Constraining the clustering transition for colorings of sparse random graphs

Michael Anastos Alan Frieze* Wesley Pegden ${ }^{\dagger}$
Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh PA 15213, U.S.A.

Submitted: May 23, 2017; Accepted: Mar 7, 2018; Published: Mar 29, 2018
Mathematics Subject Classifications: 05C80

Abstract

Let Ω_{q} denote the set of proper [q]-colorings of the random graph $G_{n, m}, m=$ $d n / 2$ and let H_{q} be the graph with vertex set Ω_{q} and an edge $\{\sigma, \tau\}$ where σ, τ are mappings $[n] \rightarrow[q]$ iff $h(\sigma, \tau)=1$. Here $h(\sigma, \tau)$ is the Hamming distance $|\{v \in[n]: \sigma(v) \neq \tau(v)\}|$. We show that w.h.p. H_{q} contains a single giant component containing almost all colorings in Ω_{q} if d is sufficiently large and $q \geqslant \frac{c d}{\log d}$ for a constant $c>3 / 2$.

Keywords: Random Graphs; Colorings; Clustering Transition

1 Introduction

In this short note, we will discuss a structural property of the set Ω_{q} of proper [$\left.q\right]$-colorings of the random graph $G_{n, m}$, where $m=d n / 2$ for some large constant d. That is, proper colorings using colors from $[q]=\{1,2, \ldots, q\}$. For the sake of precision, let us define H_{q} to be the graph with vertex set Ω_{q} and an edge $\{\sigma, \tau\}$ iff $h(\sigma, \tau)=1$ where $h(\sigma, \tau)$ is the Hamming distance $|\{v \in[n]: \sigma(v) \neq \tau(v)\}|$. In the Statistical Physics literature the definition of H_{q} may be that colorings σ, τ are connected by an edge in H_{q} whenever $h(\sigma, \tau)=o(n)$. Our theorem holds a fortiori if this is the case.

Heuristic evidence in the statistical physics literature (see for example [15]) suggests there is a clustering transition c_{d} such that for $q>c_{d}$, the graph H_{q} is dominated by a single connected component, while for $q<c_{d}$, an exponential number of components are required to cover any constant fraction of it; it may be that $c_{d} \approx \frac{d}{\log d}$. (Here $A(d) \approx B(d)$ is taken to mean that $A(d) / B(d) \rightarrow 1$ as $d \rightarrow \infty$. We do not assume $d \rightarrow \infty$, only that d

[^0]is a sufficiently large constant, independent of n.) Recall that $G_{n, m}$ for $m=d n / 2$ becomes q-colorable around $q \approx \frac{d}{2 \log d}$ or equivalently when $d \approx 2 q \log q,[3,7]$. In this note, we prove the following:

Theorem 1.1. If $q \geqslant \frac{c d}{\log d}$ for constant $c>3 / 2$, and d is sufficiently large, then w.h.p. H_{q} contains a giant component that contains almost all of Ω_{q}.

In particular, this implies that the clustering transition c_{d}, if it exists, must satisfy $c_{d} \leqslant \frac{3}{2} \frac{d}{\log d}$.

Theorem 1.1 falls into the area of "Structural Properties of Solutions to Random Constraint Satisfaction Problems". This is a growing area with connections to Computer Science and Theoretical Physics. In particular, much of the research on the graph H_{q} has been focussed on the structure near the colorability threshold, e.g. Bapst, Coja-Oghlan, Hetterich, Rassman and Vilenchik [4], or the clustering threshold, e.g. Achlioptas, CojaOghlan and Ricci-Tersenghi [2], Molloy [13]. Other papers heuristically identify a sequence of phase transitions in the structure of H_{q}, e.g., Krząkala, Montanari, Ricci-Tersenghi, Semerijan and Zdeborová [12], Zdeborová and Krząkala [15]. The existence of these transitions has been shown rigorously for some other CSPs. One of the most spectacular examples is due to Ding, Sly and Sun [8] who rigorously showed the existence of a sharp satisfiability threshold for random k-SAT.

An obvious target for future work is improving the constant in Theorem 1.1 to 1. We should note that Molloy [13] has shown that w.h.p. there is no giant component if $q \leqslant \frac{\left(1-\varepsilon_{d}\right) d}{\log d}$, for some $\varepsilon_{d}>0$. Looking in another direction, it is shown in [9] that w.h.p. $H_{q}, q \geqslant d+2$ is connected. This implies that Glauber Dynamics on Ω_{q} is ergodic. It would be of interest to know if this is true for some $q \ll d$.

Before we begin our analysis, we briefly explain the constant $3 / 2$. We start with an arbitrary [q]-coloring and then re-color it using only approximately $\approx d / \log d$ of the given colors. We then use a disjoint set of approximately $d / 2 \log d$ colors to re-color it with a target $\chi \approx \frac{d}{2 \log d}$ coloring τ. We will assume that τ uses colors from $\left\{q_{0}+1, \ldots, q_{0}+\chi\right\}$.

2 Greedily Re-coloring

Our main tool is a theorem from Bapst, Coja-Oghlan and Efthymiou [5] on planted colorings. We consider two ways of generating a random coloring of a random graph. We will let $Z_{q}=\left|\Omega_{q}\right|$. The first method is to generate a random graph and then a random coloring. In the second method, we generate a random (planted) coloring and then generate a random graph compatible with this coloring.

Random coloring of the random graph $\boldsymbol{G}_{\boldsymbol{n}, \boldsymbol{m}}$: Here we will assume that m is such that w.h.p. $Z_{q}>0$.
(a) Generate $G_{n, m}$ subject to $Z_{q}>0$.
(b) Choose a $[q]$-coloring σ uniformly at random from Ω_{q}.
(c) Output $\Pi_{1}=\left(G_{n, m}, \sigma\right)$.

Planted model:

1. Choose a random partition of $[n]$ into q color classes $V_{1}, V_{2}, \ldots, V_{q}$ subject to

$$
\sum_{i=1}^{q}\binom{\left|V_{i}\right|}{2} \leqslant\binom{ n}{2}-m .
$$

2. Let $\Gamma_{\sigma, m}$ be obtained by adding m random edges, each with endpoints in different color classes.
3. Output $\Pi_{2}=\left(\Gamma_{\sigma, m}, \sigma\right)$.

We will use the following result from [5]:
Theorem 2.1. Let $d=2 m / n$ and suppose that $d \leqslant 2(q-1) \log (q-1)$. Then $\operatorname{Pr}\left(\Pi_{2} \in\right.$ $\mathcal{P})=o(1)$ implies that $\operatorname{Pr}\left(\Pi_{1} \in \mathcal{P}\right)=o(1)$ for any graph + coloring property \mathcal{P}.

Consequently, we will use the planted model in our subsequent analysis. Let

$$
\begin{equation*}
q_{0}=\frac{q}{q-1} \cdot \frac{d}{\log d-7 \log \log d} \approx \frac{d}{\log d} . \tag{1}
\end{equation*}
$$

The property \mathcal{P} in question will be: "the given [q]-coloring can be reduced via single vertex color changes to a $\left[q_{0}\right]$-coloring".

In a random partition of $[n]$ into q parts, the size of each part is distributed as $\operatorname{Bin}\left(n, q^{-1}\right)$ and so the Chernoff bounds imply that w.h.p. in a random partition each part has size $\frac{n}{q}\left(1 \pm \frac{\log n}{n^{1 / 2}}\right)$.

We let Γ be obtained by taking a random partition $V_{1}, V_{2}, \ldots, V_{q}$ and then adding $m=\frac{1}{2} d n$ random edges so that each part is an independent set. These edges will be chosen from

$$
N_{q}=\binom{n}{2}-(1+o(1)) q\binom{n / q}{2}=(1-o(1)) \frac{n^{2}}{2}\left(1-\frac{1}{q}\right)
$$

possibilities. So, let $\widehat{d}=\frac{m n}{N_{q}} \approx \frac{d q}{q-1}$ and replace Γ by $\widehat{\Gamma}$ where each edge not contained in a V_{i} is included independently with probability $\widehat{p}=\frac{\widehat{d}}{n}$. $V_{1}, V_{2}, \ldots, V_{q}$ constitutes a coloring which we will denote by σ. Now $\widehat{\Gamma}$ has m edges with probability $\Omega\left(n^{-1 / 2}\right)$ and one can check that the properties required in Lemmas 2.2 and 2.3 below all occur with probability $1-o\left(n^{-1 / 2}\right)$ and so we can equally well work with $\widehat{\Gamma}$.

Now consider the following algorithm for going from σ via a path in Ω_{q} to a coloring with significantly fewer colors. It is basically the standard greedy coloring algorithm, as seen in Bollobás and Erdős [6], Grimmett and McDiarmid [10] and in particular Shamir and Upfal [14] for sparse graphs.

In words, it goes as follows. At each round of the algorithm, U denotes the set of vertices that have never been re-colored, by the start of the round. Having used $r-1$
colors to re-color some subset of vertices we start using color r. We let $W_{j}=V_{j} \cap U$ denote the unchanged vertices of V_{j} for $j \geqslant 1$. We then let k be the smallest index j for which $W_{j} \neq \emptyset$. During the re-coloring process, we will keep track of sets C_{r} and $U_{r} \subseteq U$, which are, respectively, the sets of vertices already re-colored r and the vertices of U not adjacent to any vertices in C_{r}. These sets are initially defined in the re-coloring process by the re-coloring all of W_{k} with color r so that $C_{r}=W_{k}$, and we proceed thereafter by choosing vertices from U_{r} and re-coloring them with color r (each time increasing $\left|C_{r}\right|$ by 1 and decreasing $\left|U_{r}\right|$ by at least 1). We finish when $U_{r}=\emptyset$, and in this way the terminal set C_{r} of vertices re-colored r will be a maximal independent subset of the set U. Note that in this construction, some or all of the vertices in V_{r} may be re-colored with $s<r$.

At any stage of the algorithm, U is the set of vertices whose colors have not been altered. The value of L in line D is $\left\lceil n / \log ^{2} \widehat{d}\right\rceil$.

ALGORITHM GREEDY RE-COLOR

begin

Initialise: $r=0, U=[n], C_{0} \leftarrow \emptyset$;

repeat;

$r \leftarrow r+1, C_{r} \leftarrow \emptyset ;$
Let $W_{j}=V_{j} \cap U$ for $j \geqslant 1$ and let $k=\min \left\{j: W_{j} \neq \emptyset\right\}$;
A: $\quad C_{r} \leftarrow W_{k}, U \leftarrow U \backslash C_{r}, U_{r} \leftarrow U \backslash\left\{\right.$ neighbors of C_{r} in $\left.\widehat{\Gamma}\right\} ;$
If $r<k$, re-color every vertex in W_{k} with color r;
B: repeat (Re-color some more vertices with color r);
C: \quad Arbitrarily choose $v \in U_{r}, C_{r} \leftarrow C_{r}+v, U_{r} \leftarrow U_{r}-v$;
$U_{r} \leftarrow U_{r} \backslash\{$ neighbors of v in $\widehat{\Gamma}\} ;$
until $U_{r}=\emptyset$;
$U \leftarrow U \backslash U_{r} ;$
D: until $|U| \leqslant L$;
Suppose that at this point we have used r_{0} colors;
If possible, re-color U with colors $r_{0}+1, \ldots, r_{0}+s_{0}$, where $s_{0}=\left\lceil\frac{\widehat{d}}{\log ^{2} \widehat{d}}+2\right\rceil$;
end

2.1 Following a path in $\boldsymbol{H}_{\boldsymbol{q}}$

We first observe that each re-coloring of a single vertex v vertex in line C can be interpreted as moving from a coloring of Ω_{q} to a neighboring coloring in H_{q}. This requires us to argue that the re-coloring by GREEDY RE-COLOR is such that the coloring of $\widehat{\Gamma}$ is proper at all times. We argue by induction on r that the coloring at line A is proper. When $r=1$ there have been no re-colorings. At the start of round r either all vertices previously colored r have been re-colored and C_{r} is a subset of vertices originally colored $k>r$ or is a subset of the vertices originally colored r. In the first case we can simply re-color W_{k} one vertex at a time with color r. Also, during the loop beginning at line B we only re-color vertices with color r if they are not neighbors of the set C_{r} of vertices colored r so far. This
guarantees that the coloring remains proper until we reach line D . The following lemma shows that we can then reason as in Lemma 2 of Dyer, Flaxman, Frieze and Vigoda [9], as will be explained subsequently.

Lemma 2.2. Let $p=m /\binom{n}{2}=\Delta / n$ where Δ is some sufficiently large constant. With probability $1-o\left(n^{-1 / 2}\right)$, every $S \subseteq[n]$ with $s=|S| \leqslant n / \log ^{2} \Delta$ contains at most $s \Delta / \log ^{2} \Delta$ edges.

The above lemma, is Lemma 7.7(i) of Janson, Luczak and Ruciński [11] and it implies that if $\Delta=\widehat{d}$ then w.h.p. $\widehat{\Gamma}_{U}$ at line D contains no K-core, $K=\frac{2 \widehat{d}}{\log ^{2} \widehat{d}}+1$. Here $\widehat{\Gamma}_{U}$ denotes the sub-graph of $\widehat{\Gamma}$ induced by the vertices U. For a graph $G=(V, E)$ and $K \geqslant 0$, the K core is the unique maximal set $S \subseteq V$ such that the induced subgraph on S has minimum degree at least K. A graph without a K-core is K-degenerate i.e. its vertices can be ordered as $v_{1}, v_{2}, \ldots, v_{n}$ so that v_{i} has at most $K-1$ neighbors in $\left\{v_{1}, v_{2}, \ldots, v_{i-1}\right\}$. To see this, let v_{n} be a vertex of minimum degree and then apply induction.

Suppose now that we have reached Line D and we find $|U| \leqslant L$. We claim that we can re-color the vertices in U with $K+1$ new colors, all the time following some path in H_{q}. Let $v_{1}, \ldots, v_{|U|}$ denote an ordering of U such that the degree of v_{i} is less than K in the subgraph $\widehat{\Gamma}_{i}$ of $\widehat{\Gamma}$ induced by $\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$. We will prove the claim by induction on i, the inductive assertion being that we can re-color $v_{1}, v_{2}, \ldots, v_{i}$ ignoring conflicts caused by vertices $v_{i+1}, \ldots, v_{|U|}$. The asertion with $i=|U|$ shows the existence of the path we want. The claim is trivial for $i=1$. Let σ_{0} be the coloring of U at line D , when first we have $|U| \leqslant L$. By induction there is a path $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{r}$ from the coloring σ_{0} restricted to $\widehat{\Gamma}_{i-1}$, using only colors $r_{0}+1, \ldots, r_{0}+s_{0}$ to do the re-coloring. Vertices outside of U will not be re-colored by this sequence.

Let $\left(w_{j}, c_{j}\right)$ denote the (vertex, color) change defining the edge $\left\{\sigma_{j-1}, \sigma_{j}\right\}$. We construct a path (of length $\leqslant 2 r$) that re-colors $\widehat{\Gamma}_{i}$. For $j=1,2, \ldots, r$, we will re-color w_{j} to color c_{j}, if no neighbor of w_{j} has color c_{j}. Failing this, v_{i} must be the only neighbor of w_{j} that is colored c_{j}. This is because σ_{r} is a proper coloring of $\widehat{\Gamma}_{i-1}$. Since v_{i} has degree less than K in $\widehat{\Gamma}_{i}$, there exists a new color for v_{i} which does not appear in its neighborhood. Thus, we first re-color v_{i} to any new (valid) color, and then we re-color w_{j} to c_{j}, completing the inductive step. Note that because the colors used in Step D have not been used in Steps A,B,C, this re-coloring does not conflict with any of the coloring done in Steps A,B,C.

2.2 Bounding the number of colors used

We need to show that greedy re-color uses at most q_{0} colors. To do this we show that w.h.p. each execution of Loop B re-colors a large number of vertices. Let $\alpha_{1}(G)$ denote the minimum size of a maximal independent set of a graph G. The round will re-color at least $\alpha_{1}\left(\Gamma_{U}\right)$ vertices, where U is as at the start of Loop B . The following result is from Lemma 7.8(i) of [11].

Lemma 2.3. Let $p=m /\binom{n}{2}=\Delta / n$ where Δ is some sufficiently large constant. Then $\alpha_{1}\left(G_{n, m}\right) \geqslant \frac{\log \Delta-3 \log \log \Delta}{p}$ with probability $1-o\left(n^{-1 / 2}\right)$ (see Lemma 7.8(i)).

Now the application of Step A and Loop B re-colors a maximal independent set C_{r} of the graph $\widehat{\Gamma}_{U}$ induced by U, as U stands at the beginning of Step A. This implies that the size of C_{r} stochastically dominates the size of a maximal independent set in $G_{|U|, \hat{p}}$. This is because we can obtain $G_{|U|, \widehat{p}}$ by adding edges to $V_{i} \cap U, i \geqslant 1$ with probability \widehat{p}. Here we follow the usual analysis of greedy algorithms and argue that edges inside U are not conditioned by the process. This is often referred to as the method of deferred decisions. In this way we couple $\widehat{\Gamma}_{U}$ with $G_{|U|, \widehat{p}}$ so that every independent set in $G_{|U|, \widehat{p}}$ is contained in an independent set in $\widehat{\Gamma}_{U}$.

And so using Lemma 2.3 we see that w.h.p. each execution of Loop B re-colors at least

$$
\frac{\log \left(\widehat{d} / \log ^{2} \widehat{d}\right)-3 \log \log \left(\widehat{d} / \log ^{2} \widehat{d}\right)}{\widehat{d}} n \geqslant \frac{q-1}{q} \cdot \frac{\log d-6 \log \log d}{d} n
$$

vertices, for d sufficiently large. We have replaced Δ of Lemma 2.3 by $\widehat{d} / \log ^{2} \widehat{d}$ to allow for the fact that we have replaced n by $|U| \geqslant L$. Here we refer to the size of $|U|$ immediately after the update of r. Consequently, at the end of Algorithm greedy re-color we will have used at most

$$
\frac{q}{q-1} \cdot \frac{d}{\log d-6 \log \log d}+\frac{\widehat{d}}{\log ^{2} \widehat{d}}+2 \leqslant \frac{q}{q-1} \cdot \frac{d}{\log d-7 \log \log d}=q_{0}
$$

colors. The term $\frac{\widehat{d}}{\log ^{2} \widehat{d}}+2$ arises from the re-coloring of U at line D .

2.3 Finishing the proof:

Now suppose that $q \geqslant \frac{c d}{\log d}$ where d is large and $c>3 / 2$. Fix a particular χ-coloring τ of $G_{n, m}$ that uses colors from $\left\{q_{0}+1, \ldots, q_{0}+\chi\right\}$. We prove that almost every [q]-coloring σ of $G_{n, m}$ can be transformed into τ changing one color at a time. It follows that for almost every pair of $[q]$-colorings σ, σ^{\prime} we can transform σ into σ^{\prime} by first transforming σ to τ and then reversing the path from σ^{\prime} to τ.

We proceed as follows. Applying Theorem 2.1 with the property \mathcal{P} as described following (1), we see that w.h.p., a uniformly random [q]-coloring σ of $G_{n, m}$ can be transformed one vertex at a time into a $\left[q_{0}\right]$-coloring θ. Then we process the vertices of the color classes of τ, re-coloring vertices to their τ-color. When we process a color class C of τ, we switch the color of vertices in C to their τ-color i_{C} one vertex at a time. We can do this because when we re-color a vertex v, a neighbor w will currently either have one of the q_{0} colors used by θ and these are distinct from i_{C} or alternatively, w will have already been been re-colored with its τ-color and this will be distinct from i_{C}. This proves Theorem 1.1.

Acknowledgement

We thank the referee for an exemplary sequence of reviews.

References

[1] D. Achlioptas and E. Friedgut, A Sharp Threshold for k-Colorability, Random Structures and Algorithms, 14 (1999) 63-70.
[2] D. Achlioptas, A. Coja-Oghlan and F. Ricci-Tersenghi, On the solution-space geometry of random constraint satisfaction problems, Random Structures and Algorithms 38 (2010) 251-268.
[3] D. Achlioptas and A. Naor, The Two Possible Values of the Chromatic Number of a Random Graph, Annals of Mathematics 162 (2005) 1333-1349.
[4] V. Bapst, A. Coja-Oghlan, S. Hetterich, F. Rassmann and D. Vilenchik, The condensation phase transition in random graph coloring, Communications in Mathematical Physics 341 (2016) 543-606.
[5] V. Bapst, A. Coja-Oghlan and C. Efthymiou, Planting colourings silently, Combinatorics, Probability and Computing 26 (2017) 338-366.
[6] B. Bollobás and P. Erdős, Cliques in random graphs, Mathematical Proceedings of the Cambridge Philosophical Society 80 (1976) 419-427.
[7] A. Coja-Oghlan and D. Vilenchik, Chasing the k-colorability threshold, Proceedings of FOCS 2013, 380-389.
[8] J. Ding, A. Sly and N. Sun, Proof of the satisfiability conjecture for large k, Proceedings of STOC 2015 59-68.
[9] M. Dyer, A. Flaxman, A.M. Frieze and E. Vigoda, Randomly coloring sparse random graphs with fewer colors than the maximum degree, Random Structures and Algorithms 29 (2006) 450-465.
[10] G. Grimmett and C. McDiarmid, On colouring random graphs, Mathematical Proceedings of the Cambridge Philosophical Society 77 (1975) 313-324.
[11] S. Janson, T. Łuczak and A. Ruciński, Random Graphs, Wiley 2000.
[12] F. Krzakąla, A. Montanari, F. Ricci-Tersenghi, G. Semerijian and L. Zdeborová, Gibbs states and the set of solutins of random constraint satisfaction problems, Proceedings of the National Academy of Sciences 104 (2007) 10318-10323.
[13] M. Molloy, The freezing threshold for k-colourings of a random graph, Proceedings of STOC 2012.
[14] E. Shamir and E. Upfal, Sequential and Distributed Graph Coloring Algorithms with Performance Analysis in Random Graph Spaces, Journal of Algorithms 5 (1984) 488501.
[15] L. Zdeborová and F. Krzakąla, Phase Transitions in the Coloring of Random Graphs, Physics Review E 76 (2007).

[^0]: *Research supported in part by NSF grant DMS1362785
 ${ }^{\dagger}$ Research supported in part by NSF grant DMS1363136

