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Abstract

A sequence (x1, x2, . . . , x2n) of even length is a repetition if (x1, . . . , xn) =
(xn+1, . . . , x2n). We prove existence of a constant C < 104·10

7 such that given
any planar drawing of a graph G, and a list L(v) of C permissible colors for each
vertex v in G, there is a choice of a permissible color for each vertex such that the
sequence of colors of the vertices on any facial simple path in G is not a repetition.

1 Introduction

For two real-valued functions f and g whose domains are cofinite subsets of N, we write
f(k) = O(g(k)) if there exist constants n0 and c such that |f(k)| 6 c|g(k)| for all k > n0.
All graphs considered in this paper are finite, undirected and contain no loops nor multiple
edges. Given a graph G, a planar drawing of G is a geometric representation of G in the
plane such that:

• each vertex v is drawn as a distinct point pv,

• each edge {u, v} is drawn as a simple curve connecting pu and pv,

• no two edges intersect except at their common endpoints.

A graph is planar if it admits a planar drawing. A planar drawing of G is a straight-line
drawing of G if each edge is drawn as a segment. Let G be a connected planar graph. A
planar drawing of G divides the plane into topologically connected regions, called faces.
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Exactly one face is an infinite region, and is called the external face. Each face F is
described by the cyclic order of vertices of F as they are visited when the boundary of
F is traversed in the clockwise direction. The description of all the faces determined by
a planar drawing of G and choice of the external face is a planar embedding of G. Two
planar drawings of G are equivalent if they both determine the same planar embedding.
A plane graph is a non-empty connected planar graph with a fixed planar drawing.

For a sequence X = (x1, . . . , xn), and any 1 6 i 6 j 6 n, a sequence X[i, j] =
(xi, . . . , xj) is a block of X. A sequence X = (x1, x2, . . . , x2n) of even length is a repetition
if X[1, n] = X[n + 1, 2n]. A sequence X is non-repetitive if no block of X is a repetition.
The study of non-repetitive sequences was initiated by Thue [13] who proved that there
are arbitrarily long non-repetitive sequences with only three different elements.

A proper coloring of a graph G is a coloring of the vertices of G such that no two
endpoints of an edge of G are colored the same. A non-repetitive coloring of G is a
coloring of the vertices of G such that the sequence of colors of vertices on any simple
path in G is not a repetition. In particular, any non-repetitive coloring of G is a proper
coloring of G. The study of non-repetitive colorings was initiated by Alon et al. [1]. They
conjectured that every planar graph is non-repetitively O(1)-colorable. Currently, the
best result supporting this conjecture is by Dujmović et al. [5] who proved that every
planar graph on n vertices is non-repetitively O(log n)-colorable.

A facial walk in a plane graph G is a walk that traverses consecutive vertices of the
boundary of some face of G, and that traverses each edge at most once in any direction. A
facial path in G is a facial walk which is a simple path. A facially-non-repetitive coloring
of a plane graph G is a coloring of the vertices of G such that the sequence of colors of
vertices on any facial path in G is not a repetition. Barát and Czap [4] proved that every
plane graph is facially-non-repetitively 24-colorable.

A list assignment of a graph G is a mapping L which assigns to each vertex v of G
a set L(v) of permissible colors. For two list assignments L, and M of the graph G, we
write M ⊆ L to denote that M(v) ⊆ L(v), for each vertex v in G. An L-coloring of G is
a coloring c of vertices of G such that c(v) ∈ L(v) for every vertex v in G. We say that
a list assignment M of G is proper (or non-repetitive, or facially-non-repetitive) if any
M -coloring of G is a proper, (or non-repetitive, or facially-non-repetitive) coloring of G.

A list assignment L of G is a k-list assignment of G if |L(v)| > k, for each vertex v
in G. A graph G is properly (or non-repetitively, or facially-non-repetitively) k-choosable
if for any k-list assignment L of G there is a proper (or non-repetitive, or facially-non-
repetitive) L-coloring of G. Fiorenzi et al. [6] showed that for any constant C there is
a tree which is not non-repetitively C-choosable. Przybyło et al. [10] proved that every
plane graph of maximum degree ∆ is facially-non-repetitively O(∆)-choosable. In this
paper we improve this result and prove that every plane graph is facially-non-repetitively
O(1)-choosable.

We say that a graph G is properly (or non-repetitively, or facially-non-repetitively)
(k : m)-choosable if for any k-list assignment L of G there is a proper, (or non-repetitive,
or facially-non-repetitive) m-list assignment M ⊆ L of G.

Main result proved in this paper is the following.
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Theorem 1.
Every plane graph is facially-non-repetitively (O(m43046721) : m)-choosable.

The proof gives an explicit polynomial f(m) of degree 316 such that every plane graph
is facially-non-repetitively (f(m) : m)-choosable. When we compute the value of this
polynomial for m = 1 we get that every plane graph is facially-non-repetitively 104·107-
choosable.

The proof is based on the following earlier results. First ingredient is the famous Four
Color Theorem.

Theorem 2 (Appel, Haken, Koch [2, 3]).
Every plane graph is properly 4-colorable.

Second tool is a beautiful technique by Thomassen [12] who showed that every plane
graph is properly 5-choosable. We use the following stronger statement which can be
obtained using the same proof. The modified proof is presented in Appendix A.

Theorem 3 (Thomassen [12]).
Every plane graph is properly (5m : m)-choosable.

Grytczuk et al. [8] showed that every path is non-repetitively 4-choosable. In our proof,
we use an even stronger result by Gągol et al. [7, Lemma 6]. The proof of the following
theorem uses the entropy compression method and works for graphs more general than
simple paths.

Theorem 4 (Gągol, Joret, Kozik, Micek [7]).
Every simple path is non-repetitively (32m3 + 1 : m)-choosable.

The last ingredient is the study of bipolar orientations of planar graphs. This notion
was first used by Lempel et al. [9] to develop planarity testing algorithm. Let G be a
plane graph with a planar straight-line drawing such that no two vertices have the same
y-coordinate. Let ~G denote an orientation of G that arises from directing each edge
upward, i.e. towards a vertex with bigger y-coordinate. A source in a directed graph is a
vertex with no incoming edges. Similarly, a sink is a vertex with no outgoing edges. We
say that the drawing of G is bipolar if ~G has a single source s, and a single sink t. In
order to easily distinguish vertices s and t, we call such a drawing to be (s, t)-bipolar.

Theorem 5 (Lempel, Even, Cederbaum [9]).
For every 2-connected plane graph G, and two vertices s, and t on the external face of G,
there is an equivalent (s, t)-bipolar drawing of G.

For a face F of an (s, t)-bipolar drawing of G, let s(F ) – source of F , and t(F ) – sink
of F be the vertices with respectively the minimal, and the maximal y-coordinate among
vertices of F . Observe, that the source of the external face of G is s, and the sink of the
external face of G is t. Tamassia and Tollis [11] showed that the boundary of any face F
of a bipolar orientation consists of two directed paths from s(F ) to t(F ). As a result, we
get that any vertex v is a source or sink of all but at most two of the faces incident to v.
See Figure 1.
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Figure 1: Bipolar drawing. On the left, boundary of face F consists of two directed
paths from s(F ) to t(F ). On the right, vertex v is a source/sink of all but two faces, i.e.
v = s(U1) = s(U2) = t(D1) = t(D2) = t(D3).

2 Result

The main idea behind the coloring algorithm is the following. We say that a vertex v on
a face F is either regular or special for F . We divide occurrences of the vertices on the
faces so that:

• there are two special vertices for any face,

• each vertex is regular for at most two faces.

Lemma 6 gives such a division. The construction is based on bipolar orientations of
2-connected plane graphs.

Our coloring algorithm first filters the list assignment so that any two vertices at
distance at most two on any face have disjoint lists of colors. This is obtained by applying
Theorem 3 a few times and is described in Lemma 7. Then, we introduce a technique
that chooses colors for a single face in a slightly augmented setting. Intuitively, each face
F “controls” the colors of the regular vertices for F , but have to “accept" any colors of
the special vertices for F . This way, large faces “control" the colors of most of its vertices.
On the other hand, list of colors for any vertex is “controlled" by at most two faces.
Lemma 10 gives a method to filter lists of the regular vertices for a single face F so that
no matter how the special vertices for F are colored there is no repetition on any facial
path of F . The proof covers the face with paths and uses Theorem 4. Last observation
that completes the proof is that we can introduce an auxiliary planar graph on the faces
of G, color them with four colors, and apply Lemma 10 simultaneously for all faces of the
same color.

Lemma 6 (Drawing Lemma). Let G be a plane graph, and s, t be two vertices on the
external face of G. There is a way to name each occurrence of a vertex on a face either
regular or special and satisfy the following conditions:
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• there are two special vertices for any face,

• each vertex is regular for at most two faces,

• vertices s and t are not regular for any face.

Proof. By induction on the number of vertices of G. If G has two vertices s and t, then
both vertices are special for the only face of G.

If G is 2-connected, we apply Theorem 5 and get an (s, t)-bipolar drawing of G. For
each face F , we choose the special vertices for F to be s(F ) and t(F ). Properties of
bipolar drawings, see Figure 1, guarantee that each vertex v is special for all but at most
two faces. Vertices s and t are special for all the faces.

If G is not 2-connected, let v be a cut-point of G and G1, . . . , Gk be the components
of Gr {v}. Without loss of generality, assume that s is in G1, and that t is either in G1,
or in G2. Let G′ denote the graph G r Gk, and G′′ denote the graph G r G1, . . . , Gk−1.
Let F be the only face of G such that the boundary of F has edges both in G′ and G′′.
Let F ′ be the face of G′ such that G′′ is drawn inside face F ′. Let F ′′ be the external face
of G′′. Observe, that vertex v is in F ∩F ′∩F ′′ and that the boundary of F is a boundary
of F ′ with “inserted" boundary of F ′′. See Figure 2.

First, assume that t is in G′. Apply induction for G′, s, and t. Choose any vertex w
other than v in F ′′. Apply induction for G′′, v, and w. For each face of G different than
F , special vertices are determined by induction. We set the special vertices for F to be
the special vertices for F ′ in G′. Observe that vertex w is special for all faces of G′′, and
thus w is regular only for at most one face, the face F of G. Every vertex other than w
that is regular for F is either regular for F ′, or regular for F ′′.

Now, assume that t is in G′′. This means that k = 2, t is in G2 and F is the external
face of G. Apply induction for G′, s, and v. Apply induction for G′′, v, and t. For each
face of G different than F , special vertices are determined by two induction calls. We set
the special vertices for F to be s and t. Vertex v is special for all faces of G′, and for all
faces of G′′, and thus v is regular only for at most one face, the face F of G. Every vertex
other than v that is regular for F is either regular for F ′, or regular for F ′′.

Now, we prove several lemmas, that allow us to filter list assignments of different
structures. Each of those lemmas tells us that some plane graphs are (f(m) : m)-choosable
for a polynomial function f . For example, set

f1(m) = 5m.

Theorem 3 gives that every planar graph is properly (f1(m) : m)-choosable.
For a plane graph G, a facial-square of G is a graph on the same vertex set in which

two vertices u and v are connected by an edge when u and v are connected in G by
a facial path of length at most two. We say that a coloring of a plane graph G is a
facially-square-proper if it is a proper coloring of the facial-square of G.

For the next lemma, set

f2(m) = f1(f1(f1(m))) = 125m.
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Figure 2: Division of a graph G in Lemma 6 into G′ (dark gray) and G′′ (light gray).
On the left, vertex t is in G′. On the right, vertex t is in G′′.

Lemma 7 (Facial-Square Filtering Lemma). The facial-square of a plane graph is properly
(f2(m) : m)-choosable.

Proof. Let G be a plane graph, and let L be an f2(m)-list assignment of G.
We show that the edges of the facial-square of G can be decomposed into three sets,

say red, green, and blue so that any two edges of the same color are non-crossing. See
Figure 3 for an example of the following decomposition. First, color red all edges of G.
Then, for each face F , we color the edges that correspond to pairs of vertices at distance
two on F . Let l denote the number of vertex occurrences on the boundary of F , and let
v0, v1, . . . , vl−1 be the vertices of F in the clockwise order. Color green every edge {vi, vj},
where j = ((i + 2) mod l) and both i and j are odd numbers. Similarly, color blue every
edge {vi, vj}, where j = ((i + 2) mod l) and both i and j are even numbers. If l is odd,
color green the edge {v1, vl−1}, and color red the edge {v0, vl−2}.

We apply Theorem 3 to the red graph and obtain a f1(f1(m))-list assignment of the
facial-square of G in which any two vertices connected by a red edge have disjoint lists of
permissible colors. We repeat the same two more times, for green, and for blue edges. In
the end we obtain a facially-square-proper m-list assignment of G.

For the next lemma, set

f3(m) = 32m3 + 1,
f4(m) = f3(m) + m = 32m3 + m + 1,
f5(m) = f3(f4(m)) + m + f4(m) = O(m9).

Theorem 4 gives that a path is non-repetitively (f3(m) : m)-choosable.
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Figure 3: Coloring edges of a facial-square in Lemma 7.

Lemma 8 (Path Filtering Lemma). Let m > 1. Let P be a simple path (v1, . . . , vn), and
vs be a selected vertex in P . Let L be a proper list assignment of P such that:

• |L(vi)| = f4(m), for i 6 s,

• |L(vi)| = f5(m), for i > s.

There is a non-repetitive list assignment M ⊆ L of P such that:

• |M(vi)| = m, for i < s,

• |M(vi)| = f4(m), for i > s.

Proof. Set M(vs) = L(vs). If s > 1, then choose any m colors for M(vs−1) from L(vs−1).
Next, for each i < s−1, set L′(vi) = L(vi)rM(vs−1). L′ is a proper f3(m)-list assignment
of (v1, . . . , vs−2). Apply Theorem 4 to L′. The resultingm-list assignment is non-repetitive
and uses a set of colors disjoint withM(vs−1). Thus, we get a non-repetitive list assignment
M of (v1, . . . , vs−1).

Then, for each i > s, set L′′(vi) = L(vi)r(M(vs) ∪M(vs−1)), or L′′(vi) = L(vi)rM(vs)
if s = 1. L′′ is a proper f3(f4(m))-list assignment of (vs+1, . . . , vn). Apply Theorem 4 to
L′′. The resulting f4(m)-list assignment is non-repetitive and uses a set of colors disjoint
with M(vs). Thus, we get a non-repetitive list assignment M of (vs, . . . , vn).

Suppose, that there is a repetition in M . Such a repetition must include vertex vs−1.
Observe that M(vs−1) and M(vs) are disjoint as L is a proper list assignment. The set
of colors M(vs−1) was removed from the list of permissible colors for every other vertex.
Thus, the color of vs−1 is not repeated. A contradiction.

For a walk W in a graph, a simple W -block is a block of W that is a simple path. For
the next lemma, set

f6(m) = f5(f5(m)) = O
(
m81

)
.
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Lemma 9 (Walk Filtering Lemma). Let W be a facial walk in the graph, and let L be
a proper f6(m)-list assignment of W . There is an m-list assignment M ⊆ L of W such
that for any simple W -block P , M is a non-repetitive list assignment of P .

Proof. Let W = (w1, . . . , wn). Observe, that the repeated occurrences of vertices in W
have the following laminar structure. Let wi = wj = v, and let u be any vertex in W
other than v. Then, either all occurrences of u are in W [i+ 1, j− 1], or all occurrences of
u are in W [1, i−1]∪W [j + 1, n]. Assume to the contrary wa = wb = u and i < a < j < b.
Each of the three walks W [i, a], W [a, j], W [j, b] connects u and v. These three walks
divide the plane into at least three regions, and thus W is not a facial walk.

We say that a path P is a maximal simple W -block if P is a simple W -block and P
cannot be extended into either direction in W and remain a simple block. Let P denote
the set of all maximal simple W -blocks. We show that P can be decomposed into two
sets, say red and green so that any two paths of the same color are non-overlapping
W -blocks. Let P = {P1 = W [l1, r1], . . . , Pk = W [lk, rk]} and without loss of generality
l1 < l2 < . . . < lk. It follows from the maximality of each path that r1 < r2 < . . . < rk.
See Figure 4.

For a path Pi, we know that Pi cannot be extended to the right, so either i = k and
ri = n, or the vertex wri+1 is already on path Pi. Assume the second case and let j be
such that wj = wri+1 and li 6 j < ri. The fact that Pi is a simple path, and the laminar
structure of repeated occurrences guarantee that each vertex wj+1, . . . , wri has no other
occurrences in W . Thus, any simple W -block that includes wj does not include wri+1 and
any simple W -block that includes wri+1 can be extended to the left so that it includes
wj+1. Hence, li+1 = j + 1. Further, if i + 2 6 k, we can repeat the same reasoning
for Pi+1 and get that li+2 is to the right of j + 1 and to the right of some vertex with
repeated occurrence. As vertices wj+1, . . . , wri have no other occurrences in W , we get
that li+2 > ri. Thus, paths Pi and Pi+2 are non-overlapping W -blocks. We color red each
path Pi for i odd, and color green each path Pi for i even.

Let t = f5(m). Now, we filter the list assignment L so that we get a t-list assignment
in which there is no repetition on any subpath of a red path. We process paths P1, P3, . . .,
one by one in this order. We will keep the following invariants that are satisfied after
processing each path Pi:

• each vertex v that has no occurrences on paths P1, . . . , Pi has at least f6(m) = f5(t)
permissible colors;

• each vertex v that has at least one occurrence on paths P1, . . . , Pi and at least one
occurrence on paths Pi+1, . . . , Pk has at least f4(t) permissible colors;

• each vertex v that has no occurrences on paths Pi+1, . . . , Pk has at least t permissible
colors.

When processing path Pi = (wli , . . . , wri), we divide vertices in Pi into four disjoint sets:

• Only – a vertex v is in Only if there are no occurrences of v on paths other than Pi.
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• First – a vertex v is in First if there are no occurrences of v on paths P1, . . . , Pi−1,
and at least one on paths Pi+1, . . . , Pk.

• Middle – a vertex v is in Middle if there is at least one occurrence of v on paths
P1, . . . , Pi−1, and at least one on paths Pi+1, . . . , Pk.

• Last – a vertex v is in Last if there is at least one occurrence of v on paths
P1 . . . , Pi−1, and no occurrences on paths Pi+1, . . . , Pk.

Our invariants guarantee that each vertex in Only ∪ First has at least f5(t) permissible
colors, and that each vertex in Middle ∪ Last has at least f4(t) permissible colors. The
fact that Pi is a simple path, and the laminar structure of repeated occurrences guarantee
that:

• There is at most one vertex in Middle.

• Every vertex in Last is before any vertex in Middle ∪ First.

• Every vertex in First is after any vertex in Middle ∪ Last.

Set vertex s to be the last vertex in Middle ∪ Last ∪ {wli}. Our invariants guarantee
that:

• each vertex to the left of s has at least f4(t) colors.

• s has at least f4(t) colors.

• each vertex to the right of s has at least f5(t) colors.

We apply Lemma 8 to path Pi with special vertex s and get a new list assignment. We get
that each vertex in Last keeps at least t colors. The vertex in Middle, if it exists, keeps
at least f4(t) colors. Any vertex in First keeps at least f4(t) colors. Thus, our invariants
are satisfied after Pi is processed. When we process all red paths, we get an f5(m)-list
assignment of W in which there is no repetition on any simple path, a subpath of a red
maximal simple W -block. To finish the proof, we repeat the same process for t = m and
green maximal simple W -blocks.

For the next lemma, set

f7(m) = f6(m) + 10m = O
(
m81

)
.

Lemma 10 (Face Filtering Lemma). Let L be a facially-square-proper f7(m)-list assign-
ment of a face F , and let s and t be the special vertices for F . There is a non-repetitive
list assignment M ⊆ L of F such that:

• M(s) = L(s), and M(t) = L(t),

• |M(v)| > m, for each v in F .
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P1 P2 P3 P4 P5 P6

Figure 4: A facial walk W . Above the walk, the laminar structure of repeated occurences
of vertices. Below the walk, maximal simple W -blocks colored red and green.

Proof. Let A denote the set of all regular neighbors of s and all regular neighbors of t in
F . For any vertex v in F let A5(v) denote the five vertices in A encountered first when
traversing F in clockwise, and in counter-clockwise direction from v. Each set A5(v) has
at most ten elements. See Figure 5.

First we define M for vertices in A. For each v ∈ A we choose any m colors from L(v)
so that M(v) is disjoint with M(w) for any w ∈ A5(v). As for each v ∈ A, the size of
A5(v) is at most ten, and |L(v)| > 11m, this can be easily done. Now, for each regular
vertex v not in A, remove from L(v) the colors M(w) for each w ∈ A5(v). This removes
at most 10m colors from each list L(v). The resulting list assignment L′ has f6(m) colors
for each regular vertex not in A. Further, set L′(v) = M(v) for v in A ∪ {s, t}.

Let P be a facial path in F such that there exists an L′-coloring c of P such that the
sequence of colors of vertices in P is a repetition. Observe that, as L is a facially-square-
proper list assignment of F , we have that P has at least six vertices. Let A(P ) denote
the vertices in P ∩ A, and let a(P ) = |A(P )|. First, observe that P is a simple path and
that between any three vertices in A(P ) there is at least one special vertex. Thus we have
that a(P ) 6 6. Furthermore, if a(P ) = 6 then both endpoints of P are in A. Thus, we
have A(P ) ⊆ A5(v) for any regular vertex v in P . Hence, only a special vertex can match
the color of a vertex in A(P ) and we have that a(P ) 6 2, as there are only two special
vertices.

If a(P ) = 2, then P contains exactly two vertices a1, a2 in A, and exactly two special
vertices. If both special vertices are in the first half of P , then, as there are at least three
vertices in the first half, there is at least one vertex a in A in the first half of P and
colors of a cannot be matched in the second half. Thus, in each half of P there is exactly
one special vertex, and exactly one vertex in A. Without loss of generality, assume that
vertices s and a1 are in the first half of P . If s is neither the first, nor the last vertex in
the first half of P , then there are two vertices in A in that half of P – one to the left, and
one to the right of s. Similarly, t is either the first, or the last vertex in the second half
of P . On the other hand, we get that a1, which is next to s in the first half, is neither
the first, nor the last vertex in the first half of P . Thus, color of a1 cannot be matched
by color of t. A contradiction.
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If a(P ) = 1, then let a1 be the only vertex in A ∩ P and assume that a1 is in the first
half of P . Color of a1 is matched by the color of a special vertex w in the second half
of P . As the last vertex in P before w is in A, we have that a1 and w are neighbors in
G. As L is a proper list assignment of F , we have that L(a1) and L(w) are disjoint. A
contradiction.

Thus, we have that any simple path with a repetition of colors in L′ does not include
neither a vertex in A, nor a special vertex. We will further filter the list assignment
L′ to remove all such repetitions. Let W1, . . . ,Wk be the connected components of the
boundary of F with vertices in A ∪ {s, t} removed. Observe that walks W1, . . . ,Wk are
pairwise vertex disjoint. List assignment L′ is a proper f6(m)-list assignment of each walk
W1, . . . ,Wk. We apply Lemma 9 to L′ and each walk W1, . . . ,Wk independently. We
obtain a facially-non-repetitive list assignment M of F .

F

s(F )

t(F )

Figure 5: Filtering of a list assignment of face F in Lemma 10. Special vertices are
marked with red circles. Vertices in A are marked with blue squares. Walks W1, . . . ,Wk

are colored green.

Now we combine Lemmas 6, 7, and 10 to prove the main theorem of this paper. For
the proof of the main result, set

f8(m) = f2(f7(f7(f7(f7(m))))) = O
(
m43046721

)
.

Theorem 1.
Every plane graph is facially-non-repetitively (O(m43046721) : m)-choosable.

Proof. Let G be a plane graph and L be an f8(m)-list assignment of G. First, we use
Lemma 6 to divide occurrences of the vertices on the faces into regular and special. Next,
we apply Lemma 7 to obtain a facially-square-proper f7(f7(f7(f7(m))))-list assignment
of G. Then, we construct an auxiliary graph H on faces of G in which we put an edge
between two faces F1, F2 of G when there is a vertex v in G that is regular both for F1
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and for F2. Observe that graph H is planar. Indeed, we can construct a planar drawing
of H from planar drawing of G by placing a vertex corresponding to face F anywhere
in the face F and routing an edge {F1, F2} through the vertex that is regular both for
F1 and F2. Theorem 2 gives a proper coloring of H with colors red, green, blue and
yellow. Observe that, as no two red faces share a common regular vertex, we can apply
Lemma 10 to L′ and all red faces of G simultaneously. We obtain an f7(f7(f7(m)))-list
assignment of G in which there is no repetition on any facial path of a red face. We
repeat the same three more times, for green, blue, and yellow faces. In the end we obtain
a facially-non-repetitive m-list assignment M of G.

3 Discussion

In order to get the final result, we need to compute value f8(1). A computer calculation
gave us the value with approximately 33 million decimal digits. Thus, we get that any
plane graph is facially-non-repetitively C-choosable for C = 104·107 . The presented proof
is far from optimal and the polynomials in some of the lemmas can be improved at the
expense of a more technical argument. Nevertheless, these improvements do not lead to
any reasonable value C. We do not know any non-trivial lower bounds for C.
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A Thomassen’s proof

We present a slightly modified version of Thomassen’s [12] proof that gives the following
statement. We use almost the exact same wording as in the original proof to make it
obvious that the same proof works.

Theorem. Let G be a near-triangulation; i.e., G is a planar graph which has no loops
or multiple edges and which consists of a cycle C: v1v2 · · · vpv1, and vertices and edges
inside C such that each bounded face is bounded by a triangle. Assume that v1 and v2 are
colored {1, . . . ,m} and {m + 1, . . . , 2m}, respectively, and that L(v) is a list of at least
3m colors if v ∈ C − {v1, v2} and at least 5m colors if v ∈ G − C. Then the coloring of
v1 and v2 can be extended to a list m-coloring of G.

Proof. (by induction on the number of vertices of G). If p = 3 and G = C there is nothing
to prove. So we proceed to the induction step.

If C has a chord vivj where 2 6 i 6 j − 2 6 p − 1 (vp+1 = v1), then we apply
the induction hypothesis to the cycle v1v2 · · · vivjvj+1 · · · v1 and its interior and then to
vjvivi+1 · · · vj−1vj and its interior. So we can assume that C has no chord.

Let v1, u1, u2, . . . , um, vp−1 be the neighbors of vp in that clockwise order around vp.
As the interior of C is triangulated, G contains the path P : v1u1u2 · · ·umvp−1. As
C is chordless, P ∪ (C − vp) is a cycle C ′. Let X be a set of 2m distinct colors in
L(vp) r {1, . . . ,m}. Now define L′(ui) = L(ui) r X for 1 6 i 6 m and L′(v) = L(v) if
v is a vertex of G not in {u1, u2, . . . , um}. Then we apply the induction hypothesis to C ′

and its interior and the new list L′. We complete the coloring by assigning m colors from
X to vp such that vp and vp−1 get disjoint sets of colors.
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