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Abstract

It is known that the Hermitian varieties are codewords in the code defined by
the points and hyperplanes of the projective spaces PG(r, q2). In finite geometry,
also quasi-Hermitian varieties are defined. These are sets of points of PG(r, q2) of
the same size as a non-singular Hermitian variety of PG(r, q2), having the same
intersection sizes with the hyperplanes of PG(r, q2). In the planar case, this reduces
to the definition of a unital. A famous result of Blokhuis, Brouwer, and Wilbrink
states that every unital in the code of the points and lines of PG(2, q2) is a Hermitian
curve. We prove a similar result for the quasi-Hermitian varieties in PG(3, q2),
q = ph, as well as in PG(r, q2), q = p prime, or q = p2, p prime, and r > 4.

Keywords: Hermitian variety; incidence vector; codes of projective spaces; quasi-
Hermitian variety
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1 Introduction

Consider the non-singular Hermitian varieties H(r, q2) in H(r, q2). A non-singular Her-
mitian variety H(r, q2) in H(r, q2) is the set of absolute points of a Hermitian polarity
of H(r, q2). Many properties of a non-singular Hermitian variety H(r, q2) in H(r, q2) are
known. In particular, its size is (qr+1+(−1)r)(qr−(−1)r)/(q2−1), and its intersection num-
bers with the hyperplanes of H(r, q2) are equal to (qr +(−1)r−1)(qr−1− (−1)r−1)/(q2−1),
in case the hyperplane is a non-tangent hyperplane to H(r, q2), and equal to 1 + q2(qr−1 +
(−1)r)(qr−2− (−1)r)/(q2− 1) in case the hyperplane is a tangent hyperplane to H(r, q2);
see [16].

Quasi-Hermitian varieties V in H(r, q2) are generalizations of the non-singular Hermi-
tian variety H(r, q2) so that V and H(r, q2) have the same size and the same intersection
numbers with hyperplanes.

Obviously, a Hermitian variety H(r, q2) can be viewed as a trivial quasi–Hermitian
variety and we call H(r, q2) the classical quasi–Hermitian variety of H(r, q2). In the
2-dimensional case, H(r, q2) is also known as the classical example of a unital of the
projective plane H(2, q2).

As far as we know, the only known non-classical quasi-Hermitian varieties of H(r, q2)
were constructed in [1, 2, 8, 9, 14, 15].

In [6], it is shown that a unital in H(2, q2) is a Hermitian curve if and only if it is in
the Fp-code spanned by the lines of H(2, q2), with q = ph, p prime and h ∈ N.

In this article, we prove the following result.

Theorem 1.1. A quasi-Hermitian variety V of H(r, q2), with r = 3 and q = ph 6= 4, p
prime, or r > 4, q = p > 5, or r > 4, q = p2, p 6= 2 prime, is classical if and only if it is
in the Fp-code spanned by the hyperplanes of H(r, q2).

Furthermore we consider singular quasi-Hermitian varieties, that is point sets having
the same number of points as a singular Hermitian variety S and for which the intersection
numbers with respect to hyperplanes are also the intersection numbers of S with respect
to hyperplanes. We show that Theorem 1.1 also holds in the case in which V is assumed
to be a singular quasi-Hermitian variety of H(r, q2).

2 Preliminaries

A subset K of H(r, q2) is a kn,r,q2 if n is a fixed integer, with 1 6 n 6 q2, such that:

(i) |K| = k;

(ii) |` ∩ K| = 1, n, or q2 + 1 for each line `;

(iii) |` ∩ K| = n for some line `.

A point P of K is singular if every line through P is either a unisecant or a line of K.
The set K is called singular or non-singular according as it has singular points or not.

Furthermore, a subset K of H(r, q2) is called regular if
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(a) K is a kn,r,q2 ;

(b) 3 6 n 6 q2 − 1;

(c) no planar section of K is the complement of a set of type (0, q2 + 1− n).

Theorem 2.1. [10, Theorem 19.5.13] Let K be a kn,3,q2 in H(3, q2), where q is any prime
power and n 6= 1

2
q2 + 1. Suppose furthermore that every point in K lies on at least one

n-secant. Then n = q + 1 and K is a non-singular Hermitian surface.

Theorem 2.2. [12, Theorem 23.5.19] If K is a regular, non-singular kn,r,q2, with r > 4
and q > 2, then K is a non-singular Hermitian variety.

Theorem 2.3. [12, Th. 23.5.1] If K is a singular kn,3,q2 in H(3, q2), with 3 6 n 6 q2−1,
q > 2, then the following holds: K is n planes through a line or a cone with vertex a point
and base K′ a plane section of type

I. a unital;

II. a subplane H(2, q);

III. a set of type (0, n− 1) plus an external line;

IV. the complement of a set of type (0, q2 + 1− n).

Theorem 2.4. [12, Lemma 23.5.2 and Th. 25.5.3] If K is a singular kn,r,q with r > 4,
then the singular points of K form a subspace Πd of dimension d and one of the following
possibilities holds:

1. d = r − 1 and K is a hyperplane;

2. d = r − 2 and K consists of n > 1 hyperplanes through Πd;

3. d 6 r − 3 and K is equal to a cone ΠdK′, with πd as vertex and with K as base,
where K′ is a non singular kn,r−d−1,q.

A multiset in H(r, q) is a set in which multiple instances of the elements are allowed.

Result 2.5. [17, Remark 2.4 and Lemma 2.5] Let M be a multiset in H(2, q), 17 < q,
q = ph, where p is prime. Assume that the number of lines intersecting M in not k
(mod p) points is δ. Then, the number s of non k (mod p) secants through any point of
M satisfies qs− s(s− 1) 6 δ. In particular, if δ < 3

16
(q + 1)2, then the number of non k

(mod p) secants through any point is at most δ
q+1

+ 2δ2

(q+1)3
or at least q+ 1− ( δ

q+1
+ 2δ2

(q+1)3
).

Property 2.6 ([17]). Let M be a multiset in H(2, q), q = ph, where p is prime. Assume
that there are δ lines that intersect M in not k (mod p) points. If through a point there
are more than q/2 lines intersecting M in not k (mod p) points, then there exists a value
r such that the intersection multiplicity of at least 2 δ

q+1
+ 5 of these lines with M is r.
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Result 2.7 ([17]). Let M be a multiset in H(2, q), 17 < q, q = ph, where p is prime.
Assume that the number of lines intersecting M in not k (mod p) points is δ, where
δ < (b√qc + 1)(q + 1− b√qc). Assume furthermore that Property 2.6 holds. Then there
exists a multiset M′ with the property that it intersects every line in k (mod p) points
and the number of different points in (M∪M′) \ (M∩M′) is exactly d δ

q+1
e.

Result 2.8 ([17]). Let B be a proper point set in H(2, q), 17 < q. Suppose that B is a
codeword of the lines of H(2, q). Assume also that |B| < (b√qc+ 1)(q+ 1−b√qc). Then

B is a linear combination of at most d |B|
q+1
e lines.

3 Proof of Theorem 1.1

Let V be the vector space of dimension q2r + q2(r−1) + · · ·+ q2 + 1 over the prime field Fp,
where the coordinate positions for the vectors in V correspond to the points of H(r, q2) in
some fixed order. If S is a subset of points in H(r, q2), then let vS denote the vector in V
with coordinate 1 in the positions corresponding to the points in S and with coordinate
0 in all other positions; that is vS is the characteristic vector of S. Let Cp denote the
subspace of V spanned by the characteristic vectors of all the hyperplanes in H(r, q2).
This code Cp is called the linear code of H(r, q2).

From [13, Theorem 1], we know that the characteristic vector vV of a Hermitian variety
V ∈ H(r, q2) is in Cp. So from now on, we will assume that V is a quasi-Hermitian variety
in H(r, q2) and vV ∈ Cp. In the remainder of this section, we will show that V is a classical
Hermitian variety for specific values of q.

The next lemmas hold for r > 3 and for any q = ph, p prime, h > 1.

Lemma 3.1. Every line of H(r, q2), q = ph, p prime, h > 1, meets V in 1 (mod p)
points.

Proof. We may express
vV = vH1 + · · ·+ vHt ,

where H1, . . . , Ht are (not necessarily distinct) hyperplanes of H(r, q2). Denote by · the
usual dot product. We get vV · vV = |V| ≡ 1 (mod p). On the other hand,

vV · vV = vV · (vH1 + · · ·+ vHt) ≡ t (mod p),

since every hyperplane of H(r, q2) meets V in 1 (mod p) points. Hence, we have t ≡ 1
(mod p). Finally, for a line ` of H(r, q2),

v` · vV = v` · (vH1 + · · ·+ vHt) ≡ t (mod p),

as every line of H(r, q2) meets a hyperplane in 1 or q2 + 1 points. That is, |` ∩ V| ≡ 1
(mod p) and in particular no lines of H(r, q2) are external to V .
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Remark 3.2. The preceding proof also shows that V is a linear combination of 1 (mod p)
(not necessarily distinct) hyperplanes, all having coefficient one.

Lemma 3.3. For every hyperplane H of H(r, q2), q = ph, p prime, h > 1, the intersection
H ∩ V is in the code of points and hyperplanes of H itself.

Proof. Let Σ denote the set of all hyperplanes of H(r, q2). By assumption,

vV =
∑
Hi∈Σ

λiv
Hi . (1)

For every H ∈ Σ, let π denote a hyperplane of H; then π = Hj1 ∩ · · · ∩ Hjq2+1
, where

Hj1 , . . . , Hjq2+1
are the hyperplanes of H(r, q2) through π. We assume H = Hjq2+1

. For
every hyperplane π of H, we set

λπ =
∑

k=1,...,q2+1

λjk ,

where λjk is the coefficient in (1) of vHjk and Hjk is one of the q2 + 1 hyperplanes through
π.

Now, consider

T =
∑
π∈Σ′

λπv
π, (2)

where Σ′ is the set of all hyperplanes in H. We are going to show that

T = vV∩H .

In fact, it is clear that at the positions belonging to the points outside of H we see
zeros. At a position belonging to a point in H, we see the original coefficients of vV plus
(|Σ′| − 1)λjq2+1

. Note that this last term is 0 (mod p), hence T = vV∩H .

Corollary 3.4. For every subspace S of H(r, q2), q = ph, p prime, h > 1, the intersection
S ∩ V is in the code of points and hyperplanes of S itself.

Remark 3.5. Lemma 3.3 and Corollary 3.4 are valid for V any set of points in H(r, q2)
whose incidence vector belongs to the code of points and hyperplanes of H(r, q2). In
particular, it follows that for every plane π the intersection π ∩ V is a codeword of the
points and lines of π, π ∩ V has size 1 (mod p) and so it is a linear combination of 1
(mod p) not necessarily distinct lines.

Lemma 3.6. Let ` be a line of H(r, q2). Then there exists at least one plane through `
meeting V in δ points, with δ 6 q3 + q2 + q + 1.

Proof. By way of contradiction, assume that all planes through ` meet V in more than
q3 + q2 + q + 1 points. Set x = |` ∩ V|. We get

(qr+1 + (−1)r)(qr − (−1)r)

q2 − 1
> m(q3 + q2 + q + 1− x) + x, (3)

where m = q2(r−2) + q2(r−3) + · · · + q2 + 1 is the number of planes in H(r, q2) through `.
From (3), we obtain x > q2 + 1, a contradiction.
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Lemma 3.7. For each line ` of H(r, q2), q > 4 and q = ph, p odd prime, h > 1, either
|` ∩ V| 6 q + 1 or |` ∩ V| > q2 − q + 1.

Proof. Let ` be a line of H(r, q2) and let π be a plane through ` such that |π ∩ V| 6
q3 + q2 + q + 1; Lemma 3.6 shows that such a plane exists. Set B = π ∩ V . By Corollary
3.4, B is a codeword of the code of the lines of π, so we can write it as a linear combination
of some lines of π, that is

∑
i λiv

ei , where vei are the characteristic vectors of the lines ei
in π.

Let B∗ be the multiset consisting of the lines ei, with multiplicity λi, in the dual plane
of π. The weight of the codeword B is at most q3 + q2 + q+1, hence in the dual plane this
is the number of lines intersecting B∗ in not 0 (mod p) points. Actually, as B is a proper
set, we know that each non 0 (mod p) secant of B∗ must be a 1 (mod p) secant. Using
Result 2.5, with δ = q3 + q2 + q + 1, in H(2, q2), the number of non 0 (mod p) secants
through any point is at most

δ

q2 + 1
+ 2

δ2

(q2 + 1)3
= q + 1 + 2

(q + 1)2

q2 + 1
< q + 4

or at least

q2 + 1−
(

δ

q2 + 1
+ 2

δ2

(q2 + 1)3

)
> q2 − q − 3.

In the original plane π, this means that each line intersects B in either at most q + 3 or
in at least q2 − q − 2 points. Since such lines must be 1 (mod p) secants and p > 2, then
each line intersects B in either at most q + 1 or in at least q2 − q + 1 points.

Proposition 3.8. Assume that π is a plane of H(r, q2), q > 4, and q = ph, p odd prime,
h > 1, such that |π ∩ V| 6 q3 + 2q2. Furthermore, suppose also that there exists a line `
meeting π ∩ V in at least q2 − q + 1 points, when q3 + 1 6 |π ∩ V|. Then π ∩ V is a linear
combination of at most q + 1 lines, each with weight 1.

Proof. Let B be the point set π ∩ V . By Corollary 3.4, B is the corresponding point set
of a codeword c of lines of π, that is c =

∑
i λiv

ei , where lines of π are denoted by ei. Let
C∗ be the multiset in the dual plane containing the dual of each line ei with multiplicity
λi. Clearly the number of lines intersecting C∗ in not 0 (mod p) points is w(c) = |B|.
Note also, that every line that is not a 0 (mod p) secant is a 1 (mod p) secant, as B is a
proper point set.

Our very first aim is to show that c is a linear combination of at most q + 3 different
lines. When |B| < q3 + 1, then, by Result 2.8, it is a linear combination of at most q
different lines.

Next assume that |B| > q3 + 1. From the assumption of the proposition, we know
that there exists a line ` meeting π ∩V in at least q2− q+ 1 points and from Lemma 3.7,
we also know that each line intersects B in either at most q + 1 or in at least q2 − q + 1
points. Hence, if we add the line ` to c with multiplicity −1, we reduce the weight by
at least q2 − q + 1 − q and by at most q2 + 1. If w(c − v`) < q3 + 1, then from the

above we know that c− v` is a linear combination of dw(c−v`)
q2+1

e lines. Hence, c is a linear
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combination of at most q + 1 lines. If w(c − v`) > q3 + 1, then w(c) > q3 + q2 − 2q − 2
(see above) and so it follows that through any point of B, there passes at least one line
intersecting B in at least q2 − q + 1 points. This means that we easily find three lines `1,
`2, and `3 intersecting B in at least q2 − q + 1 points. Since w(c) 6 q3 + 2q2, we get that
w(c− v`1 − v`2 − v`3) 6 q3 + 2q2 − 3 · (q2 − 2q − 2) < q3 + 1. Hence, similarly as before,
we get that c is a linear combination of at most q + 3 lines.

Next we show that each line in the linear combination (that constructs c) has weight
1. Take a line ` which is in the linear combination with coefficient λ 6= 0. Then there
are at least q2 + 1 − (q + 2) positions, such that the corresponding point is in ` and the
value at that position is λ. As B is a proper set, this yields that λ = 1. By Remark 3.5,
the number of lines with non-zero multiplicity in the linear combination of c must be 1
(mod p); hence it can be at most q + 1.

Proposition 3.9. Assume that π is a plane of H(r, q2), q > 4, and q = ph, p odd prime,
h > 1, such that |π ∩ V| 6 q3 + 2q2. Furthermore, suppose that every line meets π ∩ V in
at most q + 1 points. Then π ∩ V is a classical unital.

Proof. Again let B = π ∩ V and first assume that |B| < q3 + 1. Proposition 3.8 shows
that B is a linear combination of at most q + 1 lines, each with weight 1. But this yields
that these lines intersect B in at least q2 + 1− q points. So this case cannot occur.

Hence, q3 + 1 6 |B| 6 q3 + 2q2. We are going to prove that there exists at least a
tangent line to B in π. Let ti be the number of lines meeting B in i points. Set x = |B|.
Then double counting arguments give the following equations for the integers ti.

∑q+1
i=1 ti = q4 + q2 + 1∑q+1
i=1 iti = x(q2 + 1)∑q+1
i=1 i(i− 1)ti = x(x− 1).

(4)

Consider f(x) =
∑q+1

i=1 (i− 2)(q + 1− i)ti. From (4), we get

f(x) = −x2 + x[(q2 + 1)(q + 2) + 1]− 2(q + 1)(q4 + q2 + 1).

Since f(q3/2) > 0, whereas f(q3 + 1) < 0 and f(q3 + 2q2) < 0, it follows that if q3 + 1 6
x 6 q3 + 2q2, then f(x) < 0 and thus t1 must be different from zero. Consider now the
quantity

∑q+1
i=1 (i− 1)(q + 1− i)ti. We have that

q+1∑
i=1

(i− 1)(q + 1− i)ti = f(x) +

q+1∑
i=1

(q + 1− i)ti = f(x) + (q + 1)

q+1∑
i=1

ti −
q+1∑
i=1

iti

= f(x)+(q+1)(q4 +q2 +1)−x(q2 +1) = −x2 +x[(q2 +1)(q+1)+1]− (q+1)(q4 +q2 +1).

Since
∑q+1

i=1 (i − 1)(q + 1 − i)ti > 0, we have that x 6 (q2+1)(q+1)+1+(q3−q2−q)
2

= q3 + 1.

Therefore, x = q3 + 1 and
∑q+1

i=1 (i− 1)(q + 1− i)ti = 0.
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Since (i− 1)(q + 1− i) > 0, for 2 6 i 6 q, we obtain t2 = t3 = · · · = tq = 0, that is, B
is a set of q3 + 1 points such that each line is a 1-secant or a (q+ 1)-secant of B. Namely,
B is a unital and precisely a classical unital since B is a codeword of π [6].

The above two propositions and Lemma 3.7 imply the following corollary.

Corollary 3.10. Assume that π is a plane of H(r, q2), q > 4 and q = ph, p odd prime,
h > 1, such that |π ∩ V| 6 q3 + 2q2. Then π ∩ V is a linear combination of at most q + 1
lines, each with weight 1, or it is a classical unital.

Corollary 3.11. Suppose that π is a plane of H(r, q2), q > 4 and q = ph, p odd prime,
h > 1, containing exactly q3 + 1 points of V. Then π ∩ V is a classical unital.

Proof. Let B be the point set π ∩ V . We know that B is the support of a codeword of
lines of π. By Proposition 3.8, if there is a line intersecting B in at least q2− q+ 1 points,
then B is a linear combination of at most q + 1 lines, each with multiplicity 1. First of
all note that a codeword that is a linear combination of q + 1 lines has weight at least
(q2 + 1)(q + 1) − 2

(
q+1

2

)
, that is exactly q3 + 1. In fact, in a linear combination of q + 1

lines the minimum number of points is obtained if there is a hole at the intersection of any
two lines. There are

(
q+1

2

)
intersections and each intersection is counted twice, therefore

we have to subtract 2
(
q+1

2

)
. To achieve this, we need that the intersection points of any

two lines from such a linear combination are all different and the sum of the coefficients
of any two lines is zero; which is clearly not the case (as all the coefficients are 1). From
Remark 3.5, in this case B would be a linear combination of at most q+1−p lines and so
its weight would be less than q3 + 1, a contradiction. Hence, there is no line intersecting
B in at least q2 − q + 1 points, so Proposition 3.9 finishes the proof.

3.1 Case r = 3

In H(3, q2), each plane intersects V in either q3 + 1 or q3 + q2 + 1 points since these are
the intersection numbers of a quasi-Hermitian variety with a plane of H(3, q2).

3.1.1 q = p

Let V be a quasi-Hermitian variety of H(3, p2), p prime.

Lemma 3.12. Every plane π of H(3, p2) sharing p3 + 1 points with V intersects V in a
unital of π.

Proof. Set U = π ∩ V . Let P be a point in U . Assume that every line ` in π through the
point P meets U in at least p+1 points. We get |π∩V| = p3+1 > (p2+1)p+1 = p3+p+1,
which is impossible.

Thus, P lies on at least one tangent line to U and this implies that U is a minimal
blocking set in π of size p3 + 1. From a result obtained by Bruen and Thas, see [7], it
follows that U is a unital of π and hence every line in π meets U in either 1 or p + 1
points.
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Lemma 3.13. Let π be a plane in H(3, p2) such that |π ∩ V| = p3 + p2 + 1, then every
line in π meets π ∩ V in either 1 or p+ 1 or p2 + 1 points.

Proof. Set C = π ∩ V and Let m be a line in π such that |m ∩ C| = s with s 6= 1 and
s 6= p+ 1. Thus, from Lemma 3.12, every plane through m has to meet V in p3 + p2 + 1
points and thus

|V| = (p2 + 1)(p3 + p2 + 1− s) + s,

which gives s = p2 + 1.

From Lemmas 3.12 and 3.13, it follows that every line in H(3, p2) meets V in either 1
or, p+ 1 or, p2 + 1 points.

3.1.2 q = ph, q > 5 odd

Let V be a quasi-Hermitian variety of H(3, q2), q > 5 odd.

Lemma 3.14. Let π be a plane in H(3, q2) such that |π ∩ V| = q3 + q2 + 1, then every
line in π meets π ∩ V in either 1, q + 1 or q2 + 1 points.

Proof. Set C = π ∩ V and let m be a line in π such that |m ∩ C| = s, with s 6= 1 and
s 6= q+ 1. Thus, from Corollary 3.11, every plane through m has to meet V in q3 + q2 + 1
points and thus

|V| = (q2 + 1)(q3 + q2 + 1− s) + s,

which gives s = q2 + 1.

From Corollary 3.11 and Lemma 3.14, it follows that every line in H(3, q2) meets V in
either 1, q + 1, or q2 + 1 points.

3.1.3 q = 2h, h > 2

Let V be a quasi-Hermitian variety of H(3, 22h), h > 2.

Lemma 3.15. For each line ` of H(3, 22h), h > 2, either |` ∩ V| 6 q + 1 or |` ∩ V| >
q2 − q − 1.

Proof. Let ` be a line of H(3, 22h). Since ` is at least a tangent to V , there exists a
plane through ` meeting V in q3 + q2 + 1 points. Let π be a plane through ` such that
|π ∩V| = q3 + q2 + 1. Set B = π ∩V . As before, by Corollary 3.4, B is a codeword of the
code of the lines of π, so we can write it as a linear combination of some lines of π, that
is
∑

i λiv
ei , where vei are the characteristic vectors of the lines ei in π.

Let B∗ be the multiset consisting of the lines ei, with multiplicity λi, in the dual plane
of π. The weight of the codeword B is q3 + q2 + 1, hence in the dual plane this is the
number of lines intersecting B∗ in not 0 (mod p) points. Actually, as B is a proper set,
we know that each non 0 (mod p) secant of B∗ must be a 1 (mod p) secant. Using Result
2.5, with δ = q3 + q2 + 1 in H(2, 22h), the number s of non 0 (mod p) secants through any
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point of B satisfies the inequality s2− (q2 +1)s− (q3 +q2 +1) > 0. Since the determinant,
(q2 + 1)2 + 4(q3 + q2 + 1) > ((q2 + 1)− 2(q + 3))2, we get s < q + 3 or s > q2 − q − 2

In the original plane π, this means that each line intersects B in either at most q + 2
or in at least q2 − q − 1 points. Since such lines must be 1 (mod p) secants and p = 2,
then each line intersects B in either at most q + 1 or in at least q2 − q − 1 points.

Let α be a plane meeting V in a point set B′ of size q3 + q2 + 1 points. We want to
prove that α contains some s-secant, with s at least q2 − q − 1. Assume on the contrary
that each line in α meets V in at most q + 1 points. Let P be a point of B′ and consider
the q2 + 1 lines through P . We get q3 + q2 + 1 6 (q2 + 1)q+ 1, a contradiction. Therefore,
there exists a line ` in α meeting B′ in at least q2 − q − 1 points. We are going to show
that B′ is a linear combination of exactly q + 1 lines each with weight 1.

Again, by Corollary 3.4, B′ is the corresponding point set of a codeword c′ of lines of
π, that is c′ =

∑
i λiv

ei , where lines of π are denoted by ei. Let C ′∗ be the multiset in the
dual plane containing the dual of each line ei with multiplicity λi. As before, the number
of lines intersecting C ′∗ in not 0 (mod p) points is w(c′) = |B′| = q3 + q2 + 1 and every
line that is not a 0 (mod p) secant is a 1 (mod p) secant, as B′ is a proper point set.

Hence, if we add the line ` to c with multiplicity 1, we reduce the weight by at least
q2 − q − 1 − q − 2 = q2 − 2q − 3 and at most by q2 + 1. Now, through any point of
B′, there passes at least one line intersecting B′ in at least q2 − q − 1 points. Thus, we
easily find two lines `1 and `2 intersecting B in at least q2 − q − 1 points. We get that
w(c′ − v`1 − v`2) < q3 + 1. Hence, similarly as before, we get that c′ − v`1 − v`2 is a linear

combination of dw(c′−v`1−v`2 )
q2+1

e lines. Hence, c′ is a linear combination of at most q+2 lines.
By Remark 3.5, the number of lines with non-zero multiplicity in the linear combination
of c′ must be 1 (mod p); hence, as p = 2 it can be at most q + 1. For p = 2, a codeword
that is a linear combination of at most q+ 1 lines each with weight 1, has weight at most
q3 +q2 +1 and this is achieved when the q+1 lines are concurrent. This implies that each
line in α is either a 1 or q + 1 or q2 + 1-secant to V . Now consider a line m′ that is an s-
secant to V with s different from 1, q+1, and also different from q2+1. Each plane through
m′ has to meet V in q3 + 1 points. From |V | = q5 + q3 + q2 + 1 = (q2 + 1)(q3 + 1− s) + s
we get s = 0, a contradiction.

Thus each line of H(3, 22h) meets V in either 1 or q + 1 or q2 + 1 points.

Proof of Theorem 1.1 (case r = 3): From all previous lemmas of this section, it
follows that every line in H(3, q2), with q = ph 6= 4 and p any prime, meets V in either 1,
q + 1, or q2 + 1 points. Now, suppose on the contrary that there exists a singular point
P on V ; this means that all lines through P are either tangents or (q2 + 1)-secants to V .
Take a plane π which does not contain P . Then |V| = q2|π ∩ V| + 1 and since the two
possible sizes of the planar sections are q3 +1 or q3 + q2 +1, we get a contradiction. Thus,
every point in V lies on at least one (q+ 1)-secant and, from Theorem 2.1, we obtain that
V is a Hermitian surface.
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3.2 Case r > 4 and q = p > 5

We first prove the following result.

Lemma 3.16. If π is a plane of H(r, p2), which is not contained in V, then either

|π ∩ V| = p2 + 1 or |π ∩ V| > p3 + 1.

Proof. Let π be a plane of H(r, p2) and set B = π ∩ V . By Remark 3.5, B is a linear
combination of 1 (mod p) not necessarily distinct lines.

If |B| < p3 + 1, then by Result 2.8, B is a linear combination of at most p distinct
lines. This and the previous observation yield that when |B| < p3 +1, then it is the scalar
multiple of one line; hence |B| = p2 + 1.

Proposition 3.17. Let π be a plane of H(r, p2), such that |π∩V| 6 p3 +p2 +p+1. Then
B = π ∩V is either a classical unital or a linear combination of p+ 1 concurrent lines or
just one line, each with weight 1.

Proof. From Corollary 3.10, we have that B is either a linear combination of at most
p+1 lines or a classical unital. In the first case, since B intersects every line in 1 (mod p)
points and B is a proper point set, the only possibilities are that B is a linear combination
of p+ 1 concurrent lines or just one line, each with weight 1.

Proof of Theorem 1.1 (case r > 4, q = p): Consider a line ` of H(r, p2) which
is not contained in V . By Lemma 3.6, there is a plane π through ` such that |π ∩ V| 6
q3 + q2 + q + 1. From Proposition 3.17, we have that ` is either a unisecant or a (p+ 1)-
secant of V and we also have that V has no plane section of size (p+ 1)(p2 + 1). Finally, it
is easy to see like in the previous case r = 3, that V has no singular points, thus V turns
out to be a Hermitian variety of H(r, p2) (Theorem 2.2).

3.3 Case r > 4 and q = p2, p odd

Assume now that V is a quasi-Hermitian variety of H(r, p4), with r > 4.
Lemma 3.7 states that every line contains at most p2 + 1 points of V or at least

p4 − p2 + 1 points of V .

Lemma 3.18. If ` is a line of H(r, p4), such that |` ∩ V| > p4 − p2 + 1, then |` ∩ V| >
p4 − p+ 1.

Proof. Set |` ∩ V| = p4 − x + 1, where x 6 p2. It suffices to prove that x < p + 2. Let π
be a plane through ` and B = π ∩V . Choose π such that |B| = |π ∩V| 6 p6 + p4 + p2 + 1
(Lemma 3.6). Then, by Proposition 3.8, B is a linear combination of at most p2 + 1 lines,
each with weight 1. Let c be the codeword corresponding to B. We observe that ` must
be one of the lines of c, otherwise |B ∩ `| 6 p2 + 1, which is impossible. Thus if P is a
point in ` \B, then through P there pass at least p− 1 other lines of c. If x > p+ 2, then
the number of lines necessary to define the codeword c would be at least (p+2)(p−1)+1,
a contradiction.
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Lemma 3.19. For each plane π of H(r, p4), either |π ∩ V| 6 p6 + 2p4 − p2 − p + 1 or
|π ∩ V| > p8 − p5 + p4 − p+ 1.

Proof. Let B = π ∩ V , x = |B|, and let ti be the number of lines in π meeting B in i
points. Then, in this case, Equations (4) read

∑p4+1
i=1 ti = p8 + p4 + 1∑p4+1
i=1 iti = x(p4 + 1)∑p4+1
i=1 i(i− 1)ti = x(x− 1).

(5)

Set f(x) =
∑p4+1

i=1 (p2 + 1− i)(i− (p4 − p+ 1))ti. From (5) we obtain

f(x) = −x2 + [(p4 + 1)(p4 + p2 − p+ 1) + 1]x− (p8 + p4 + 1)(p2 + 1)(p4 − p+ 1).

Because of Lemma 3.18, we get f(x) 6 0, while f(p6+2p4−p2+1) > 0, f(p8−p5+p4−p) >
0. This finishes the proof of the lemma.

Lemma 3.20. If π is a plane of H(r, p4), such that |π ∩ V| > p8 − p5 + p4 − p+ 1, then
either π is entirely contained in V or π ∩ V consists of p8 − p5 + p4 + 1 points and it only
contains i-secants, with i ∈ {1, p4 − p+ 1, p4 + 1}.

Proof. Set S = π \V . Suppose that there exists some point P ∈ S. We have the following
two possibilities: either each line of the pencil with center at P is a (p4 − p + 1)-secant
or only one line through P is an i-secant, with 1 6 i 6 p2 + 1, whereas the other p4

lines through P are (p4 − p+ 1)-secants. In the former case, when there are no i-secants,
1 6 i 6 p2 + 1, each line ` in π either is disjoint from S or it meets S in p points since `
is a (p4 − p + 1)-secant. This implies that S is a maximal arc and this is impossible for
p 6= 2 [4, 5].

In the latter case, we observe that the size of π∩V must be p8−p5+p4+i, where 1 6 i 6
p2 +1. Next, we denote by ts the number of s-secants in π, where s ∈ {i, p4−p+1, p4 +1}.
We have that 

∑
s ts = p8 + p4 + 1∑
s sts = (p4 + 1)(p8 − p5 + p4 + i)∑
s s(s− 1)ts = (p8 − p5 + p4 + i)(p8 − p5 + p4 + i− 1).

(6)

From (6) we get

ti =
p(p4 − p− i+ 1)(p5 − i+ 1)

p(p4 − p− i+ 1)(p4 − i+ 1)
=
p5 − i+ 1

p4 − i+ 1
, (7)

and we can see that the only possibility for ti to be an integer is ip− p− i+ 1 = 0, that
is i = 1. For i = 1, we get |B| = p8 − p5 + p4 + 1.
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Lemma 3.21. If π is a plane of H(r, p4), not contained in V and which does not contain
any (p4− p+ 1)-secant, then π∩V is either a classical unital or the union of i concurrent
lines, with 1 6 i 6 p2 + 1.

Proof. Because of Lemmas 3.18, 3.19 and 3.20, the plane π meets V in at most p6 + 2p4−
p2 − p+ 1 points. Furthermore, each line of π which is not contained in V is an i-secant,
with 1 6 i 6 p2 +1 (Lemma 3.18 and the sentence preceding Lemma 3.18). Set B = π∩V .
If in π there are no (p4 + 1)-secants to B, then |B| 6 p6 + p2 + 1 and by Proposition 3.9
it follows that B is a classical unital.

If there is a (p4 + 1)-secant to B in π, then arguing as in the proof of Proposition 3.8,
we get that B is still a linear combination of m lines, with m 6 p2 + 1. Each of these m
lines is a (p4 + 1)-secant to V . In fact if one of these lines, say v, was an s-secant, with
1 6 s 6 p2 + 1, then through each point P ∈ v \ B, there would pass at least p lines of
the codeword corresponding to B and hence B would be a linear combination of at least
(p4 + 1− s)(p− 1) + 1 > p2 + 1 lines, which is impossible.

We are going to prove that these m lines, say `1, . . . , `m, are concurrent. Assume on
the contrary that they are not. We can assume that through a point P ∈ `n, there pass
at least p+ 1 lines of our codeword but there is a line `j which does not pass through P .
Thus through at least p + 1 points on `j, there are at least p + 1 lines of our codeword
and thus we find at least (p+ 1)p+ 1 > m lines of B, a contradiction.

Lemma 3.22. A plane π of H(r, p4) meeting V in at most p6 + 2p4 − p2 − p + 1 points
and containing a (p4 − p+ 1)-secant to V has at most (p2 + 1)(p4 − p+ 1) points of V.

Proof. Let ` be a line of π which is a (p4 − p + 1)-secant to V . In this case, π ∩ V is a
linear combination of at most p2 + 1 lines, each with weight 1 (Proposition 3.8). A line
not in the codeword can contain at most p2 + 1 points. In particular, since ` contains
more than p4 − p2 + 1 points of V , ` is a line of the codeword and hence through each of
the missing points of ` there are at least p lines of the codeword corresponding to B. On
these p lines we can see at most p4 − p+ 1 points of V .

So let `1, `2, . . . , `p be p lines of the codeword through a point of ` \ V . Each of these
lines contains at most p4− p+ 1 points of V . Thus these p lines contain together at most
p(p4 − p + 1) points of V . Now take any other line of the codeword, say e. If e goes
through the common point of the lines `i, then there is already one point missing from e,
so adding e to our set, we can add at most p4 − p + 1 points. If e does not go through
the common point, then it intersects `i in p different points. These points either do not
belong to the set π∩V or they belong to the set π∩V , but we have already counted them
when we counted the points of `i, so again e can add at most p4 − p+ 1 points to the set
π ∩V . Thus adding the lines of the codewords one by one to `i and counting the number
of points, each time we add only at most p4 − p + 1 points to the set π ∩ V . Hence, the
plane π contains at most (p2 + 1)(p4 − p+ 1) points of V .

Lemma 3.23. Let π be a plane of H(r, p4), containing an i-secant, 1 < i < p2 + 1, to V.
Then π∩V is either the union of i concurrent lines or it is a linear combination of p2 + 1
lines (each with weight 1) so that they form a subplane of order p, minus p concurrent
lines.
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Proof. By Lemmas 3.19, 3.20 and 3.21, π meets V in at most p6 + 2p4− p2− p+ 1 points
and must contain a (p4 − p + 1)-secant to V or π ∩ V is the union of i concurrent lines.
Hence, from now on, we assume that π contains a (p4−p+ 1)-secant. By Result 2.8, such
a plane is a linear combination of at most p2 + 1 lines. As before each line from the linear
combination has weight 1. Note that the above two statements imply that a line of the
linear combination will be either a (p4 + 1)-secant or a (p4 − p+ 1)-secant.

As we have at most p2 + 1 lines in the combination, a (p4 − p + 1)-secant must be
one of these lines. This also means that through each of the p missing points of this line,
there must pass at least p− 1 other lines from the linear combination. Hence, we already
get (p− 1)p+ 1 lines.

In the case in which the linear combination contains exactly p2−p+1 lines, then from
each of these lines there are exactly p points missing and through each missing point there
are exactly p lines from the linear combination. Hence, the missing points and these lines
form a projective plane of order p− 1, a contradiction as p > 3.

Therefore, as the number of the lines of the linear combination must be 1 (mod p)
and at most p2 + 1, we can assume that the linear combination contains p2 + 1 lines.
We are going to prove that through each point of the plane there pass either 0, 1, p
or p + 1 lines from the linear combination. From earlier arguments, we know that the
number of lines through one point P is 0 or 1 (mod p). Assume to the contrary that
through P there pass at least p + 2 of such lines. These p2 + 1 lines forming the linear
combination are not concurrent, so there is a line ` not through P . Through each of the
intersection points of ` and a line through P , there pass at least p − 1 more other lines
of the linear combination, so in total we get at least (p− 1)(p + 2) + 1 lines forming the
linear combination, a contradiction.

Since there are p2 + 1 lines forming the linear combination and through each point of
the plane there pass either 0, 1, p or p+ 1 of these lines, we obtain that on a (p4− p+ 1)-
secant there is exactly one point, say P , through which there pass exactly p+1 lines from
the linear combination and p points, not in the quasi Hermitian variety, through each of
which there pass exactly p lines.

If all the p2 +1 lines forming the linear combination, were (p4−p+1)-secants then the
number of points through which there pass exactly p lines would be (p2 + 1)p/p. On the
other hand, through P there pass p+ 1 (p4− p+ 1)-secants, hence we already get (p+ 1)p
such points, a contradiction. Thus, there exists a line m of the linear combination that
is a (p4 + 1)-secant. From the above arguments, on this line there are exactly p points
through each of which there pass exactly p + 1 lines, whereas through the rest of the
points of the line m there pass no other lines of the linear combination.

Assume that there is a line m′ 6= m of the linear combination that is also a (p4 + 1)-
secant. Then there is a point Q on m′ but not on m through which there pass p+ 1 lines.
This would mean that there are at least p+1 points on m, through which there pass more
than 2 lines of the linear combination, a contradiction.

Hence, there is exactly one line m of the linear combination that is a (p4 + 1)-secant
and all the other lines of the linear combination are (p4−p+1)-secants. It is easy to check
that the points through which there are more than 2 lines plus the (p4 − p + 1)-secants
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form a dual affine plane. Hence our lemma follows.

Lemma 3.24. There are no i-secants to V, with 1 < i < p2 + 1.

Proof. By Lemma 3.23, if a plane π contains an i-secant, 1 < i < p2 + 1, then π ∩ V
is a linear combination of either i concurrent lines or lines of an embedded subplane of
order p minus p concurrent lines. In the latter case, if i > 1 then an i-secant is at least
a (p2 − p + 1)-secant. In fact, since the p2 + 1 lines of the linear combination do not
intersect outside of H(2, p), each of the p2 + 1 lines of the linear combination is at least
a (p4 − p + 1)-secant, whereas the p concurrent lines are 1-secants. Also, all the other
lines of H(2, p4) intersect H(2, p) in either 1 or zero points. If they intersect H(2, p) in
zero points they are (p2 + 1)-secants to V . If they intersect H(2, p) in a unique point P ,
then they are at least (p2 − p + 1)-secants since P lies on p or p + 1 lines of the linear
combination and each line intersects V in 1 (mod p) points.

Hence, if there is an i-secant with 1 < i < p2− p+ 1, say `, we get that for each plane
α through `, α ∩ V is a linear combination of i concurrent lines. Therefore

|V| = m(ip4 + 1− i) + i, (8)

where m = p4(r−2) + p4(r−3) + . . .+ p4 + 1 is the number of planes in H(r, p4) through `.
Setting r = 2σ + ε, where ε = 0 or ε = 1 according to r is even or odd, we can write

|V| = 1 + p4 + · · ·+ p4(r−σ−1) + (p4(r−σ−ε) + p4((r−σ−ε+1) + · · ·+ p4(r−1))p2

Hence, (8) becomes

1 + p4 + · · ·+ p4(r−σ−1) + (p4(r−σ−ε) + p4((r−σ−ε+1) + · · ·+ p4(r−1))p2

−(p4(r−2) + p4(r−3) + · · ·+ p4 + 1) = ip4(r−1).
(9)

Since σ > 2, we see that p4(r−1) does not divide the left hand side of (9), a contradiction.
Thus, there can only be 1-, (p2− p+ 1)-, (p2 + 1)-, (p4− p+ 1)- or (p4 + 1)-secants to

V . Now, suppose that ` is a (p2 − p + 1)-secant to V . Again by Lemma 3.23, each plane
through ` either has x = (p2 − p+ 1)p4 + 1 or y = p2(p4 − p) + p4 + 1 points of V . Next,
denote by tj the number of j-secant planes through ` to V . We get{

tx + ty = m
tx(x− p2 + p− 1) + ty(y − p2 + p− 1) + p2 − p+ 1 = |V|. (10)

Recover the value of ty from the first equation and substitute it in the second. We obtain

(m− ty)(p6 − p5 + p4 − p2 + p) + ty(p
6 + p4 − p3 − p2 + p) + p2 − p+ 1 = |V|,

that is,
p3(p2 − 1)ty = |V| −m(p6 − p5 + p4 − p2 + p)− p2 + p− 1.

The case ty = 0 must be excluded, since by direct computations |V| 6= m(p6 − p5 + p4 −
p2 +p)+p2−p+1. It is easy to check that |V|−m(p6−p5 +p4−p2 +p)−p2 +p−1 is not
divisible by p+ 1 and hence, ty turns out not to be an integer, which is impossible.
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Lemma 3.25. No plane meeting V in at most p6 + 2p4 − p2 − p + 1 points contains a
(p4 − p+ 1)-secant.

Proof. Let π be a plane of H(r, p4) such that |π∩V| 6 p6 +2p4−p2−p+1. It can contain
only 1-, (p2 + 1)-, (p4 − p+ 1)-, (p4 + 1)-secants (Lemma 3.18 and Lemma 3.24). If π ∩ V
contains a (p4−p+1)-secant, we know from Proposition 3.8 that it is a linear combination
of at most p2 + 1 lines, each with weight 1. Suppose that e is a (p4 − p + 1)-secant to
π∩V . Let P and Q be two missing points of e. We know that there must be at least p−1
other lines of the codeword through P and Q. Let f and g be two such lines through Q.
The number of lines of the codeword through P is at most 2p and since the lines f and
g are lines of the codeword through Q, they are (p4− p+ 1)-secants. There exist at most
(p− 1)2 lines through P distinct from e intersecting f or g in a point not in V . Therefore
we can find a line, say m, of the plane through P , that intersects f and g in a point of V
and that is not a line of the codeword. Then |m ∩ V| > 1 + p since |m ∩ V| ≡ 1 (mod p).
Recall that m is not a line of the codeword and the total number of lines of the codeword
is at most p2 + 1. Also, m meets in P at least p lines of the codeword and therefore it
can intersect all the remaining lines in at most p2 − p + 1 pairwise distinct points. This
means that the line m satisfies p+ 1 6 |m∩V| 6 p2− p+ 1, and this contradicts Lemma
3.24.

Lemma 3.26. There are no (p4 − p+ 1)-secants to V.

Proof. If there was a (p4 − p+ 1)-secant to V , say `, then, by Lemma 3.25, all the planes
through ` would contain at least p8 − p5 + p4 + 1 points of V , and thus

|V| > (p4(r−2) + p4(r−3) + · · ·+ p4 + 1)(p8 − p5 + p) + p4 − p+ 1, (11)

a contradiction.

Proof of Theorem 1.1 (case r > 4 and q = p2): Consider a line ` which is not
contained in V . From the preceding lemmas we have that ` is either a 1-secant or a
(p2 + 1)-secant of V . Furthermore, V has no plane section of size (p2 + 1)(p4 + 1) because
of Lemma 3.21. Finally, as in the case r = 3, it is easy to see that V has no singular
points, thus, by Theorem 2.2, V turns out to be a Hermitian variety of H(r, p4).

4 Singular quasi-Hermitian varieties

In this section, we consider sets having the same behavior with respect to hyperplanes as
singular Hermitian varieties.

Definition 4.1. A d-singular quasi-Hermitian variety is a subset of points of H(r, q2)
having the same number of points and the same intersection sizes with hyperplanes as a
singular Hermitian variety with a singular space of dimension d.

We prove the following result.
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Theorem 4.2. Let S be a d-singular quasi-Hermitian variety in H(r, q2). Suppose that
either

• r = 3, d = 0, q = ph 6= 4, h > 1, p any prime, or

• r > 4, d 6 r − 3, q = p > 5, or

• r > 4, d 6 r − 3, q = p2, p odd prime.

Then S is a singular Hermitian variety with a singular space of dimension d if and only
if its incidence vector is in the Fp-code spanned by the hyperplanes of H(r, q2).

Proof. Let S be a singular Hermitian variety of H(r, q2). The characteristic vector vS of
S is in Cp since [13, Theorem 1] also holds for singular Hermitian varieties. Now assume
that S is a d-singular quasi-Hermitian variety. As in the non-singular case, by Lemma
3.1, each line of H(r, q2) intersects S in 1 (mod p) points.

4.1 Case r = 3

Suppose that r = 3 and therefore d = 0. Then S has q5 + q2 + 1 points. Let π be a plane
of H(3, q2). In this case, π meets S in either q2 + 1, or q3 + 1 or q3 + q2 + 1 points. In
particular, a planar section of S with q2 + 1 points is a line since it is a blocking set with
respect to lines of a projective plane.

In the case in which q is a prime p, Lemma 3.12 and Lemma 3.13 are still valid in the
singular case for V = S and thus, the planar sections of S with p3 +1 or p3 +p2 +1 points
have to be unitals or pencils of p+1 lines, respectively. Hence, each line of H(3, p2) meets
S in 1, p+ 1 or p2 + 1 points.

When q > 5 is an odd prime power, Lemma 3.6, Lemma 3.7, Proposition 3.8, and
Corollary 3.10 are still valid in the singular case for r = 3.

Thus, if |π∩S| = q2 +1, then Proposition 3.8 implies that π∩S is a line of π, whereas
if |π ∩ S| = q3 + 1, then Corollary 3.11 gives that π ∩ S is a classical unital of π. Now
suppose that |π ∩ S| = q3 + q2 + 1. Let ` be a line of π such that |` ∩ S| = s with
s 6= 1, q + 1, q2 + 1.

Each plane through ` must meet S in q3 + q2 + 1 points and this gives

(q3 + q2 + 1− s)(q2 + 1) + s = q5 + q2 + 1,

that is, s = q2 + q + 1, which is impossible.
Thus in H(3, q2), where q is an odd prime power, each line intersects S in either 1, or

q + 1 or q2 + 1 points.
Next, assume q = 2h, h > 2. Arguing as in the corresponding non-singular case, it

turns out that a (q3 + q2 + 1)-plane meets S in a pencil of q + 1 lines. Now, assume that
there is an i-secant line to S, say m, with 2 < i < q. Then, each plane through m has to
be a (q3 + 1)-plane of S. Counting the number of points of S by using all planes through
m we obtain q5 + q2 + 1 = q5 + q3 + q2 − iq2 + 1, hence i = q, a contradiction since every
line contains 1 (mod 2) points of V .
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Therefore, each line of H(3, 22h), h 6= 2 meets S in 1, q + 1 or q2 + 1 points. Finally,
S is a kq+1,3,q2 for all q 6= 4. Also, S cannot be non-singular by assumption. When q 6= 2,
Theorem 2.3 applies and S turns out to be a cone Π0S ′ with S ′ of type I, II, III or IV as
the possible intersection sizes with planes are q2 + 1, q3 + 1, q3 + q2 + 1.

Possibilities II, III, and IV must be excluded, since their sizes cannot be possible. This
implies that S = Π0H, where H is a non-singular Hermitian curve.

For q = 2, there is just one point set in H(3, 4) up to equivalence, meeting each line
in 1, 3 or 5 points and each plane in 5, 9 or 13 points, that is the Hermitian cone, see [11,
Theorem 19.6.8].

4.2 Case r > 4

Let ` be a line of H(r, q2) containing x < q2 + 1 points of S. We are going to prove that
there exists at least one plane through ` containing less than q3 + q2 + q + 1 points of S.
If we suppose that all the planes through ` contain at least q3 + q2 + q + 1 points of S,
then

q2(d+1) (qr−d + (−1)r−d−1)(qr−d−1 − (−1)r−d−1)

q2 − 1
+ q2d + q2(d−1) + · · ·+ q2 + 1 >

m(q3 + q2 + q + 1− x) + x,

where m = q2(r−2) + q2(r−3) + · · · + q2 + 1 is the number of planes through ` in H(r, q2).
We obtain x > q2 + 1, a contradiction.

Therefore, there exists at least one plane through ` having less than q3 + q2 + q + 1
points of S and hence Lemma 3.6, Lemma 3.7, Proposition 3.8, and Corollary 3.10, are
still valid in this singular case for any odd q > 4.

Next, we are going to prove that S is a kq+1,r,q2 , with q = ph > 4, h = 1, 2.

Case q = p > 5: Let ` be a line of H(r, p2). As we have seen, there is a plane π through
` such that |π ∩ V| < p3 + p2 + p+ 1. Proposition 3.17 is still valid in this case and thus
we have that ` is either a unisecant or a (p + 1)-secant of S. Furthermore, we also have
that S has no plane section of size (p+ 1)(p2 + 1) and hence S is a regular kp+1,r,p2 .

Case q = p2, p odd: We first observe that (8) and (11) hold true in the case in which V
is assumed to be a singular quasi-Hermitian variety. This implies that all lemmas stated
in the subparagraph 3.3 are valid in our case. Thus, we obtain that S is a kp2+1,r,p4 and
it is straightforward to check that S is also regular.

Finally, in both cases q = p or q = p2, we have that S is a singular kq+1,r,q2 because
if S were a non-singular kq+1,r,q2 , then, from Theorem 2.2, S would be a non-singular
Hermitian variety and this is not possible by our assumptions.

Therefore, by Theorem 2.4, the only possibility is that S is a cone ΠdS ′, with S ′ a non-
singular kq+1,r−d−1,q2 . By Lemma 3.3, S ′ belongs to the code of points and hyperplanes
of H(r − d − 1, q2). Since r − d − 1 > 2, then, by [6] and Theorem 1.1, S ′ is a non-
singular Hermitian variety and, therefore, S is a singular Hermitian variety with a vertex
of dimension d.
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