of the following: R witnesses an
edge in exactly one of the graphs G;, i € {1,...,d}; or R is i-pendant for exactly one
ie{l,...,d}.

Lemma 18. Let i € {1,...,d}. Let Q,R € F(M) be such that Q witnesses an edge
MMy in G, and R witnesses an edge M3My in G;. If Q and R intersect, then either
M1 = M4, or M2 = M3, or M1M2 = M3M4.

Proof. By symmetry, we may assume that ¢ = 1. Let p;(M;) = [x1,11] and p;(Msy) =
(9, y2]. Tt follows that p1(Q) C [x1,y2]. Let a = (a1, as,...,aq) € @ N R. Tt follows that

a; € pj(Q) € p;(My) Np;(M2) and a; € p;(R) C p;(Ms) Np;(My) for all j € {2,...,d}.
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Figure 1: Proof of Lemma 18 for d = 2; two possible locations for a are shown.

If My € {Ms, My} and My € {Ms3, My}, then My My = M3M,, and the result follows.
Therefore, we may assume that this does not happen. By symmetry, we may assume that
M; is distinct from M3 and My. (If My is distinct from Ms and My, and M, is not, then
we reflect the family of boxes along the origin; this switches the roles of M; and Ms, and
of M3 and M4)

It follows that a & M, for otherwise R intersects three distinct members of M,
contrary to Lemma 17. Since R is disjoint from M, it follows that either M; <; R or
R <; M. But p1(Q) C [z1,92], and since @ N R # 0, it follows that M; <; R (see
Figure 1).
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Since Ms # M, and p;(Ms) Np;(My) 3 a; for all j € {2,...,d}, it follows that either
My <1 M3 or My <y Ms. Since M, <; R and RN M; # (), it follows that M; <; M.

Suppose that a € Ms. Then QN Ms # (), and since M; <, M3, we have that Mz = M,
as desired.

Therefore, we may assume that a ¢ Ms, and thus p; (M) < p1(M3) < [a1,a1]. Since
(Y1, a1] € p1(Q), it follows that p(Ms3) N pi(Q) # 0. But pj(Ms) Np;(Q) > a; for all
j €{2,...,d}, and hence Q N M3 # (). But then M3 € {M;, Ms}, and thus M3 = M.
This concludes the proof. O

The following is a well-known fact about directed graphs; we include a proof for
completeness.

Lemma 19. Let G be a directed graph. Then there exists an edge set E C E(G) with
|E| > |E(G)|/4 such that for every vertex v € V(G), either E contains no incoming edge
at v, or E contains no outgoing edge at v.

Proof. For A, B C V(G), let E(A, B) denote the set of edges of G with head in A and
tail in B.

Let Xo =Y, =0, V(G) ={v1,...,v,}. Fori=1,...,n we will construct X;,Y; such
that X;UY; = {v1,...,v}, X;NY; =0 and |E(X,;, Y;)|+|E(Y:, Xi)| = |E(GI(X;UY)))|/2,
where G|(X; UY;) denotes the induced subgraph of G on vertex set X; UY;. This holds
for Xo,Yy. Suppose that we have constructed X; 1,Y; ; for some i € {1,...,n}. If
|E(Xi—1, v+ E({vi}, Xio1)| 2 [E(Yior, {vi) [+ E{ui}, Yicr)], welet X; = X4,V =
Yi_1 U{v;}; otherwise, let X; = X,y U{v;},Y; = Y;_1. It follows that X;,Y; still have the
desired properties. Thus, |E(X,,Y,)| + |E(Ys, X,)| = |E(G)|/2. By symmetry, we may
assume that |F(X,,Y,)| = |E(G)|/4. But then E(X,,Y,) is the desired set £} it contains
only incoming edges at vertices in X,,, and only outgoing edges at vertices in Y,,. This
concludes the proof. O

Theorem 20. Fori € {1,...,d}, |E(G;)| < 4v(F).

Proof. Let E C E(G;) as in Lemma 19. For each edge in E, we pick one box witnessing
this edge; let F’ denote the family of these boxes. We claim that F’ is a matching. Indeed,
suppose not, and let @, R € F’ be distinct and intersecting. Let ) witness M; M, and
R witness M3M,. By Lemma 18, it follows that either M; M, = M3M, (impossible since
we picked exactly one witness per edge) or M; = M, (impossible because E does not
contain both an incoming and an outgoing edge at M; = M) or My = M3 (impossible
because E does not contain both an incoming and an outgoing edge at My = Mj). This
is a contradiction, and our claim follows. Now we have v(F) > |F'| = |E| > |E(G;)|/4,
which implies the result. O

A matching M of a clean family F of boxes is extremal if for every M € M and
R e F\ M, either (M \ {M})U{R} is not a matching or there exists an i € {1,...,d}
such that max(p;(R)) > max(p;(M)). Every family F of axis parallel boxes has an
extremal maximum matching. For example, the maximum matching M minimizing

ZMEM Z?:l max(p;(M)) is extremal.
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Theorem 21. Fori € {1,...,d}, let F; denote the set of boxes in F(M) that either are
i-pendant or witness an edge in G;. Then 7(F;) < (44 d)v(F). If M is extremal, then
7(Fi) < 3+ d)v(F).

Proof. By symmetry, it is enough to prove the theorem for i = 1. For M € M, let Fy,
denote the set of boxes in F; that either are 1-pendant at M, or witness an edge M M’
of Gy. It follows that |J,;c g Fr = Fi1. For M € M, let d* (M) denote the out-degree of
M in G;. We will prove that 7(Fy) < d (M) +d for all M € M.

We fix a box M € M. Let A denote the set of boxes that are 1-pendant at M.
Suppose that A contains two disjoint boxes My, Ms. Then (M \ {M}) U {My, My} is a
larger matching than M, a contradiction. So every two boxes in A pairwise intersect. By
Observation 2, it follows that 7(.A) = 1.

Let B = Fy \ A, i.e. B is the set of boxes in F; that witness an outgoing edge M M’
at M. For every edge MM' € E(G,), we let B(M') denote the set of boxes in F; that
witness the edge M M.

Suppose that there is an edge MM’ € FE(G;) such that the set B(M') satisfies
v(B(M')) > 3. Then M is not a maximum matching, since removing M and M’ from
M and adding v(B(M')) disjoint rectangles in B(M') yields a larger matching. More-
over, for distinct M', M" € M, every box in B(M') is disjoint from every box in B(M")
by Lemma 18. Thus, if there exist M’, M" such that v(B(M')) = v(B(M")) = 2 and
M’ # M”, then removing M, M’ and M" and adding two disjoint rectangles from each of
B(M') and B(M") yields a bigger matching, a contradiction.

Let p1 (M) = [a,b]. Two boxes in B(M’) intersect if and only if their intersections with
the hyperplane H = {(x1,...,z4) : 1 = b} intersect. If v(B(M')) = 1, then 7(B(M')) =1
by Observation 2. If v(B(M')) =2, then v({FNH : F € B(M')}) =2 and so

F(BM') =7({FNH:FeBM)}) <d

by Observation 4.
Therefore,

7(B) < > T(B(M) <dT(M) - 1+d,
M":MM'€E(G)
and since 7(A) < 1, it follows that 7(Fy) < dT (M) + d as claimed (see Figure 2).
Summing over all rectangles in M, we obtain

r(F)< Y TFn) < Y (@O +d)

MeM MeM
=d|V(G))| + |E(GY)| < dIM| +4M| = (4 + d)v(F),

where we used Theorem 20 for the inequality |E(Gy)| < 4| M.

If M is extremal, then every 1-pendant box at M also intersects H. Let M’ be such
that v(B(M')) is maximum. It follows that v(AUB(M')) < 2 and thus 7(AUB(M’)) < d,
implying 7(Fp) < d¥(M) + d — 1. This concludes the proof of the second part of the
theorem. O
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Figure 2: Proof that 7(Fy) < dT(M) = d for d = 2; here d" (M) = 3. The red boxes in
A satisfy 7(A) = v(A) = 1, since M is the only box in M they intersect. There is only
one M’  namely M’ = M, such that v(B(M')) > 1; since all those boxes intersect the
line x = b, 7(B(M")) < d = 2. For all of the d" (M) — 1 boxes M’ such that M’ # Mj,
T(B(M'")) =v(B(M')) = 1. So 7(Fum) < 5, as shown.

Theorem 22. Let F' C F be the set of bores R € F such that for each M € M, either
MNR =0, or M contains 2¢=* corners of R, or R contains a corner of M. Then

7(F) < (28 + (4 + d)d)v(F). If M is extremal, then 7(F') < (2% + (3 + d)d)v(F).

Proof. We proved in Theorem 21 that 7(F;) < (4 4+ d)v(F) for i = 1,...,d. Let F" =
F'\ F(M). Then F” consists of boxes R such that R contains a corner of some box
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M € M. Let P be the set of all corners of boxes in M. It follows that P covers F”, and so
7(F") < 2%(F). Since F' = F'UF,U- - -UFy, it follows that 7(F') < (274 (4+d)d)v(F).
If M is extremal, the same argument yields that 7(F') < (2% + (3 + d)d)v(F), since
7(Fi) < 3+ d)y(F) fori=1...,d by Theorem 21. O

We are now ready to prove our main theorems.

Proof of Theorem 8. Let F be a family of axis-parallel boxes in R? and let M be a
maximum matching in F such that for every F' € F and M € M, either FN M = (), or
F contains a corner of M, or M contains 2%~! corners of F. It follows that F = F’ in
Theorem 22, and therefore, 7(F) < (2¢ + (4 + d)d)v(F). O

5 Proof of Theorem 10

Let M be a maximum matching in F, and let M be extremal. Observe that each rectangle
R € F satisfies one of the following:

e R contains a corner of some M € M,
e some M € M contains two corners of R; or
e there exists M € M such that M N R # 0, and p;(R) 2 p;(M) for some i € {1,2}.

By Theorem 22, 14v(F) points suffice to cover every rectangle satisfying at least one of
the first two conditions. Now, due to the r-bounded aspect ratio, for each M € M and for
each 7 € {1,2}, at most r? disjoint rectangles R € F can satisfy the third condition for M
and i. Thus the family of projections of the rectangles satisfying the third condition for
M and i onto the (3 —i)th coordinate have a matching number at most 7. Since all these
rectangles intersect the boundary of M twice, by Theorem 1, we need at most 72 additional
points to cover them for each i € {1,2}. We conclude that 7(F) < (14 + 2r*)v(F). O
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