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Abstract

Let Ωq denote the set of proper [q]-colorings of the random graph Gn,m,m =
dn/2 and let Hq be the graph with vertex set Ωq and an edge {σ, τ} where σ, τ
are mappings [n] → [q] iff h(σ, τ) = 1. Here h(σ, τ) is the Hamming distance
| {v ∈ [n] : σ(v) 6= τ(v)} |. We show that w.h.p. Hq contains a single giant compo-
nent containing almost all colorings in Ωq if d is sufficiently large and q > cd

log d for
a constant c > 3/2.
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1 Introduction

In this short note, we will discuss a structural property of the set Ωq of proper [q]-colorings
of the random graph Gn,m, where m = dn/2 for some large constant d. That is, proper
colorings using colors from [q] = {1, 2, . . . , q}. For the sake of precision, let us define
Hq to be the graph with vertex set Ωq and an edge {σ, τ} iff h(σ, τ) = 1 where h(σ, τ)
is the Hamming distance | {v ∈ [n] : σ(v) 6= τ(v)} |. In the Statistical Physics literature
the definition of Hq may be that colorings σ, τ are connected by an edge in Hq whenever
h(σ, τ) = o(n). Our theorem holds a fortiori if this is the case.

Heuristic evidence in the statistical physics literature (see for example [15]) suggests
there is a clustering transition cd such that for q > cd, the graph Hq is dominated by a
single connected component, while for q < cd, an exponential number of components are
required to cover any constant fraction of it; it may be that cd ≈ d

log d
. (Here A(d) ≈ B(d)

is taken to mean that A(d)/B(d)→ 1 as d→∞. We do not assume d→∞, only that d
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is a sufficiently large constant, independent of n.) Recall that Gn,m for m = dn/2 becomes
q-colorable around q ≈ d

2 log d
or equivalently when d ≈ 2q log q, [3, 7]. In this note, we

prove the following:

Theorem 1.1. If q > cd
log d

for constant c > 3/2, and d is sufficiently large, then w.h.p. Hq

contains a giant component that contains almost all of Ωq.

In particular, this implies that the clustering transition cd, if it exists, must satisfy
cd 6 3

2
d

log d
.

Theorem 1.1 falls into the area of “Structural Properties of Solutions to Random
Constraint Satisfaction Problems”. This is a growing area with connections to Computer
Science and Theoretical Physics. In particular, much of the research on the graph Hq has
been focussed on the structure near the colorability threshold, e.g. Bapst, Coja-Oghlan,
Hetterich, Rassman and Vilenchik [4], or the clustering threshold, e.g. Achlioptas, Coja-
Oghlan and Ricci-Tersenghi [2], Molloy [13]. Other papers heuristically identify a sequence
of phase transitions in the structure of Hq, e.g., Krza̧kala, Montanari, Ricci-Tersenghi,
Semerijan and Zdeborová [12], Zdeborová and Krza̧kala [15]. The existence of these
transitions has been shown rigorously for some other CSPs. One of the most spectacular
examples is due to Ding, Sly and Sun [8] who rigorously showed the existence of a sharp
satisfiability threshold for random k-SAT.

An obvious target for future work is improving the constant in Theorem 1.1 to 1.
We should note that Molloy [13] has shown that w.h.p. there is no giant component if

q 6 (1−εd)d
log d

, for some εd > 0. Looking in another direction, it is shown in [9] that w.h.p.
Hq, q > d + 2 is connected. This implies that Glauber Dynamics on Ωq is ergodic. It
would be of interest to know if this is true for some q � d.

Before we begin our analysis, we briefly explain the constant 3/2. We start with an
arbitrary [q]-coloring and then re-color it using only approximately ≈ d/ log d of the given
colors. We then use a disjoint set of approximately d/2 log d colors to re-color it with a
target χ ≈ d

2 log d
coloring τ . We will assume that τ uses colors from {q0 + 1, . . . , q0 + χ}.

2 Greedily Re-coloring

Our main tool is a theorem from Bapst, Coja-Oghlan and Efthymiou [5] on planted
colorings. We consider two ways of generating a random coloring of a random graph.
We will let Zq = |Ωq|. The first method is to generate a random graph and then a
random coloring. In the second method, we generate a random (planted) coloring and
then generate a random graph compatible with this coloring.

Random coloring of the random graph Gn,m: Here we will assume that m is
such that w.h.p. Zq > 0.

(a) Generate Gn,m subject to Zq > 0.

(b) Choose a [q]-coloring σ uniformly at random from Ωq.

(c) Output Π1 = (Gn,m, σ).
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Planted model:

1. Choose a random partition of [n] into q color classes V1, V2, . . . , Vq subject to

q∑
i=1

(
|Vi|
2

)
6

(
n

2

)
−m.

2. Let Γσ,m be obtained by adding m random edges, each with endpoints in different
color classes.

3. Output Π2 = (Γσ,m, σ).

We will use the following result from [5]:

Theorem 2.1. Let d = 2m/n and suppose that d 6 2(q − 1) log(q − 1). Then Pr(Π2 ∈
P) = o(1) implies that Pr(Π1 ∈ P) = o(1) for any graph+coloring property P.

Consequently, we will use the planted model in our subsequent analysis. Let

q0 =
q

q − 1
· d

log d− 7 log log d
≈ d

log d
. (1)

The property P in question will be: “the given [q]-coloring can be reduced via single
vertex color changes to a [q0]-coloring”.

In a random partition of [n] into q parts, the size of each part is distributed as
Bin(n, q−1) and so the Chernoff bounds imply that w.h.p. in a random partition each
part has size n

q

(
1± logn

n1/2

)
.

We let Γ be obtained by taking a random partition V1, V2, . . . , Vq and then adding
m = 1

2
dn random edges so that each part is an independent set. These edges will be

chosen from

Nq =

(
n

2

)
− (1 + o(1))q

(
n/q

2

)
= (1− o(1))

n2

2

(
1− 1

q

)
possibilities. So, let d̂ = mn

Nq
≈ dq

q−1
and replace Γ by Γ̂ where each edge not contained in a

Vi is included independently with probability p̂ = d̂
n
. V1, V2, . . . , Vq constitutes a coloring

which we will denote by σ. Now Γ̂ has m edges with probability Ω(n−1/2) and one can
check that the properties required in Lemmas 2.2 and 2.3 below all occur with probability
1− o(n−1/2) and so we can equally well work with Γ̂.

Now consider the following algorithm for going from σ via a path in Ωq to a coloring
with significantly fewer colors. It is basically the standard greedy coloring algorithm, as
seen in Bollobás and Erdős [6], Grimmett and McDiarmid [10] and in particular Shamir
and Upfal [14] for sparse graphs.

In words, it goes as follows. At each round of the algorithm, U denotes the set of
vertices that have never been re-colored, by the start of the round. Having used r − 1
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colors to re-color some subset of vertices we start using color r. We let Wj = Vj ∩ U
denote the unchanged vertices of Vj for j > 1. We then let k be the smallest index j for
which Wj 6= ∅. During the re-coloring process, we will keep track of sets Cr and Ur ⊆ U ,
which are, respectively, the sets of vertices already re-colored r and the vertices of U not
adjacent to any vertices in Cr. These sets are initially defined in the re-coloring process
by the re-coloring all of Wk with color r so that Cr = Wk, and we proceed thereafter by
choosing vertices from Ur and re-coloring them with color r (each time increasing |Cr| by
1 and decreasing |Ur| by at least 1). We finish when Ur = ∅, and in this way the terminal
set Cr of vertices re-colored r will be a maximal independent subset of the set U . Note
that in this construction, some or all of the vertices in Vr may be re-colored with s < r.

At any stage of the algorithm, U is the set of vertices whose colors have not been

altered. The value of L in line D is
⌈
n/ log2 d̂

⌉
.

algorithm greedy re-color
begin

Initialise: r = 0, U = [n], C0 ← ∅;
repeat;
r ←r + 1, Cr ← ∅;

Let Wj = Vj ∩ U for j > 1 and let k = min {j : Wj 6= ∅};
A: Cr ← Wk, U ← U \ Cr, Ur ← U \

{
neighbors of Cr in Γ̂

}
;

If r < k, re-color every vertex in Wk with color r;
B: repeat (Re-color some more vertices with color r);
C: Arbitrarily choose v ∈ Ur, Cr ← Cr + v, Ur ← Ur − v;

Ur ← Ur \
{

neighbors of v in Γ̂
}

;

until Ur = ∅;
U ← U \ Ur;

D: until |U | 6 L;
Suppose that at this point we have used r0 colors;

If possible, re-color U with colors r0 + 1, . . . , r0 + s0, where s0 =
⌈

d̂

log2 d̂
+ 2
⌉
;

end

2.1 Following a path in Hq

We first observe that each re-coloring of a single vertex v vertex in line C can be interpreted
as moving from a coloring of Ωq to a neighboring coloring in Hq. This requires us to argue

that the re-coloring by greedy re-color is such that the coloring of Γ̂ is proper at all
times. We argue by induction on r that the coloring at line A is proper. When r = 1 there
have been no re-colorings. At the start of round r either all vertices previously colored r
have been re-colored and Cr is a subset of vertices originally colored k > r or is a subset
of the vertices originally colored r. In the first case we can simply re-color Wk one vertex
at a time with color r. Also, during the loop beginning at line B we only re-color vertices
with color r if they are not neighbors of the set Cr of vertices colored r so far. This
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guarantees that the coloring remains proper until we reach line D. The following lemma
shows that we can then reason as in Lemma 2 of Dyer, Flaxman, Frieze and Vigoda [9],
as will be explained subsequently.

Lemma 2.2. Let p = m/
(
n
2

)
= ∆/n where ∆ is some sufficiently large constant. With

probability 1 − o(n−1/2), every S ⊆ [n] with s = |S| 6 n/ log2 ∆ contains at most
s∆/ log2 ∆ edges.

The above lemma, is Lemma 7.7(i) of Janson,  Luczak and Ruciński [11] and it implies

that if ∆ = d̂ then w.h.p. Γ̂U at line D contains no K-core, K = 2d̂

log2 d̂
+1. Here Γ̂U denotes

the sub-graph of Γ̂ induced by the vertices U . For a graph G = (V,E) and K > 0, the K-
core is the unique maximal set S ⊆ V such that the induced subgraph on S has minimum
degree at least K. A graph without a K-core is K-degenerate i.e. its vertices can be
ordered as v1, v2, . . . , vn so that vi has at most K − 1 neighbors in {v1, v2, . . . , vi−1}. To
see this, let vn be a vertex of minimum degree and then apply induction.

Suppose now that we have reached Line D and we find |U | 6 L. We claim that we
can re-color the vertices in U with K + 1 new colors, all the time following some path in
Hq. Let v1, . . . , v|U | denote an ordering of U such that the degree of vi is less than K in

the subgraph Γ̂i of Γ̂ induced by {v1, v2, . . . , vi}. We will prove the claim by induction on
i, the inductive assertion being that we can re-color v1, v2, . . . , vi ignoring conflicts caused
by vertices vi+1, . . . , v|U |. The asertion with i = |U | shows the existence of the path we
want. The claim is trivial for i = 1. Let σ0 be the coloring of U at line D, when first we
have |U | 6 L. By induction there is a path σ0, σ1, . . . , σr from the coloring σ0 restricted

to Γ̂i−1, using only colors r0 + 1, . . . , r0 + s0 to do the re-coloring. Vertices outside of U
will not be re-colored by this sequence.

Let (wj, cj) denote the (vertex, color) change defining the edge {σj−1, σj}. We con-

struct a path (of length 6 2r) that re-colors Γ̂i. For j = 1, 2, . . . , r, we will re-color wj
to color cj, if no neighbor of wj has color cj. Failing this, vi must be the only neighbor

of wj that is colored cj. This is because σr is a proper coloring of Γ̂i−1. Since vi has

degree less than K in Γ̂i, there exists a new color for vi which does not appear in its
neighborhood. Thus, we first re-color vi to any new (valid) color, and then we re-color wj
to cj, completing the inductive step. Note that because the colors used in Step D have
not been used in Steps A,B,C, this re-coloring does not conflict with any of the coloring
done in Steps A,B,C.

2.2 Bounding the number of colors used

We need to show that greedy re-color uses at most q0 colors. To do this we show that
w.h.p. each execution of Loop B re-colors a large number of vertices. Let α1(G) denote
the minimum size of a maximal independent set of a graph G. The round will re-color at
least α1(ΓU) vertices, where U is as at the start of Loop B. The following result is from
Lemma 7.8(i) of [11].
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Lemma 2.3. Let p = m/
(
n
2

)
= ∆/n where ∆ is some sufficiently large constant. Then

α1(Gn,m) > log ∆−3 log log ∆
p

with probability 1− o(n−1/2) (see Lemma 7.8(i)).

Now the application of Step A and Loop B re-colors a maximal independent set Cr of
the graph Γ̂U induced by U , as U stands at the beginning of Step A. This implies that the
size of Cr stochastically dominates the size of a maximal independent set in G|U |,p̂. This
is because we can obtain G|U |,p̂ by adding edges to Vi ∩ U, i > 1 with probability p̂. Here
we follow the usual analysis of greedy algorithms and argue that edges inside U are not
conditioned by the process. This is often referred to as the method of deferred decisions.
In this way we couple Γ̂U with G|U |,p̂ so that every independent set in G|U |,p̂ is contained

in an independent set in Γ̂U .
And so using Lemma 2.3 we see that w.h.p. each execution of Loop B re-colors at

least
log(d̂/ log2 d̂)− 3 log log(d̂/ log2 d̂)

d̂
n >

q − 1

q
· log d− 6 log log d

d
n

vertices, for d sufficiently large. We have replaced ∆ of Lemma 2.3 by d̂/ log2 d̂ to allow for
the fact that we have replaced n by |U | > L. Here we refer to the size of |U | immediately
after the update of r. Consequently, at the end of Algorithm greedy re-color we will
have used at most

q

q − 1
· d

log d− 6 log log d
+

d̂

log2 d̂
+ 2 6

q

q − 1
· d

log d− 7 log log d
= q0

colors. The term d̂

log2 d̂
+ 2 arises from the re-coloring of U at line D.

2.3 Finishing the proof:

Now suppose that q > cd
log d

where d is large and c > 3/2. Fix a particular χ-coloring τ of

Gn,m that uses colors from {q0 + 1, . . . , q0 + χ}. We prove that almost every [q]-coloring
σ of Gn,m can be transformed into τ changing one color at a time. It follows that for
almost every pair of [q]-colorings σ, σ′ we can transform σ into σ′ by first transforming σ
to τ and then reversing the path from σ′ to τ .

We proceed as follows. Applying Theorem 2.1 with the property P as described follow-
ing (1), we see that w.h.p., a uniformly random [q]-coloring σ of Gn,m can be transformed
one vertex at a time into a [q0]-coloring θ. Then we process the vertices of the color classes
of τ , re-coloring vertices to their τ -color. When we process a color class C of τ , we switch
the color of vertices in C to their τ -color iC one vertex at a time. We can do this because
when we re-color a vertex v, a neighbor w will currently either have one of the q0 colors
used by θ and these are distinct from iC or alternatively, w will have already been been
re-colored with its τ -color and this will be distinct from iC . This proves Theorem 1.1.
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