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Abstract

Let Φ be an irreducible crystallographic root system with Weyl group W , coroot
lattice Q̌ and Coxeter number h. Recently the second named author defined a
uniform W -isomorphism ζ between the finite torus Q̌/(mh + 1)Q̌ and the set of
non-nesting parking functions Park(m)(Φ). If Φ is of type An−1 and m = 1 this map
is equivalent to a map defined on labelled Dyck paths that arises in the study of
the Hilbert series of the space of diagonal harmonics.

In this paper we investigate the case m = 1 for the other infinite families of root
systems (Bn, Cn and Dn). In each type we define models for the finite torus and
for the set of non-nesting parking functions in terms of labelled lattice paths. The
map ζ can then be viewed as a map between these combinatorial objects. Our work
entails new bijections between (square) lattice paths and ballot paths.

Keywords: diagonal harmonics; lattice path; parking function; Weyl group

1 Introduction

1.1 The space of diagonal harmonics

One of the most well-studied objects in algebraic combinatorics is the space of diagonal
harmonics of the symmetric group Sn. Its Hilbert series has two combinatorial interpre-
tations [9, Conj. 5.2], [8]:

DH(n; q, t) =
∑

(P,v)∈Vert(An−1)

qdinv′(P,v)tarea(P,v) =
∑

(D,w)∈Diag(An−1)

qarea′(D,w)tbounce(D,w),
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where Vert(An−1) is the set of parking functions of length n, viewed as vertically la-
belled Dyck paths, and Diag(An−1) is the set of diagonally labelled Dyck paths with 2n
steps. There is a bijection ζA due to Haglund and Loehr [10] that maps Vert(An−1) to
Diag(An−1) and sends the bistatistic (dinv′, area) to (area′, bounce), demonstrating the
second equality.

1.2 The zeta map beyond type A

The combinatorial objects Vert(An−1) and Diag(An−1) may be viewed as corresponding
to the type An−1 cases of more general algebraic objects associated to any irreducible
crystallographic root system Φ. These are, respectively, the finite torus Q̌/(h+ 1)Q̌ and
the set of non-nesting parking functions Park(Φ) of Φ. Here Q̌ is the coroot lattice and h
is the Coxeter number of Φ.

Recently, the second named author has defined a uniform bijection ζ from Q̌/(h+ 1)Q̌
to Park(Φ) [22, Thm. 15.4]. Its most salient property is that it commutes with the action
of the Weyl group W of Φ on both sets. In type An−1, the uniform map ζ corresponds to
the combinatorial map ζA [22, Thm. 16.3]. This is illustrated by the following commutative
diagram of bijections:

Q̌/(n+ 1)Q̌ Park(Φ)

Vert(An−1) Diag(An−1)

ζ

ζA

ψ ϕ

The sets Vert(An−1) and Diag(An−1) as well as the map ζA are defined in Section 2.8.
Moreover, the maps ψ and ϕ as well as the connection to classical parking functions are
illustrated for type A2 in Table 1 in the appendix.

In this paper, for each of the other classical types Bn, Cn and Dn, we define combi-
natorial models for Q̌/(h + 1)Q̌ and Park(Φ), in terms of vertically labelled paths and
diagonally labelled paths respectively. Furthermore, we define the combinatorial bijections
ζB, ζC , and ζD which correspond to the uniform bijection ζ in those types.

Besides their meaning in the theory of reflection groups these maps can also be appre-
ciated from a purely combinatorial point of view. As such ζB and ζC are new bijections
between lattice paths in an n × n-square and ballot paths with 2n steps, both of which
are well-known to be counted by the central binomial coefficients

(
2n
n

)
. Furthermore ζD is

a new bijection between lattice paths in an (n − 1) × n rectangle and ballot paths with
2n− 1 steps.

Furthermore we introduce a uniform statistic dinv′ defined on the elements of the
finite torus. Using the zeta map we prove that this dinv statistic is equivalent to a known
area-like statistic defined on the regions of the Shi arrangement, which is conjectured to
be related to the Hilbert series of diagonal harmonics in other types. While the space of
diagonal harmonics can be generalised beyond type An−1, combinatorial interpretations
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for the arising Hilbert series are still missing in other types. It is our hope that the ideas
presented in this paper will facilitate further progress in this regard.

1.3 Outline

This paper is structured as follows. In Section 2 we present the needed facts about Weyl
groups and root systems. In particular we recall the relations between objects such as the
Shi arrangement, the finite torus and the non-nesting parking functions, and discuss in
detail the definition of the uniform zeta map. In Section 3 we turn our attention to the
root systems of types Bn, Cn and Dn. In particular we recall the combinatorial models
for their affine Weyl groups in terms of affine permutations and show how to obtain the
decomposition of an affine permutation into a product of an element of the Weyl group
and a translation by an element in the coroot lattice combinatorially.

We then develop the combinatorics of the zeta map of type Cn in Section 4, type Dn

in Section 5 and type Bn in Section 6. Each of these sections is structured similarly. First
we define combinatorial models for the finite torus in terms of (labelled) lattice paths and
the non-nesting parking functions in terms of (labelled) ballot paths. Secondly we define
an area vector, a diagonal reading word and two versions of a combinatorial zeta map,
one between labelled objects and one between unlabelled objects. We then prove that
the combinatorial zeta map coincides with the uniform zeta map of the given type, and
is thus a bijection. Section 4 includes an alternative description of the zeta map of type
Cn akin to the sweep map of Armstrong, Loehr and Warrington [3].

In Section 7 we define the uniform dinv statistic on the finite torus and prove that it
is equivalent to an area statistic on the set of non-nesting parking functions via the zeta
map.

Finally, in Section 8 we offer some possible directions for further research.

An extended abstract [20] of this paper containing mostly the results of Section 4 has
appeared in the conference proceedings of FPSAC 2015 in Daejeon. The results presented
in this paper are also discussed in the thesis of the first named author [19].

2 Definitions and Preliminaries

Given n ∈ N we set [n] = {1, 2, . . . , n} and [±n] = [n] ∪ {−i : i ∈ [n]}.

2.1 Root systems and Weyl groups

Let Φ be an irreducible crystallographic root system of rank r, with simple system
∆ = {α1, α2, . . . , αr}, positive system Φ+ and ambient space V . For background on
root systems and reflection groups see [12]. For α ∈ Φ, let sα be the reflection in the
hyperplane

Hα = {x ∈ V : 〈x, α〉 = 0}.

Then the Weyl group W of Φ is the group of linear automorphisms of V generated by
all the sα with α ∈ Φ. Define the Coxeter arrangement of Φ as the central hyperplane
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arrangement in V consisting of all the hyperplanes Hα for α ∈ Φ. The connected compo-
nents of the complement of the union of these hyperplanes are called chambers. The Weyl
group W acts simply transitively on the chambers, so we define the dominant chamber as

C = {x ∈ V : 〈x, α〉 > 0 for all α ∈ ∆}

and write every chamber as wC for a unique w ∈ W .
The Weyl group W is a Coxeter group generated by S = {sα : α ∈ ∆}. If I ⊆ ∆, we

call WI = 〈{sα : α ∈ I}〉 a standard parabolic subgroup of W . A parabolic subgroup is any
subgroup conjugate to a standard parabolic subgroup.

2.2 The affine Weyl group

Define a partial order on Φ+ by letting α 6 β if and only if β − α can be written as a
sum of positive roots. The set Φ+ with this partial order is called the root poset of Φ. It
has a unique maximal element, called the highest root α̃. Write α̃ =

∑r
i=1 ciαi and define

the Coxeter number of Φ as h = 1 +
∑r

i=1 ci.
For α ∈ Φ and k ∈ Z, let sα,k be the reflection in the affine hyperplane

Hα,k = {x ∈ V : 〈x, α〉 = k}.

Then the affine Weyl group W̃ of Φ is the group of affine transformations of V generated
by all the sα,k for α ∈ Φ and k ∈ Z. Define the affine Coxeter arrangement as the
affine hyperplane arrangement in V consisting of all the Hα,k for α ∈ Φ and k ∈ Z. The
connected components of the complement of the union of these hyperplanes are called
alcoves. The affine Weyl group W̃ acts simply transitively on the alcoves, so we define
the fundamental alcove as

A◦ =
{
x ∈ V : 〈x, α〉 > 0 for all α ∈ ∆ and 〈x, α̃〉 < 1

}
and write every alcove as w̃A◦ for a unique w̃ ∈ W̃ .

For each root α ∈ Φ we define its coroot as α∨ = 2α/〈α, α〉. The coroot lattice Q̌ of
Φ is the integer span of the coroots. The simple coroots are a natural lattice basis for it:
Q̌ =

⊕
α∈∆ Zα∨. The affine Weyl group W̃ acts faithfully on the coroot lattice Q̌. To each

coroot lattice point µ ∈ Q̌ corresponds a translation tµ : V → V given by tµ(x) = x + µ.
If we identify Q̌ with its translation group we may write W̃ = W n Q̌ as a semi-direct
product.

The affine Weyl group is also a Coxeter group with generating set S̃ = S ∪ {sα̃,1}.
The Weyl group W = 〈S〉 is a standard parabolic subgroup of the Coxeter group W̃ .
Each (left) coset in the quotient W̃/W contains a unique element of minimal length. The
minimal length representatives are called (left) Graßmannian. An element w̃ ∈ W̃ is
Graßmannian if and only if the alcove w̃−1A◦ lies in the dominant chamber.
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[4, 2, 0]

[1,−1, 6]

[2, 0, 4]

[1, 0, 5]

[1, 2, 3]

[2, 1, 3]

[2, 3, 1]

[3, 1, 2]

[1, 3, 2][3, 2, 1]

[−1, 3, 4]

[0, 1, 5]

[0, 2, 4]

[−2, 5, 3]

[−1, 4, 3]

[0, 4, 2]

Hα1,0 Hα1,1

Hα̃,0 Hα̃,1

Hα2,0

Hα2,1

Figure 1: The 16 regions of the Shi arrangement of type A2 with their minimal alcoves. The minimal
alcoves of the 5 dominant regions are coloured orange.

2.3 The Shi arrangement

Define the Shi arrangement as the hyperplane arrangement consisting of the hyperplanes
Hα,k for α ∈ Φ+ and k = 0, 1. The complement of the union of these hyperplanes decom-
poses into connected components called the regions of the arrangement. The hyperplanes
that support facets of a region R are called the walls of R. Those walls of R that do not
contain the origin and separate R from the origin are called the floors of R. Define the
walls and floors of an alcove similarly. Notice that every wall of a region is a hyperplane
of the Shi arrangement, but the walls of an alcove need not be. We call a region or alcove
dominant if it is contained in the dominant chamber.

Theorem 1. [15, Prop. 7.1] Every region R of the Shi arrangement has a unique minimal
alcove w̃RA◦ ⊆ R, which is the alcove in R closest to the origin.

Furthermore the floors of the minimal alcove w̃RA◦ of R are exactly the floors of R
[22, Thm. 12.4]. We define WShi = {w̃R : R is a Shi region}. The corresponding alcoves
w̃RA◦ we call Shi alcoves. That is, we call an alcove a Shi alcove if it is the minimal alcove
of the Shi region containing it. Define W dom

Shi = {w̃R : R is a dominant Shi region}.
An order filter in the root poset is a set J ⊆ Φ+ such that whenever α ∈ J and β > α

then β ∈ J . For a dominant Shi region R, we consider

J = {α ∈ Φ+ : 〈x, α〉 > 1 for all x ∈ R}.
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Then J is an order filter in the root poset. In fact, the map R 7→ J is a bijection from
the set of dominant Shi regions to the set of order filters in the root poset [16, Thm. 1.4].
The set

A = {α ∈ Φ+ : Hα,1 is a floor of R}

of minimal elements of J is an antichain in the root poset. Since the correspondence
between order filters and the antichains of their minimal elements is bijective, the map
R 7→ A is a bijection from the set of dominant Shi regions to the set of antichains in the
root poset.

We conclude this section by introducing an important affine transformation considered
by Athanasiadis [6, Section 4]. Denote by w̃f ∈ W̃ the element of the affine Weyl group
such that w̃fA◦ is the minimal alcove of the dominant Shi region furthest from the origin,
corresponding to the order filter J = Φ+ and the antichain A = ∆:

w̃fA◦ =
{
x ∈ V : 〈x, α〉 > 1 for all α ∈ ∆ and 〈x, α̃〉 < h

}
,

where h denotes the Coxeter number of Φ. Explicit descriptions of w̃f in types Bn, Cn
and Dn are given in subsequent sections.

2.4 Affine roots

Let δ denote a formal variable and set Ṽ = V ⊕ Rδ. We define the set of affine roots as

Φ̃ =
{
α + kδ : α ∈ Φ, k ∈ Z

}
⊆ Ṽ .

To an affine root α + kδ we associate the half space

Hα+kδ =
{
x ∈ V : 〈x, α〉 > −k

}
.

The natural action of the affine Weyl group on half spaces carries over to affine roots as
follows. Suppose w̃ ∈ W̃ has the unique decomposition w̃ = tµw with µ ∈ Q̌ and w ∈ W .
Then

w̃ · (α + kδ) = w · α + (k − 〈µ,w · α〉)δ,

where w · α denotes the usual action of W on Φ. Define the positive affine roots as

Φ̃+ = Φ+ ∪
{
α + kδ : α ∈ Φ, k > 0

}
,

and the simple affine roots as

∆̃ = ∆ ∪ {−α̃ + δ}.

Thereby positive affine roots correspond to those half spaces that contain the fundamental
alcove. Simple affine roots correspond to half spaces that contain the fundamental alcove
and share one of its walls. As a consequence we obtain the following well-known lemma
that characterises the floors and separating hyperplanes of an alcove.
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Lemma 2. Let w̃ ∈ W̃ and α + kδ ∈ Φ̃+ with k > 0.

(i) The hyperplane Hα,−k separates w̃A◦ from A◦ if and only if w̃−1 · (α + kδ) ∈ −Φ̃+.

(ii) The hyperplane Hα,−k is a floor of w̃A◦ if and only if w̃−1 · (α + kδ) ∈ −∆̃.

Translating the walls of w̃fA◦ into affine roots we obtain the following lemma.

Lemma 3. The element w̃f ∈ W̃ is uniquely determined by the property

w̃f (∆̃) = (∆− δ) ∪ {−α̃ + hδ}.

2.5 The finite torus

The finite torus is defined as the quotient of the coroot lattice

T = Q̌/(h+ 1)Q̌.

See the appendix for an explicit system of representatives in a few low dimensional exam-
ples. The action of the Weyl group on the coroot lattice induces an action on the finite
torus. The following result due to Haiman provides a very useful description of the orbits
under this action.

Theorem 4. [11, Lemma 7.4.1] The set Q̌∩ (h+ 1)A◦ forms a system of representatives
for the W -orbits of Q̌/(h+1)Q̌. The stabiliser subgroup H = Stab(λ) 6 W of an element
λ+ (h+ 1)Q̌ of the finite torus, where λ ∈ Q̌∩ (h+ 1)A◦, is generated by {sα : α ∈ J(λ)},
where

J(λ) =
{
α ∈ ∆ ∪ {−α̃} : λ is contained in the wall of (h+ 1)A◦ perpendicular to α

}
.

By a result of Sommers [17, Thm. 6.4], there exists a w ∈ W such that w · J(λ) ⊆ ∆.
So in particular the stabiliser subgroup H of λ+ (h+ 1)Q̌ in W is a parabolic subgroup
of W , and any coset in W/H contains a unique element u such that u · J(λ) ⊆ Φ+. We
call this the canonical representative of the coset with respect to J(λ). We deduce the
following lemma.

Lemma 5. We may represent any element of the finite torus uniquely as u · λ where
λ ∈ Q̌ ∩ (h+ 1)A◦ and u ∈ W is such that u · J(λ) ⊆ Φ+.

Athanasiadis has defined a bijection from dominant Shi alcoves to W -orbits of the
finite torus.

Theorem 6. [6, Thm. 4.2] The map ρ : W dom
Shi → Q̌ ∩ (h+ 1)A◦ given by

w̃R 7→ w̃f w̃
−1
R · 0

is a bijection.
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The second named author has recently extended this to a bijection called Anderson
map between the minimal Shi alcoves and the finite torus.

Theorem 7. [22, Thms. 8.4 and 12.6] The map A : WShi → Q̌/(h+ 1)Q̌ given by

w̃R 7→ −w̃Rw̃−1
f · 0 + (h+ 1)Q̌

is a bijection.

The way in which A extends ρ is that the following diagram commutes:

W dom
Shi Q̌ ∩ (h+ 1)A◦

WShi Q̌/(h+ 1)Q̌

ρ

A

ι π

Here ι is the natural inclusion and π is the map that sends an element of Q̌/(h+ 1)Q̌ to
the element of Q̌ ∩ (h+ 1)A◦ that represents its W -orbit.

2.6 Non-nesting parking functions

The non-nesting parking functions were introduced by Armstrong, Reiner and Rhoades [5]
as a model for the regions of the Shi arrangement that carries an action of W . Define an
equivalence relation on the set of pairs of an element of the Weyl group and an antichain
in the root poset Φ+ by (w,A) ∼ (w′, A′) if and only if A = A′ and wH = w′H where
H 6 W denotes the subgroup generated by {sα : α ∈ A}. In other words, H is the
stabiliser subgroup of

⋂
α∈AHα in W . We define the set of non-nesting parking functions

of Φ as the set of equivalence classes

Park(Φ) =
{

[w,A] : w ∈ W,A ⊆ Φ+ is an antichain
}
.

Detailed examples in low dimension are found in the appendix. Using [17, Thm. 6.4]
the same reasoning that lead to Lemma 5 in the previous section allows us to chose a
canonical representative in each class.

Lemma 8. Every non-nesting parking function [w,A] contains a unique representative
(u,A) such that u · A ⊆ Φ+.

We will also call u the canonical coset representative of wH. Note that this depends
implicitly not just on H, but also on the antichain A.

The Weyl group W acts on Park(Φ) by

u · [w,A] = [uw,A]

for u ∈ W . So the orbits of this action are indexed by the antichains in the root poset.
Non-nesting parking functions are naturally in bijection with the regions of the Shi ar-
rangement.
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Theorem 9. [22, Thm. 15.2] The map Θ−1 : WShi → Park(Φ) given by w̃R 7→ [w,A],
where w̃RA◦ ⊆ wC and A ⊆ Φ+ consists of the roots α such that Hα,1 is a floor of
w−1w̃RA◦, is a bijection.

Note that a similar bijection using ceilings instead of floors is given in [5, Prop. 10.3].
We remark that the map Θ−1 extends the natural bijection between the dominant regions
of the Shi arrangement and the antichains in the root poset.

2.7 The uniform zeta map

The zeta map is defined as the composition of the two bijections introduced in the previous
sections

ζ : Q̌/(h+ 1)Q̌→ Park(Φ), (1)

u · λ+ (h+ 1)Q̌ 7→ [w,A] =
(
Θ−1 ◦ A−1

) (
u · λ+ (h+ 1)Q̌

)
.

By a slight abuse of notation we also write ζ(u, λ) = [w,A], where u·λ is always understood
to be the unique representative as in Lemma 5. Since the zeta map commutes with the
action of W on Q̌/(h+ 1)Q̌ and Park(Φ), it restricts to a bijection between the W -orbits
on both sets:

ζ : Q̌ ∩ (h+ 1)A◦ → Antichains(Φ+), (2)

λ 7→ A.

This can also be seen as an inverse of the bijection ρ. To be precise, we have a commutative
diagram:

Antichains(Φ+)

Q̌ ∩ (h+ 1)A◦

W dom
Shi

ζ

ρ

Here the vertical map is the natural bijection mentioned in Section 2.3.

In the remainder of this section we explore ζ in more detail to obtain a more explicit
description of [w,A] in terms of the pair (u, λ). To this end we recall some arguments
that can be found in similar form for example in [6, Sec. 4] or [22, Sec. 8.5].

Suppose that R is a Shi region with minimal alcove w̃RA◦. SayA(w̃R) = u·λ+(h+1)Q̌,
and Θ−1(w̃R) = [w,A]. By definition of Θ−1 we have R ⊆ wC and for each α ∈ Φ+ the
hyperplane Hα,1 is a floor of the dominant Shi alcove w−1w̃RA◦ if and only if α ∈ A.

Choose µ, ν ∈ Q̌ and τ, σ ∈ W such that w̃−1
R w = tµσ and w̃f = tντ .

Then λ = w̃f w̃
−1
R · 0 = ν + τµ and A(w̃R) = −w̃Rw̃−1

f · 0 = w(τσ)−1 · λ. It follows
from the first identity that µ can be computed from λ independently of u. Since σ is the
unique element of W such that (tµσ)−1A◦ lies in the dominant chamber, also σ does not
depend on u.
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Proposition 10. We have

A = (τσ)−1 · J(λ)

Proof. Let β ∈ Φ+ then

β ∈ A⇔ Hβ,1 is a floor of w−1w̃RA◦

(Lemma 2)⇔ w̃−1
R w · (−β + δ) ∈ −∆̃

(Lemma 3)⇔ w̃f w̃
−1
R w · (β − δ) ∈ w̃f (∆̃) = (∆− δ) ∪ {−α̃ + hδ}

⇔ tλτσ · β ∈ ∆ ∪ {−α̃ + (h+ 1)δ}

⇔

{
τσ · β ∈ ∆ and 〈λ, τσ · β〉 = 0, or

τσ · β = −α̃ and 〈λ, τσ · β〉 = h+ 1.

Hence β ∈ A if and only if τσ · β ∈ J(λ).

Proposition 10 provides an explicit description of the map ζ on W -orbits. The final
result of this section explains how the Weyl group element w can be obtained when u is
taken into account.

Proposition 11. We have w = uτσ.

Proof. Recall that

u · λ = A(w̃R) = −w̃Rw̃−1
f · 0 = w(τσ)−1 · (ν + τµ) = w(τσ)−1 · λ.

Using Theorem 4 and Proposition 10 it follows that

w−1uτσ ∈ (τσ)−1 Stab(λ)τσ

= 〈s(τσ)−1·α : α ∈ J(λ)〉
= 〈sβ : β ∈ A〉.

In other words wH = uτσH where H = 〈sβ : β ∈ A〉. On the one hand w · A ⊆ Φ+ due
to the fact that w̃RA◦ is a Shi alcove contained in the chamber wC [22, Sec. 12.3]. On the
other hand uτσ ·A = u · J(λ) ⊆ Φ+ using Proposition 10. Since there is only one element
v of wH with v · A ⊆ Φ+, we must have w = uτσ.

2.8 Lattice paths

We call N = (0, 1) a North step and E = (1, 0) an East step. Given a, b ∈ N, denote by
La,b the set of lattice paths in the plane starting at the origin, consisting only of North
and East steps and ending at (a, b). That is, La,b is the set of sequences s1s2 . . . sa+b with
si ∈ {N,E} consisting of a East steps and b North steps. A lattice path in Ln,n is called a
Dyck path if it never goes below the main diagonal, that is, each initial segment s1s2 · · · sk
contains at least as many North steps as East steps. We denote by Dn ⊆ Ln,n the set of
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•

◦

Figure 2: A ballot path β ∈ B6 with two valleys
(1, 2), (2, 5) and two rises 2, 3.

•
•

Figure 3: A Dyck path π ∈ D6 with valleys
(2, 5), (3, 6) and rises 1, 2, 3.

all Dyck paths with 2n steps. A ballot path of length n is a lattice path starting at the
origin, consisting of n North and/or East steps that never goes below the main diagonal.
We denote the set of ballot paths with n steps by Bn.

A pattern of the form NN is called rise. A pattern EN is called valley. More precisely,
let π be any lattice path with steps si ∈ {N,E}. We say i is a rise of π if its i-th North
step is followed by a North step. We say (i, j) is a valley of π if its i-th East step is
followed by its j-th North step. If β is a ballot path consisting of i East steps and j North
steps, and β ends with an East step, then we adopt the convention of counting (i, j + 1)
as a valley of β. See Figures 2 and 3.

In order to define the combinatorial zeta maps, which are bijections between sets of
(labelled) lattice paths, we need the following building blocks. Let a = (a1, a2, . . . , an) be a

vector with integer entries. Define a word
−→
S+
j (a) in the alphabet {E,N} as follows: Read

a from left to right. Whenever you encounter an entry ai = j write down N . Whenever

you encounter an entry ai = j + 1 write down E. Similarly we define
←−
S+
j (a) except now

one reads a from right to left. Moreover we define
−→
S−j (a) as follows: Read a from left to

right and write down N for each −j you encounter and E for each −j− 1 you encounter.

Define
←−
S−j (a) analogously.

We conclude this section by recalling the definitions of the two versions of the zeta
map in type An−1, that is, one on labelled paths and one on unlabelled paths. See Figure 4
for an accompanying example.

Given a Dyck path π ∈ Dn we define its area vector (µ1, . . . , µn) by letting µi be the
number of 1× 1-squares in the i-th row that lie between the path and the main diagonal.
For example the Dyck path in Figure 3 has area vector (0, 1, 2, 3, 2, 2). It is not hard to
see that a vector with non-negative integer entries is the area vector of a Dyck path if
and only if µ1 = 0 and µi+1 6 µi + 1.

The original zeta map ζA : Dn → Dn first appears in a paper of Andrews, Kratten-
thaler, Orsina and Papi [1]. It was rediscovered and popularised by Haglund and Haiman,
and an explicit treatment of its compatibility with the statistics on Dyck paths mentioned
in the introduction is found in [9]. The image of the Dyck path π under map ζA can be
defined as the concatenation

ζA(π) =
−→
S−0 (µ)

−→
S−−1(µ) · · ·

−→
S−−n(µ)

where µ is the area vector of π.
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Figure 4: A vertically labelled Dyck path (π, v) and the diagonally labelled Dyck path ζA(π, v).

A vertically labelled Dyck path is a pair (π, v) of a Dyck path π ∈ Dn and a permutation
v ∈ Sn such that v(i) < v(i+1) for each rise i of π. Denote the set of all vertically labelled
Dyck paths by Vert(An−1).

The diagonal reading word dA(π, v) of a vertically labelled Dyck path is the permu-
tation in Sn obtained as follows: Let (µ1, . . . , µn) be the area vector of π. For each
i = 0, 1, . . . , n − 1 read µ from left to right and write down v(j) for each encountered
entry µj = i.

A diagonally labelled Dyck path is a pair (π,w) of a Dyck path π ∈ Dn and a permu-
tation w ∈ Sn such that w(i) < w(j) for each valley (i, j) of π. Let Diag(An−1) denote
the set of all diagonally labelled Dyck paths.

A generalisation of the original zeta map, which we call Haglund–Loehr-zeta map,
appears in [10] and sends vertically labelled Dyck paths to diagonally labelled Dyck paths.
It can be defined as

ζA : Vert(An−1)→ Diag(An−1),

(π, v) 7→ (ζA(π), dA(π, v)).

Note that the rises of (π, v) correspond precisely to the valleys of ζA(π, v) in the following
sense: For each rise i of π there exists a valley (j, k) of ζA(π) such that (v(i), v(i+ 1)) =
(dA(π, v)(j), dA(π, v)(k)) and vice versa [4, Sec. 5.2] [22, Thm. 14.1].

3 Types B, C and D

In this section we fix further notation and recall some facts specific to the root systems
and Weyl groups of types Bn, Cn and Dn.

3.1 The root systems of types B, C and D

The roots, positive roots and simple roots of type Bn are given by

Φ = {±ei ± ej : 1 6 i < j 6 n} ∪ {±ei : i ∈ [n]},
Φ+ = {±ei + ej : 1 6 i < j 6 n} ∪ {ei : i ∈ [n]}, and

∆ = {−ei + ei+1 : i ∈ [n− 1]} ∪ {e1}.
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We denote the simple roots by αB0 = e1 and αBi = ei+1− ei for i ∈ [n− 1], and the highest
root by α̃B = en−1 + en. The root lattice and coroot lattice are

Q =
⊕
α∈∆

Zα = Zn, Q̌ =
⊕
α∈∆

Žα =
{

(x1, . . . , xn) ∈ Zn :
∑
i

xi ∈ 2Z
}
.

The roots, positive roots and simple roots of type Cn are given by

Φ = {±ei ± ej : 1 6 i < j 6 n} ∪ {±2ei : i ∈ [n]},
Φ+ = {±ei + ej : 1 6 i < j 6 n} ∪ {2ei : i ∈ [n]}, and

∆ = {−ei + ei+1 : i ∈ [n− 1]} ∪ {2e1}.

We denote the simple roots by αC0 = 2e1 and αCi = ei+1−ei for i ∈ [n−1], and the highest
root by α̃C = 2en. The root lattice and coroot lattice are dual to the type Bn case

Q =
{

(x1, . . . , xn) ∈ Zn :
∑
i

xi ∈ 2Z
}
, Q̌ = Zn.

The roots, positive roots and simple roots of type Dn are given by

Φ = {±ei ± ej : 1 6 i < j 6 n},
Φ+ = {±ei + ej : 1 6 i < j 6 n}, and

∆ = {−ei + ei+1 : i ∈ [n− 1]} ∪ {e1 + e2}.

We denote the simple roots by αD0 = e1 + e2 and αDi = ei+1 − ei for i ∈ [n − 1], and the
highest root by α̃D = en−1 + en. The root lattice and coroot lattice are both isomorphic
to the coroot lattice of type Bn.

Q = Q̌ =
{

(x1, . . . , xn) ∈ Zn :
∑

xi ∈ 2Z
}

3.2 Affine permutation groups

The affine Weyl groups of types An−1, Bn, Cn and Dn can all be realised as groups of
certain bijections on integers also called affine permutations. In this section we recall
the descriptions of the affine Weyl groups of types Bn, Cn and Dn in terms of affine
permutations given in [7].

Set K = 2n + 1. A bijection ω : Z → Z is called affine permutation if ω(i + K) =
ω(i) + K and ω(−i) = −ω(i) for all i ∈ Z. The set of all such bijections forms a group
under composition which we denote by

∼
SC
n . Each affine permutation is fully determined

by its window

[ω(1), ω(2), . . . , ω(n)].

The group
∼
SC
n is generated by the following n+1 simple transpositions of type Cn, defined

as

sC0 = [−1, 2, . . . , n],
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sCi = [1, . . . , i− 1, i+ 1, i, i+ 2, . . . , n] for i ∈ [n− 1] and

sCn = [1, . . . , n− 1, n+ 1].

The group
∼
SC
n contains a subgroup

∼
SB
n that consists of all affine permutations ω such that

the finite set {i ∈ Z : i 6 n, ω(i) > n} has even cardinality. This subgroup is generated
by the simple transpositions of type Bn, given by

sB0 = [−1, 2, . . . , n],

sBi = [1, . . . , i− 1, i+ 1, i, i+ 2, . . . , n] for i ∈ [n− 1] and

sBn = [1, . . . , n− 2, n+ 1, n+ 2].

The group
∼
SB
n contains a subgroup

∼
SD
n that consists of all affine permutations ω such

that both finite sets {i ∈ Z : i 6 n, ω(i) > n} and {i ∈ Z : i > 0, ω(i) < 0} have even
cardinality. This subgroup is generated by the simple transpositions of type Dn, that is,

sD0 = [−1,−2, 3, . . . , n],

sDi = [1, . . . , i− 1, i+ 1, i, i+ 2, . . . , n] for i ∈ [n− 1] and

sDn = [1, . . . , n− 2, n+ 1, n+ 2].

Let Φ be a root system of type Bn, Cn or Dn. The group
∼
SΦ
n is isomorphic to the affine

Weyl group W̃ of Φ. An explicit isomorphism in terms of the generators is obtained by
mapping sΦ

i to sαΦ
i

for 0 6 i 6 n− 1, and sΦ
n to sα̃Φ,1. Let SΦ

n denote the subgroup of
∼
SΦ
n

corresponding to the Weyl group W under this isomorphism. Then an affine permutation
ω ∈ ∼SΦ

n lies in SΦ
n if and only if its window is a subset of [±n]. More precisely, SB

n = SC
n

is the group of signed permutations while SD
n 6 SB

n consists of the signed permutations
with an even number of sign changes. Furthermore, this isomorphism affords an action
of the affine permutations on the coroot lattice Q̌ of Φ, which is made explicit by the
following rules

sC0 · (x1 . . . , xn) = (−x1, x2 . . . , xn),

sCi · (x1 . . . , xn) = (x1, . . . , xi+1, xi, . . . , xn), for i ∈ [n− 1],

sCn · (x1 . . . , xn) = (x1, . . . , xn−1,−xn + 1),

sBn · (x1 . . . , xn) = (x1, . . . , xn−2,−xn + 1,−xn−1 + 1) and

sD0 · (x1 . . . , xn) = (−x1,−x2, x3, . . . , xn).

The first tool we need is a combinatorial description of the Graßmannian affine permuta-
tions in

∼
SΦ
n . That is, given an affine permutation ω ∈ ∼SΦ

n we want to decide whether ω
is a minimal length coset representative just by looking at its window. This question was
answered in [7, Props. 8.4.4, 8.5.4, and 8.6.4].

Proposition 12. An affine permutation ω ∈ ∼SΦ
n is the minimal length representative of

the coset ωSΦ
n ∈

∼
SΦ
n/S

Φ
n if and only if{

0 < ω(1) < ω(2) < · · · < ω(n) if Φ is of type Bn or Cn,

0 < |ω(1)| < ω(2) < · · · < ω(n) if Φ is of type Dn.
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Next we want to obtain a combinatorial description of the decomposition of ω into
a product of a translation by an element of the coroot lattice and an element of the
Weyl group, that is, a signed permutation. To this end, for ω ∈ ∼

SΦ
n and i ∈ [±n] write

ω(i) = aiK + bi such that ai ∈ Z and bi ∈ [±n]. Define σ(ω, i) = bi, µ(ω, bi) = −ai and
ν(ω, i) = ai.

Lemma 13. Let ω ∈ ∼SΦ
n be an affine permutation.

(i) The map i 7→ σ(ω, i), where i ∈ [n], defines a signed permutation σ(ω) ∈ SΦ
n .

(ii) The vectors µ(ω) = (µ(ω, 1), . . . , µ(ω, n)) and ν(ω) = (ν(ω, 1), . . . , ν(ω, n)) lie in the
coroot lattice Q̌ of Φ, and for all i with 0 6 i 6 n we have

µ(sΦ
i ω) = sΦ

i · µ(ω), ν(ωsΦ
i ) = sΦ

i · ν(ω).

(iii) We have µ(ω−1) = ν(ω) and σ(ω−1) = σ(ω)−1.

(iv) We have ω · (0, . . . , 0) = µ(ω) and ω−1 · (0, . . . , 0) = ν(ω)

(v) We have µ(ω) = −σ · ν(ω).

Proof. Claims (i) and (v) are immediate from the definitions while (iii) and (iv) follow
directly from (ii). Thus it only remains to show (ii) which is done for each type using
induction on the length of ω.

For q ∈ Q̌ define an affine permutation tq ∈
∼
SΦ
n by setting tq(i) = −qiK+ i for i ∈ [n].

Set TQ̌ = {tq : q ∈ Q̌}. We call an affine permutation ω ∈ ∼
SΦ
n translation by q ∈ Q̌ if

ω · x = x + q for all x ∈ Q̌. Thus by definition the translations in
∼
SΦ
n correspond to

translations in W̃ .

Proposition 14. (i) Let ω ∈ ∼SΦ
n be an affine permutation, and set σ = σ(ω), µ = µ(ω)

and ν = ν(ω). Then ω = tµσ = σt−ν.

(ii) Let x, y ∈ Q̌ then txty = tx+y and (tx)
−1 = t−x. Thus TQ̌ is a subgroup of

∼
SΦ
n that

is isomorphic to the coroot lattice.

(iii) An affine permutation ω ∈ ∼SΦ
n is a translation if and only if ω ∈ TQ̌.

Proof. To prove claim (i) let i ∈ [n] and ω(i) = aiK + bi such that ai ∈ Z and bi ∈ [±n].
Then

tµσ(i) = tµ(σ(ω, i)) = tµ(bi) = −µ(ω, bi)K + bi = aiK + bi,

σt−ν(i) = σ(ν(ω, i)K + i) = σ(aiK + i) = aiK + σ(i) = aiK + bi.

To see claim (ii), note that for each i ∈ [n] we have

txty(i) = tx(−yiK + i) = −yiK + tx(i) = −(yi + xi)K + i = tx+y(i).
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Finally, let q, x ∈ Q̌. Then using (i), (ii) and Lemma 13 (iv) we see that tq is indeed a
translation as

tq · x = tq · tx · (0, . . . , 0) = (tqtx) · (0, . . . , 0) = tq+x · (0, . . . , 0) = q + x.

Conversely, if ω is a translation by q then ω = tq because
∼
SΦ
n acts faithfully on the coroot

lattice.

In fact from Proposition 14 (i) and (ii) it follows directly that
∼
SΦ
n is the semi-direct

product of TQ̌ and SΦ
n (the Weyl group acting on the coroot lattice). Hence the decom-

position ω = tµσ is the one we were looking for, and it can easily be obtained from the
window of ω.

The following lemma is an easy consequence of the two propositions above but it shall
serve us as a reference in the sections to come.

Lemma 15. Let ω ∈ ∼SΦ
n be the minimal length coset representative of ωSΦ

n , µ = µ(ω) ∈ Q̌
and σ = σ(ω) ∈ SΦ

n . Then for each i ∈ [n]∣∣σ−1(i)
∣∣ = #

{
k ∈ [n] : |µkK − k| 6 |µiK − i|

}
.

If Φ is of type Bn or Cn, or if Φ is of type Dn and |σ−1(i)| 6= 1, then σ−1(i) > 0 if and
only if µi 6 0. However, if Φ is of type Dn and |σ−1(i)| = 1, then σ−1(i) > 0 if and only
if either µi 6 0 and the number of positive entries of µ is even, or µi > 0 and the number
of positive entries of µ is odd.

Proof. Since ω is a minimal length coset representative, the absolute values of the entries
of the window of ω must be increasing, that is, 0 < |ω(1)| < |ω(2)| < · · · < |ω(n)|. On
the other hand, |σ(j)| = i if and only if |ω(j)| = |µiK − i|. Hence |σ(j)| = i is equivalent
to

j = #
{
k ∈ [n] : |µkK − k| 6 |µiK − i|

}
.

Furthermore, if Φ is of type Bn or Cn, or if Φ is of type Dn and |σ−1(i)| 6= 1, then ω(i) > 0.
Hence σ(i) > 0 if and only if −Kµi + i > 0, which is the case if and only if µi 6 0.

If Φ is of type Dn then the sign of ω(1) possibly has to be changed such that there is
an even number of integers j ∈ Z with j > 0 and ω(j) < 0.

4 The zeta map of type C

In Section 4.1 we define a combinatorial model for the elements of the finite torus in
terms of vertically labelled lattice paths in an n× n-square. The underlying lattice paths
correspond to the orbits of the finite torus under the action of the Weyl group SC

n . That
is, acting by an element of SC

n only changes the labels but leaves the path intact. In
Section 4.2 we encode the non-nesting parking functions in term of diagonally labelled
ballot paths. Again acting by an element of the Weyl group only changes the labels, such
that the ballot paths correspond to the antichains in the root poset.
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Figure 5: The vertically labelled lattice path (NEEEENNNNNEE, [1,−5,−4, 2, 3, 6]) ∈ Vert(C6).

We then demonstrate how the dominant Shi region corresponding to a square lattice
path can be recovered using its area vector in Section 4.3. Moreover we obtain the Shi
region corresponding to a vertically labelled lattice path using the diagonal reading word
in Section 4.4. Finally, in Section 4.5 we provide a combinatorial construction of the
image of a vertically labelled lattice path under the zeta map of type Cn. We prove that
this construction is invertible and that it coincides with the uniform zeta map. Section 4.6
offers an alternative description of the type Cn zeta map in the spirit of the sweep map.

The examples provided in this section are supplemented by Table 2 of the appendix.

4.1 The finite torus

The Coxeter number of type Cn is given by h = 2n hence the finite torus equals Zn/(2n+
1)Zn. As Athanasiadis [6, Sec. 5.2] pointed out, a system of representatives for the orbits
of the finite torus under the action of the Weyl group SC

n is given by

Q̌ ∩ (2n+ 1)A◦ =
{

(λ1, λ2, . . . , λn) ∈ Q̌ : 0 6 λ1 6 λ2 6 . . . 6 λn 6 n
}
,

and the stabiliser subgroup Stab(λ) 6 SC
n of such a λ is generated by the simple trans-

positions si for each i ∈ [n − 1] such that λi = λi+1, and the simple transposition s0 if
λ1 = 0.

Definition 16. A vertically labelled lattice path is a pair (π, u) of a lattice path π ∈ Ln,n
and a signed permutation u ∈ SC

n such that u(i) < u(i+ 1) for each rise i of π and such
that u(1) > 0 if π begins with a North step. We denote the set of all vertically labelled
lattice paths by Vert(Cn).

Given a lattice path π ∈ Ln,n and a signed permutation u ∈ SC
n we picture (π, u) by

placing the label σ(i) to the left of the i-th North step of π as is shown in Figure 5. Thus
we obtain (π, u) ∈ Vert(Cn) if the labels increase along columns from bottom to top, and
if all labels left of the starting point of π are positive.

It is not difficult to see that vertically labelled lattice paths encode the elements of
the finite torus.
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Proposition 17. The map ψ : Vert(Cn)→ Q̌/(2n+1)Q̌ given by (π, u) 7→ u·λ+(2n+1)Q̌,
where λ ⊆ (nn) is the partition1 with South-East boundary π, is a bijection.

Proof. First note that the set of partitions that fit inside the square (nn) coincides with
the set Q̌ ∩ (2n+ 1)A◦. Let π ∈ Ln,n be a lattice path, u ∈ SC

n be a signed permutation,
and λ ⊆ (nn) be the partition with South-East boundary π. By Lemma 5 it suffices
to show that (π, u) ∈ Vert(Cn) if and only if u · J(λ) ⊆ Φ+. Suppose i ∈ [n − 1] and
(π, u) ∈ Vert(Cn) then

αi ∈ J(λ)⇔ 〈λ, ei+1 − ei〉 = 0⇔ λi = λi+1

⇒ u(i) < u(i+ 1)⇔ u · αi ∈ Φ+,

α0 ∈ J(λ)⇔ 〈λ, 2e1〉 = 0⇔ λ1 = 0

⇒ 0 < u(1)⇔ u · α0 ∈ Φ+.

Conversely if i ∈ [n− 1] and u · J(λ) ⊆ Φ+ then

λi = λi+1 ⇔ αi ∈ J(λ)

⇒ u · αi ∈ Φ+ ⇔ u(i) < u(i+ 1),

λ1 = 0⇔ α0 ∈ J(λ)

⇒ u · α0 ∈ Φ+ ⇔ 0 < u(1).

To complete the proof, note that 〈λ, α̃〉 6 2n implies α̃ /∈ J(λ).

Example 18. The vertically labelled lattice path in Figure 5 corresponds to the partition
λ = (0, 4, 4, 4, 4, 4) and the element (0, 4, 4,−4,−4, 4) + 13Z6 of the finite torus.

4.2 Non-nesting parking functions

In this section we encode the non-nesting parking functions of type Cn in terms of diag-
onally labelled ballot paths.

Definition 19. A diagonally labelled ballot path is a pair (β, w) of a ballot path β ∈ B2n

and a signed permutation w ∈ SC
n such that for each valley (i, j) of β we have

w(n+ 1− i) >

{
w(n+ 1− j) if j 6 n,

w(n− j) if j > n.

We denote the set of all diagonally labelled ballot paths by Diag(Cn).

Suppose (β, w) ∈ Diag(Cn). If we place the labels w(i), where

i = n, n− 1, . . . , 1,−1, . . . ,−n,
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Figure 6: The diagonally labelled ballot path (NNENENNENENE, [−2, 1, 3, 4, 6, 5]) ∈ Diag(C6).

in the diagonal as in Figure 6, then for each valley the label to its right will be smaller
than the label below it. In particular, if the path ends with an East step then the label
below will be positive.

Let β ∈ B2n be a ballot path and (i, j) a valley of β. We define the positive root

αi,j =

{
en+1−i − en+1−j if j 6 n,

en+1−i + ej−n if j > n.

Furthermore set

Aβ =
{
αi,j : (i, j) is a valley of β

}
.

We will use the following well-known result.

Lemma 20. The map ϕ : B2n → Antichains(Φ+) given by β 7→ Aβ is a bijection between
ballot paths of length 2n and the set of antichains in the root poset Φ+ of type Cn.

Example 21. The diagonally labelled ballot path (β, w) in Figure 6 has five valleys:
(1, 3), (2, 4), (3, 6), (4, 7) and (5, 8). Note that for each valley the number to its right is
less than the number below (for example w(6+1−1) = 5 > 4 = w(6+1−3)) and that the
label below the terminal East step is positive: w(6 + 1− 5) = 1 > 0. The corresponding
antichain Aβ contains the roots e6 − e4, e5 − e3, e4 − e1, e3 + e1 and 2e2.

Taking the labels into account, we extend Lemma 20 to a bijection between diagonally
labelled ballot paths and non-nesting parking functions.

1For our purposes here a partition is an increasing sequence λ1 6 λ2 6 . . . 6 λn of non-negative
integers.
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Proposition 22. The map ϕ : Diag(Cn) → Park(Cn) given by (β, w) 7→ [w,Aβ] is a
bijection.

Proof. Let β ∈ B2n be a ballot path and w ∈ SC
n a signed permutation. Due to Lemma 20

and Lemma 8 it suffices to show that (β, w) ∈ Diag(Cn) if and only if w·Aβ ⊆ Φ+. Assume
j 6 n. If (β, w) ∈ Diag(Cn) then

αi,j ∈ Aβ ⇔ (i, j) is a valley of β

⇒ w(n+ 1− i) > w(n+ 1− j)⇔ w · αi,j = w · (en+1−i − en+1−j) ∈ Φ+.

Conversely, if w · Aβ ⊆ Φ+ then

(i, j) is a valley of β ⇔ αi,j ∈ Aβ
⇒ w · αi,j ∈ Φ+ ⇔ w(n+ 1− i) > w(n+ 1− j).

The case j > n is treated similarly.

4.3 The area vector

Let π ∈ Ln,n be a lattice path and λ ⊆ (nn) the partition with South-East boundary π.
We have seen above that λ ∈ Q̌ ∩ (2n + 1)A◦. Thus λ corresponds to a dominant Shi
region with minimal alcove w̃DA◦ by means of the Anderson map of Section 2.5. Our goal
in this section is to obtain the element of the affine Weyl group w̃D from the lattice path
π.

To this end and write w̃−1
D = tµσ where µ ∈ Q̌ and σ ∈ SC

n . Since w̃−1
D is Graßmannian,

the signed permutation σ is determined by Lemma 15 once we know µ. Note that w̃D
corresponds to the affine transformation w−1w̃R from Section 2.7. The vector µ therefore
appears implicitly in the identity λ = w̃f w̃

−1
D ·0. Hence all we need is an explicit description

of w̃f . This is provided by the next lemma.

Lemma 23. Let ν ∈ Q̌ and τ ∈ W be such that w̃f = tντ . Then

ν = (1, 2, . . . , n), τ = [−n, . . . ,−2,−1].

Proof. By Lemma 3 it suffices to show that tντ(∆̃) = (∆− δ) ∪ {−α̃ + hδ}. We have

tντ(αi) = αn+1−i − 〈ν, αn+1−i〉δ = αn+1−i − δ for all i ∈ [n− 1],

tντ(α0) = −2en − 〈τ,−2en〉δ = −α̃ + 2nδ and

tντ(−α̃ + δ) = 2e1 + (1− 〈τ, 2e1〉)δ = α0 − δ.

For example if n = 5 then

w̃f = [50, 40, 30, 20, 10].
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Figure 7: The lattice paths with type Cn area vectors (0, 0, 0, 0), (0,−1, 1, 1) and (1, 0,−1,−2).

Definition 24. Let π ∈ Ln,n and λ ⊆ (nn) be the partition with South-East boundary
π. Moreover define ν and τ as in Lemma 23 above. We define the type Cn area vector of
π as

µ = τ(λ− ν) = τ(λ1 − 1, λ2 − 2 . . . , λn − n) = (n− λn, . . . , 2− λ2, 1− λ1).

Indeed µi counts the number of boxes in the (n+1− i)-th row between the path π and
the path (EN)n ∈ Ln,n consisting of alternating North and East steps. In this regard µ
is quite similar to the type An−1 area vector of a Dyck path. Note that the entries of the
type Cn area vector are negative as long as π is to the right of (EN)n in the respective
row. See Figure 7.

Example 25. The lattice path π = NEEEENNNNNEE in Figure 5 has area vector

µ = (6, 5, 4, 3, 2, 1)− (4, 4, 4, 4, 4, 0) = (2, 1, 0,−1,−2, 1).

The translation by µ is given by tµ = [−25,−11, 3, 17, 31,−7] ∈ ∼
SC
n . Moreover σ =

[3,−6,−2, 4,−1, 5] is the unique element of SC
n such that w̃−1

D = tµσ = [3, 7, 11, 17, 25, 31]
is a Graßmannian affine permutation. Finally w̃D = [21, 10, 1,−9,−20, 11] and w̃DA◦ is
the minimal alcove of the dominant Shi region corresponding to the lattice path π.

We conclude this section by proving some auxiliary results on area vectors for later
use.

Lemma 26. Let π ∈ Ln,n be a lattice path with type Cn area vector µ.

(i) Let i, j ∈ [n] with i < j such that µj = µi − 1 and µ` /∈ {µi − 1, µi} for all ` with
i < ` < j. Then j = i+ 1.

(ii) For all i ∈ [n− 1] we have µi 6 µi+1 + 1.

(iii) Let j ∈ [n] such that µj < 0. Then there exist i ∈ [j − 1] with µi = µj + 1.

(iv) Let i ∈ [n] such that µi > 1. Then there exists j ∈ [n] with i < j such that
µj = µi − 1.

(v) Let i ∈ [n] such that µi = 1 and µ` /∈ {0, 1} for all ` ∈ [n] with i < `. Then i = n.
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Figure 8: The diagonal reading order of type C6 indicated left, and a vertically labelled lattice path with
dC(π, u) = [−2, 1, 3, 4, 6, 5] on the right.

Proof. We start by proving claim (i). From µ = τ ·(λ−ν) we obtain λn+1−` = n+1−`−µ` /∈
{n+ 1− `− µi, n+ 2− `− µi} for all ` with i < ` < j. Since λn+1−j = n+ 2− j − µi and
λn−` 6 λn+1−` it follows inductively that n+ 2− `− µi < λn+1−` for all ` with i < ` < j.
But this yields a contradiction for ` = i+ 1, namely λn−i > n+ 1− i−µi = λn+1−i. Thus
j = i+ 1.

Claim (ii) is an immediate consequence of λn−i 6 λn+1−i for all i ∈ [n− 1]. Claim (iii)
follows from (ii) and µ1 > 0. Similarly claims (iv) and (v) follow from (ii) and µn 6 1.

4.4 The diagonal reading word

Let (π, u) ∈ Vert(Cn) be a vertically labelled lattice path. Recall that (π, u) corresponds
to an element u · λ + (2n + 1)Q̌ of the finite torus by Proposition 17 and hence to a
region of the Shi arrangement with minimal alcove w̃RA◦ by Theorem 7. That is, u · λ =
A(w̃R) = −w̃Rw̃−1

f · 0. Our goal for this section is to recover the element w̃R of the affine
Weyl group from the labelled path (π, u).

In order to do so write w̃R = ww̃D where w ∈ SC
n and w̃DA◦ is the minimal alcove of

the dominant Shi region corresponding to λ discussed in the previous section (Section 4.3).
Recall that w = uτσ by Proposition 11. Since we already constructed w̃D from π in the
previous section, we are in principle also able to compute the signed permutation w.
However, it turns out that this permutation can simply be read off the vertically labelled
path (diagonally!).

Definition 27. Let (π, u) ∈ Ln,n × SC
n and µ be the area vector of π. Define the type

Cn diagonal reading word dC(π, u) as follows: For each i = 0, 1, . . . , n first write down the
negative labels −u(j) of the rows with µn+1−j = −i from top to bottom, then write down
the labels u(j) of rows with µn+1−j = i+ 1 from bottom to top.

Example 28. Consider the vertically labelled lattice path (π, u) from our running ex-
ample, which is depicted again in Figure 8 (right). We first deduce the diagonal reading
word dC(π, u) following Definition 27. In Example 25 we already determined the area
vector µ = (2, 1, 0,−1,−2, 1) of π.

For i = 0 we have −i = 0 = µ3 = µ6+1−4 hence we write down −u(4) = −2. Moreover
i + 1 = 1 = µ6 = µ6+1−1 and i + 1 = µ2 = µ6+1−5. We write down the labels u(1) = 1
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and u(5) = 3 from bottom to top, that is, first 1 and then 3. Next set i = 1. We have
−i = −1 = µ4 = µ6+1−3 and write down −u(3) = 4. As i + 1 = 2 = µ1 = µ6+1−6 we
write down u(6) = 6. Finally set i = 2 to obtain −i = −2 = µ5 = µ6+1−2 and write down
−u(2) = 5. The complete diagonal reading word is thus given by

dC(π, u) = [−2, 1, 3, 4, 6, 5].

The diagonal reading word of type Cn can also be read off quickly by scanning all
boxes that may contain labels according to the diagonal reading order, which is indicated
in Figure 8 (left). In our example the first box with respect to the diagonal reading order
to contain a label has the number 3. The encountered label is 2. Since this box lies
below the alternating path (NE)n we write down its negative −2. The next two boxes
that contain labels have numbers 7 and 11. Hence we write down 1 and then 3. It is not
difficult to verify that this procedure always yields dC(π, u).

In light of the following proposition the reader may wish to check that

dC(π, u) = uτσ = [1,−5,−4, 2, 3, 6] · [−6,−5,−4,−3,−2,−1] · [3,−6,−2, 4,−1, 5].

As a consequence we obtain the affine permutation

w̃R = dC(π, u) w̃D = [20, 10,−2,−9,−21, 12]

that takes the fundamental alcove to the minimal alcove of the Shi region R corresponding
to the vertically labelled lattice path (π, u). Indeed, we have w̃Rw̃

−1
f = [1, 47, 48, 54, 55, 58]

and

A(w̃R) = −w̃Rw̃−1
f · 0 + 13Z6 = (0, 4, 4,−4,−4, 4) + 13Z6,

which is in accordance with Example 18.

The next result confirms that the diagonal reading word is the correct signed permu-
tation.

Proposition 29. Let (π, u) ∈ Vert(Cn) be a vertically labelled lattice path with area vector
µ, let τ be defined as in Lemma 23, and define σ ∈ SC

n as in Lemma 15 such that tµσ is
Graßmannian. Then dC(π, u) = uτσ.

Proof. Let i, j ∈ [n]. By definition we have |dC(π, u)(i)| = |u(j)| if and only if

i = #
{
r ∈ [n], |µr| < |µn+1−j|

}
+ #

{
r ∈ [n] : r > n+ 1− j, µr = µn+1−j > 0

}
+ #

{
r ∈ [n+ 1− j], µr = µn+1−j 6 0

}
+ #

{
r ∈ [n], µr = −µn+1−j > 0

}
=
{
r ∈ [n] : |µrK − r| 6 |µn+1−jK − (n+ 1− j)|

}
.

By Lemma 15 we obtain |σ(i)| = n+ 1− j, hence

|dC(π, u)(i)| = |u(j)| = |u(n+ 1− |σ(i)|)| = |uτσ(i)| .

Moreover dC(π, u)(i) = u(j) if and only if µn+1−j > 0. On the other hand τσ(i) = j is
equivalent to σ(i) = −(n + 1 − j) < 0, which is the case if and only if µn+1−j > 0 by
Lemma 15. We can therefore omit the absolute values in the identity above and the proof
is complete.
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Figure 9: A vertically labelled lattice path and its image under the Haglund–Loehr-zeta map.

4.5 The zeta map

We are now in a position to define the combinatorial zeta map of type Cn, which is made
up of the building blocks defined in Section 2.8. Note that there are two versions of the
map: one defined on square lattice paths that corresponds to the uniform map defined
on W -orbits, and one defined on vertically labelled lattice paths that corresponds to the
uniform map defined on the finite torus. To avoid confusion we call the zeta map defined
on vertically labelled paths the Haglund–Loehr-zeta map.

Definition 30. Given a lattice path π ∈ Ln,n with type Cn area vector µ we define its
image under the zeta map of type Cn as

ζC(π) =
←−
S−n (µ)

−→
S+
n (µ)
←−
S−n−1(µ)

−→
S+
n−1(µ) · · ·

←−
S−1 (µ)

−→
S+

1 (µ)
←−
S−0 (µ)

−→
S+

0 (µ).

Moreover, given a vertically labelled lattice path (π, u) ∈ Vert(Cn), we define its image
under the Haglund–Loehr-zeta map of type Cn as

ζC(π, u) =
(
ζC(π), dC(π, u)

)
.

Note that by definition ζC(π) is a ballot path, that is, ζC : Ln,n → B2n. It will
soon turn out that the Haglund–Loehr-zeta map sends vertically labelled lattice paths to
diagonally labelled ballot paths.

Example 31. Recall the area vector µ = (2, 1, 0,−1,−2, 1) and the diagonal reading
word d = [−2, 1, 3, 4, 6, 5] of the vertically labelled lattice path shown in Figure 9, which
were computed in earlier examples. We construct the individual segments of ζC(π) as
follows

←−
S−2 (µ) = N,

−→
S+

2 (µ) = N,
←−
S−1 (µ) = EN,

−→
S+

1 (µ) = ENN,
←−
S−0 (µ) = EN,

−→
S+

0 (µ) = ENE.
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Our first main result of this section is the fact that the zeta map can be inverted using
a construction reminiscent of the bounce path of a Dyck path in type An−1.

Theorem 32. The zeta map ζC : Ln,n → B2n is a bijection.

Proof. Let π ∈ Ln,n be a lattice path with type Cn area vector µ. For each k with
0 6 k 6 n let αk denote the number of indices i ∈ [n] such that |µi| = k.

Define the bounce path of a ballot path β ∈ B2n as follows: start at the end point of
β and go South until you hit the diagonal. Bounce off it and travel to the West until you
reach the upper end of a North step of β. Bounce off the path β to the South until you
hit the diagonal again, and repeat until you arrive at (0, 0).

Now suppose that β = ζC(π). By definition of the zeta map the end point of β is
(n− α0, n+ α0). The bounce path of β meets the diagonal for the first time in the point
(n − α0, n − α0), and then travels West to the point (n − α0 − α1, n − α0), which is the

starting point of the segment
←−
S−0 (µ)

−→
S+

0 (µ). We claim that this point is a peak of the
bounce path.

To see this note that Lemma 26 (iii) and (iv) imply that each non-empty segment
←−
S−j (µ) or

−→
S+
j (µ) ends with a North step, except possibly

−→
S+

0 (µ). In particular, the

starting point of any segment
←−
S−j (µ)

−→
S+
j (µ) is either (0, 0) or the endpoint of a North step

of β.
Inductively the peaks of the bounce path therefore encode the numbers α0, α1, . . . , αn.
Knowing α0 and α1 we can recover the number and relative order of zeroes, ones and

minus ones in µ from the segment
←−
S−0 (µ)

−→
S+

0 (µ). Since
←−
S−0 (µ) ends with a North step, we

first obtain the sequences
←−
S−0 (µ) and

−→
S+

0 (µ) and thus the number occurrences of ones and
minus ones in µ. Moreover these paths encode the relative order of zeroes and minus ones,
respectively the relative order of zeroes and ones. The relative order of ones and minus
ones is implied by the following observation: If µi = 1 and µj = −1 for some i, j ∈ [n]
with i < j then there exists ` with i < ` < j and µ` = 0 due to Lemma 26 (ii).

Similarly one now reconstructs the numbers of twos and minus twos, as well as the
relative order of zeroes, ones, minus ones, twos and minus twos, using the segment←−
S−1 (µ)

−→
S+

1 (µ). Continuing in this fashion one recovers the entire area vector µ. Thus
ζC is injective. Since Ln,n and B2n both have cardinality

(
2n
n

)
it is also bijective.

Next we state the respective result for the Haglund–Loehr-zeta map of type Cn.

Theorem 33. The Haglund–Loehr-zeta map ζC : Vert(Cn)→ Diag(Cn) is a bijection.

Note that it follows from Theorem 32 that the Haglund–Loehr-zeta map is injective,
since the signed permutation u can be recovered from dC(π, u) once π is known. The
missing fact that (π, u) ∈ Vert(Cn) if and only if (ζC(π), dC(π, u)) ∈ Diag(Cn) is implied
by the next theorem, which relates the rises of a vertically labelled path to the valleys of
the corresponding diagonally labelled path.
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Let (π, u) ∈ Ln,n×SC
n and i be a rise of π. We say i is labelled (u(i), u(i+ 1)). Given

(β, w) ∈ B2n ×SC
n and a valley (i, j) of β, we say

(i, j) is labelled by

{(
w(n+ 1− i), w(n+ 1− j)

)
if j 6 n,(

w(n+ 1− i), w(n− j)
)

if j > n.

Note that with our usual way of picturing diagonally labelled ballot paths, each valley is
labelled by the number below it and the number to its right.

Example 34. The vertically labelled lattice path in Figure 9 has rises 2, 3, 4 and 5, which
are labelled (−5,−4), (−4, 2), (2, 3) and (3, 6). Moreover, its initial North step has label
1. The image under the Haglund–Loehr-zeta map has valleys (1, 3), (2, 4), (3, 6), (4, 7) and
(5, 8), which are labelled by (5, 4), (6, 3), (4,−2), (3, 2) and (1,−1).

Theorem 35. Let (π, u) ∈ Ln,n×SC
n be a pair of a lattice path and a signed permutation,

and let a, b ∈ u([n]). Then (π, u) has a rise labelled by (a, b) if and only if (ζC(π), dC(π, u))
has a valley labelled by (b, a) or (−a,−b). Moreover π begins with a North step labelled
by a if and only if (ζC(π), dC(π, u)) has a valley labelled by (a,−a).

Proof. Let µ be the type Cn area vector of π and define σ ∈ SC
n as in Lemma 15 such

that tµσ is Graßmannian. Moreover let τ ∈ SC
n be defined as in Lemma 23.

(Part 1) We first assume that we are given a valley of (ζC(π), dC(π, u)) and show
that there exists a fitting rise in (π, u). A valley of ζC(π) can either occur within a

sequence
←−
S−k (µ) or

−→
S+
k (µ), or if ζC(π) ends with an East step. We treat these three

cases independently. No valley may arise at the join of two such sequences because of
Lemma 26 (iii) and (iv).

(1.1) There is a valley within the sequence
←−
S−k (µ). Then there exist indices i, j ∈ [n]

with i < j such that µi = −k, µj = −k−1 and µ` /∈ {−k−1,−k} for all ` with i < ` < j.
By Lemma 26 (i) we have j = i+ 1. Hence λn−i = n− i− µi+1 = n+ 1− i− µi = λn+1−i
and n − i is a rise of π. We claim that the labels of our valley are compatible with the
labels (u(n− i), u(n− i+ 1)) of this rise.

Suppose (x, y) is our valley. Then x equals the number of East steps in the sequence

←−
S−n (µ)

−→
S+
n (µ) · · ·

←−
S−k+1(µ)

−→
S+
k+1(µ)

←−
S−k (µi+1, . . . , µn).

In other words

x = #
{
r ∈ [n] : |µr| > k + 1

}
+ #

{
r ∈ [n] : r > i+ 1, µr = −k − 1

}
= #

{
r ∈ [n] : |µrK − r| > |(−k − 1)K − (i+ 1)|

}
.

By Lemma 15 we obtain

n+ 1− x = #
{
r ∈ [n] : |µrK − r| 6 |µi+1K − (i+ 1)|

}
=
∣∣σ−1(i+ 1)

∣∣ .
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Since µi+1 6 0 we have σ−1(i+ 1) > 0 and thus

dC(π, u)(n+ 1− x) = uτσ(n+ 1− x) = uτ(i+ 1) = −u(n− i).

Similarly y equals the number of North steps in the sequence

←−
S−n (µ)

−→
S+
n (µ) · · ·

←−
S−k+1(µ)

−→
S+
k+1(µ)

←−
S−k (µi, . . . , µn).

We may rewrite this as

y = #
{
r ∈ [n] : |µr| > k

}
+ #

{
r ∈ [n] : r > i, µr = −k

}
= #

{
r ∈ [n] : |µrK − r| > |−kK − i|

}
.

As before Lemma 15 provides

n+ 1− y = #
{
r ∈ [n] : |µrK − r| 6 |µiK − i|

}
=
∣∣σ−1(i)

∣∣ = σ−1(i)

and we compute

dC(π, u)(n+ 1− y) = uτσ(n+ 1− y) = uτ(i) = −u(n+ 1− i).

(1.2) The valley appears within the sequence
−→
S+
k (µ). Then there exist indices i, j ∈ [n]

with i < j such that µi = k + 1, µj = k and µ` /∈ {k, k + 1} for all ` with i < ` < j. We
obtain j = i+ 1 and n− i is a rise of π just as in (1.1).

Let (x, y) be our valley. Then x equals the number of East steps in

←−
S−n (µ)

−→
S+
n (µ) · · ·

←−
S−k (µ)

−→
S+
k (µ1, . . . , µi).

Equivalently

x = #
{
r ∈ [n] : |µr| > k + 1

}
+ #

{
r ∈ [n] : µr = −k − 1

}
+ #

{
r ∈ [i] : µr = k + 1

}
= #

{
r ∈ [n] : |µrK − r| > |(k + 1)K − i|

}
.

Since µi > 0 Lemma 15 implies

n+ 1− x = #
{
r ∈ [n] : |µrK − r| 6 |µiK − i|

}
=
∣∣σ−1(i)

∣∣ = −σ−1(i)

and we compute

dC(π, u)(n+ 1− x) = uτσ(n+ 1− x) = −uτ(i) = u(n+ 1− i).

On the other hand y equals the number of North steps in the sequence

←−
S−n (µ)

−→
S+
n (µ) · · ·

←−
S−k (µ)

−→
S+
k (µ1, . . . , µi+1).

If k > 0 then

y = #
{
r ∈ [n] : |µr| > k

}
+ #

{
r ∈ [n] : µr = −k

}
+ #

{
r ∈ [i+ 1] : µr = k

}
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= #
{
r ∈ [n] : |µrK − r| > |kK − (i+ 1)|

}
,

and Lemma 15 provides

n+ 1− y = #
{
r ∈ [n] : |µrK − r| 6 |µi+1K − (i+ 1)|

}
=
∣∣σ−1(i+ 1)

∣∣ = −σ−1(i+ 1)

In particular y 6 n and we compute

dC(π, u)(n+ 1− y) = uτσ(n+ 1− y) = −uτ(i+ 1) = u(n− i).

Otherwise k = 0 and

y = n+ #
{
r ∈ [i+ 1] : µr = 0

}
= n+ #

{
r ∈ [n] : |µrK − r| 6 i+ 1

}
From Lemma 15 we obtain

y − n = #
{
r ∈ [n] : |µrK − r| 6 |µi+1K − (i+ 1)|

}
=
∣∣σ−1(i+ 1)

∣∣ = σ−1(i+ 1).

Since y > n the second label of the valley is given by

dC(π, u)(n− y) = −uτσ(y − n) = −uτ(i+ 1) = u(n− i).

(1.3) The path ζC(π) ends with an East step. Then there exists i ∈ [n] such that µi = 1
and µ` /∈ {0, 1} for all ` with i < `. From Lemma 26 (v) we know that i = n. Consequently
λ1 = 1− µn = 0 and π begins with a North step.

Let (x, y) be the valley above the final East step. Then x equals the number of East
steps in ζC(π), that is,

x = #
{
r ∈ [n] : |µr| > 0

}
= #

{
r ∈ [n] : |µrK − r| > n+ 1

}
n+ 1− x = #

{
r ∈ [n] : |µrK − r| 6 |µnK − n|

}
=
∣∣σ−1(n)

∣∣ = −σ−1(n)

The valley’s first label is

dC(π, u)(n+ 1− x) = uτσ(n+ 1− x) = −uτ(n) = u(1).

On the other hand, y equals the number of North steps of ζC(π) plus one. We have

y = n+ 1 + #
{
r ∈ [n] : |µrK − r| 6 n

}
y − n = #

{
r ∈ [n] : |µrK − r| 6 n+ 1

}
= −σ−1(n).

Hence the valley’s second label is

dC(π, u)(n− y) = −uτσ(y − n) = uτ(n) = −u(1).

(Part 2) To complete the proof we need to demonstrate the reverse implication. Thus
assume that i ∈ [n − 1] is a rise of π, that is, λi = λi+1. Then µn+1−i = i − λi and
µn−i = i+ 1− λi+1 = µn+1−i + 1.

If µn−i = −k 6 0 then µn+1−i = −k − 1 and we are in the situation of (1.1). If
µn−i = k + 1 > 0 then µn+1−i = k and we are in the situation of (1.2).

Finally assume that π begins with a North step. Then λ1 = 0 and µn = 1 − λ1 = 1.
Hence we are in the situation of (1.3).
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By now we have assembled all tools needed to prove that the Haglund–Loehr-zeta map
ζC is indeed the type Cn special case of the uniform bijection discussed in the Section 2.7.

Theorem 36. Let Φ be the root system of type Cn with coroot lattice Q̌ and zeta map ζ,
and let ψ and ϕ be defined as in Proposition 17 and Proposition 22. Then the following
diagram commutes.

Q̌/(2n+ 1)Q̌ Park(Φ)

Vert(Cn) Diag(Cn)

ζ

ζC

ψ ϕ

Proof. Let (π, u) ∈ Vert(Cn) and (β, w) = ζC(π, u) ∈ Diag(Cn). Moreover let λ be the
partition with South East boundary π, define ν and τ as in Lemma 23, and let µ be the
area vector of π. Chose σ ∈ SC

n such that tµσ is a Graßmannian affine permutation.
By Proposition 29 we have w = uτσ, which agrees with Proposition 11. Thus, by

Proposition 10 it suffices to show that

Aβ = (τσ)−1 · J(λ) (3)

We start out by proving that (τσ)−1 · J(λ) ⊆ Aβ. To this end let i ∈ [n− 1]. Then

αi ∈ J(λ)⇔ λi = λi+1 ⇔ π has a rise i.

By Theorem 35 this is the case if and only if (β, w) has a valley (x, y) that is labelled by
(u(i+ 1), u(i)) or (−u(i),−u(i+ 1)). Moreover, a closer look at the proof of Theorem 35
reveals that the second case only occurs if y 6 n. In other words

u(i+ 1) = w(n+ 1− x) or −u(i) = w(n+ 1− x),

u(i) =

{
w(n+ 1− y) if y 6 n,

w(n− y) if y > n,
−u(i+ 1) = w(n+ 1− y) and y 6 n.

Applying u−1 to the above identities yields

i+ 1 = τσ(n+ 1− x) or −i = τσ(n+ 1− x)

i =

{
τσ(n+ 1− y) if y 6 n,

τσ(n− y) if y > n,
−i− 1 = τσ(n+ 1− y) and y 6 n.

We obtain

(τσ)−1 · αi = αx,y ∈ Aβ.

Furthermore α0 ∈ J(λ) if and only if λ1 = 0, that is, π begins with a North step.
By Theorem 35 this is equivalent to (β, w) ending with an East step such that the
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corresponding valley (x, y) has labels (w(n + 1 − x), w(n − y)) = (u(1),−u(1)). Thus
τσ(n+ 1− x) = 1 = τσ(y − n) and we obtain

(τσ)−1 · α0 = αx,y ∈ Aβ.

Finally we have already observed that −α̃ /∈ J(λ), and the first inclusion in (3) follows.
Conversely, let αx,y ∈ Aβ. By similar reasoning as above it follows that τσ · αx,y is of

the form ei+1− ei for a rise i of π, unless the valley comes from a terminal East step of β,
in which case π begins with a North step and τσ · αx,y = 2e1 = α0. Hence, we also have
Aβ ⊆ (τσ)−1 · J(λ) and the proof is complete.

4.6 The sweep map

In type An−1 there is a generalisation of the zeta map to rational Dyck paths called the
sweep map [3]. The concept of the sweep map is as follows. Given a path one assigns to
each step a label, the labels being distinct integers. To obtain the image of a path under
the sweep map, one rearranges the steps such that the labels are in increasing order.

We now give a description of the zeta map of type Cn similar to the sweep map on
Dyck paths. Given a path π = s1s2, . . . , s2n ∈ Ln,n, where si ∈ {E,N}, assign a label `i
to each step si by setting `1 = 0, and `i+1 = `i + 2n + 1 if si = N , and `i+1 = `i − 2n if
si = E. Now define a collection X of labelled steps as follows. If `i < 0 then add (si, `i)
to X. If `i > 0 then add (si−1,−`i). Finally, for the step s1 which is the only step labelled
by 0, add (s2n,−n). Thus X contains 2n labelled steps.

Now draw a path as follows. Choose (s, `) ∈ X such that ` is the minimal label among
all pairs in X. Draw the step s and remove (s, `) from X. Repeat until X is empty. We
denote the path obtained in this way by sw(π). See Figure 10.

Theorem 37. For each lattice path π ∈ Ln,n we have sw(π) = ζC(π). In particular, the
sweep map sw : Ln,n → B2n is a bijection.

Proof. The proof consists of a straightforward but rather tedious case by case analysis
of the involved labels. Let µ be the type Cn area vector of a path π ∈ Ln,n. We use
the following notation. The label of the i-th North step of π is denoted by `Ni . The
corresponding labelled step which is added to X is denoted by (sNi , x

N
i ).

We pair each North step with an East step. If the North step has a non-negative label,
this is the next East step in the same diagonal. If the North step has a negative label,
this is the previous East step in the same diagonal. We denote by `Ei the label of the East
step corresponding to the i-th North step, and by (sEi , x

E
i ) the associated labelled step in

X.
For example in Figure 10 we have `N4 = −9, (sN4 , x

N
4 ) = (N,−9), `E4 = 1, and

(sE4 , x
E
4 ) = (E,−1). Also `N6 = 17, (sN6 , x

N
6 ) = (N,−17), `E6 = 30, and (sE6 , x

E
6 ) =

(N,−30).

The label of the i-th North step is

`Ni = (i− 1)(2n+ 1)− (i− µn−i+1)(2n) = 2n(µn−i+1 − 1) + i− 1. (4)
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Figure 10: The labelling of π (left), the set X of labelled steps (middle), and the path sw(π) of steps in
increasing order (right).

First consider the case µn−i+1 > 0. Then

2n|µn−i+1| − 2n 6 `Ni < 2n|µn−i+1| − n.

If i > 1 then xNi = −`Ni . If i = 1 then xNi = −n. Hence

−2n|µn−i+1|+ n 6 xNi < −2n|µn−i+1|+ 2n.

On the other hand, if µn−i+1 6 0 then

−2n|µn−i+1| − 2n 6 `Ni = xNi < −2n|µn−i+1| − n.

Now, let us treat the East steps. We start with the case µn−i+1 > 0. Then

`Ei = `Ni + 2n+ ki = 2n|µn−i+1|+ i− 1 + ki,

for some ki ∈ [n− i+ 1]. Since xEi = −`Ei , we obtain

−2n|µn−i+1| − n 6 xEi < −2n|µn−i+1|. (5)

If µn−i+1 6 0 then

`Ei = `Ni + 2n− ki = −2n|µn−i+1|+ i− 1− ki,

for some ki ∈ {0, . . . , i− 1}. If µn+i−1 < 0 then

−2n|µn−i+1| 6 `Ei = xEi < −2n|µn−i+1|+ n.
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Finally assume µn−i+1 = 0. If `Ei = 0 then xEi = −n. Otherwise xEi = −`Ei . Combined
this yields

−n 6 xEi < 0,

which is a special case of (5).

We make the following observation. If −2nk 6 xsi < −2nk + n, where k = 1, 2, . . . ,
then either s = E and µn−i+1 = −k, or s = N and µn−i+1 = −k + 1. Similarly, if
−2nk + n 6 xsi < −2nk + 2n, where k = 1, 2, . . . , then either s = N and µn−i+1 = k or
s = E and µn−i+1 = k − 1.

Thus by definition the path sw(π) is composed of segments T (−k,−k+1), T (k−1, k),
where k = 1, 2, . . . , such that each step of T (−k,−k + 1) corresponds to an entry of the
area vector µn−i+1 ∈ {−k,−k + 1}, and each step of T (k − 1, k) corresponds an entry
µn−i+1 ∈ {k − 1, k}.

This is a good sign because the path ζC(π) is also composed of segments with the same

property. Indeed we will carry out the proof by showing that T (−k,−k + 1) =
←−
S−k−1(µ)

and T (k − 1, k) =
−→
S+
k−1(µ).

We first prove that T (−k,−k + 1) =
←−
S−k−1(µ) for k > 1. As µn−i+1 = −k < 0 implies

xEi = `Ei < 0 and µn−i+1 = −k + 1 6 0 implies xNi = `Ni < 0, we have sEi = E and
sNj = N . That is, every entry µn−i+1 = −k will contribute an East step while each entry
µn−i+1 = −k + 1 contributes a North step. This is consistent with the definition of the
zeta map. Therefore, it suffices to check that i < j implies

xEi < xNj if µn−j+1 = −k + 1, µn−i+1 = −k, (6)

xNi < xEj if µn−j+1 = −k, µn−i+1 = −k + 1. (7)

Inequality (6) is trivial as

xEi = −2nk + i− 1− ki < 2n(−k + 1− 1) + j − 1 = xNj .

To see (7) note that µn−j+1 = −k and µn−i+1 = −k + 1 imply that the path π has an
East step in the same diagonal as its j-th North step somewhere between its i-th and j-th
North steps. That is, kj 6 j − i− 1 and therefore

xNi = 2n(−k + 1− 1) + i− 1 < −2nk + j − 1− kj = xEj .

Next we show that T (k − 1, k) =
−→
S+
k−1(µ) for k > 2. In this case µn−i+1 = k > 1 implies

`Ni > 0 and µn−i+1 = k − 1 > 0 implies `Ei > 0. This case is more difficult (confusing)
because we do not necessarily have sEi = E and sNj = N . Instead, if µn−i+1 = k − 1 and
µn−j+1 = k then

sEi =

{
E if µn−i = k,

N if µn−i 6 k − 1 or i = n,
sNj =

{
N if µn−j+2 = k − 1,

E if µn−j+2 > k.
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Thus an entry µn−i+1 = k−1 contributes an East step instead of a North step if and only
if the previous entry µn−i = k contributes a North step instead of an East step. We see
that the number of East and North steps in T (k − 1, k) is consistent with the definition
of the zeta map.

To see that also the relative orders of the steps in T (k − 1, k) and
−→
S+
k−1(µ) agree, it

suffices to prove that i < j implies

xEj < xEi if µn−j+1 = µn−i+1 = k − 1, (8)

xNj < xNi if µn−j+1 = µn−i+1 = k, (9)

xEj < xNi if µn−j+1 = k − 1, µn−i+1 = k. (10)

Moreover, let i < j, µn−j+1 = k and µn−i+1 = k − 1. Then we require that

xEi < xNj (11)

if and only if there exists no r such that i < r < j and µn−r+1 = k − 1.
From (8)–(11) it follows that the order of the steps is (almost) obtained by reading

the area vector from left to right drawing sEi whenever µn−i+1 = k − 1, and sNi whenever
µn−i+1 = k. The only exception to this rule is when µn−i+1 = k− 1 and µn−i = k. In this
case one has to draw the step sEi = E before the step sNi+1 = N . 2

We now prove the claims (8)–(11). If i < j and µn−i+1 = µn−j+1 = k − 1 then there
must be an East step on the diagonal between the i-th and j-th North steps of π. Hence
ki 6 j − i and we obtain (8).

xEi = −2n(k − 1)− i+ 1− ki > −2n(k − 1)− j + 1 > −2n(k − 1)− j + 1− kj = xEj

The inequalities (9) and (10) are trivial as

xNi = −2n(k − 1)− i+ 1 >

{
−2n(k − 1)− j + 1 = xNj
−2n(k − 1)− j + 1− kj = xEj .

To see claim (11), first assume that there is no r with i < r < j and µr = k − 1. Then
ki > j − i+ 1 and

xEi = −2n(k − 1)− i+ 1− ki 6 −2n(k − 1)− j < −2n(k − 1)− j + 1 = xNj .

On the other hand, if there is such an r then ki 6 r − i < j − i and we obtain

xEi = −2n(k − 1)− i+ 1− ki > −2n(k − 1)− j + 1 = xNj .

2In fact, one also draws sEi = E before all the East steps coming from entries of the area vector equal
to k occurring between the (n− i+ 1)-th and the (n− t+ 1)-th entry, where t is minimal such that i < t
and µn−t+1 = k − 1. However, permuting East steps clearly has no effect on the resulting path.
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Finally, we need to show T (0, 1) =
−→
S+

0 (µ). Let µn−j+1 = 0 and assume `Ej 6= 0. Then
xEj = −j+ 1 + kj. Choose i maximal such that i < j and µn−i+1 ∈ {0, 1}. Note that such
an i always exists. Then

sEj =

{
N if µn−i+1 = 0,

E if µn−i+1 = 1.

If `Ej = 0 then xEj = −n. In this case µn−i+1 < 0 for all i < j. Instead choose i 6 n
maximal such that µn−i+1 ∈ {0, 1}. Then

sEj =

{
N if µn−i+1 = 0,

E if µn−i+1 = 1.

Now let µn−j+1 = 1 and assume j > 1. Then xNj = −j + 1. Choose i maximal such that
i < j and µn−i+1 ∈ {0, 1}. Again such an i always exists. Then

sNj =

{
N if µn−i+1 = 0,

E if µn−i+1 = 1.

If j = 1 then `Nj = 0 and xNj = −n. In this case choose i 6 n maximal such that
µn−i+1 ∈ {0, 1}. Then

sNj =

{
N if µn−i+1 = 0,

E if µn−i+1 = 1.

We see that every entry of the area vector equal to zero contributes a North step and
every entry equal to one contributes an East step. Again this is consistent with the zeta

map. To see that the relative orders of North and East steps in T (0, 1) and
−→
S+

0 (µ) are
the same, it suffices to show that for all i < j

−n < xEi if `Ei 6= 0,

−n < xNi if i > 1,

xEj < xEi if µn−j+1 = µn−i+1 = 0, `Ei 6= 0,

xNj < xNi if µn−j+1 = µn−i+1 = 1, i > 1,

xEj < xNi if µn−j+1 = 0, µn−i+1 = 1, i > 1,

xNj < xEi if µn−j+1 = 1, µn−i+1 = 0, `Ei 6= 0.

5 The zeta map of type D

In Sections 5.1 and 5.2 we describe combinatorial models for the finite torus of type Dn in
terms of vertically labelled signed lattice paths, and for the non-nesting parking functions
of type Dn in terms of diagonally labelled signed ballot paths. Again these models nicely
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⊕ 	
Figure 11: The signed lattice paths in L•1,2.

reflect the orbit structure under the action of the Weyl group SD
n in the sense that acting

by an element of SD
n only changes the labels, but not the underlying path.

In Section 5.3 we recover the dominant Shi region corresponding to a signed lattice
path using its area vector. Moreover we show how the Shi region corresponding to a
vertically labelled signed lattice path can be obtained using the diagonal reading word
in Section 5.4. The chosen models allow for a natural combinatorial description of the
zeta map, which is presented in Section 5.5. We prove that this construction coincides
with the uniform zeta map, thus implying that it is bijective. Moreover we show that the
zeta map induces a new bijection between lattice paths and ballot paths of odd length
(without signs).

The examples in this section are supplemented by Table 4 in the appendix.

5.1 The finite torus

The Coxeter number of the root system of type Dn is h = 2n − 2 hence the finite torus
is T = Q̌/(2n − 1)Q̌. Athanasiadis [6, Sec. 5.4] demonstrated that the system of repre-
sentatives Q̌ ∩ (2n− 1)A◦ for the orbits of T under the action of the Weyl group is given
by {

(λ1, λ2, . . . , λn) ∈ Q̌ : 0 6 |λ1| 6 λ2 6 . . . 6 λn and λn−1 + λn 6 2n− 1
}
, (12)

and that the stabiliser subgroup Stab(λ) 6 SD
n is generated by the simple transpositions

si for each i ∈ [n − 1] such that λi = λi+1, the reflection sα̃ that exchanges λn−1 and λn
and changes the signs of these entries if λn−1 + λn = 2n− 1, and the simple transposition
s0 that exchanges λ1 and λ2 and changes the signs of these entries if λ1 = −λ2.

Definition 38. A signed lattice path π ∈ L•n−1,n is a lattice path in Ln−1,n except that if
it begins with an East step then this East step is replaced by a signed East step from the
set {E+, E−}. We also define a sign function on signed lattice paths by setting ε(π) = −1
if π contains E− and ε(π) = 1 otherwise.

For example the set L•1,2 = {E+NN,E−NN,NEN,NNE} is displayed in Figure 11.
Given a signed lattice path π ∈ L•n−1,n let πi denote the number of East steps (with

or without sign) of π that occur before the i-th North step of π. Define an integer vector
λ by setting

λ1 = ε(π)π1

λi = πi for 1 < i < n and (13)
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Figure 12: Three vertically labelled signed lattice paths.

λn =

{
2πn − πn−1

2n− 1− 2πn + πn−1

if π1 + · · ·+ πn−2 is even,
if π1 + · · ·+ πn−2 is odd.

Example 39. Consider the three signed lattice paths in Figure 12 (ignoring the labels for
the moment). For the first path we find π = (0, 0, 4, 4, 4), ε(π) = 1, and π1 + π2 + π3 = 4
is even. We obtain λ = (0, 0, 4, 4, 4).

For the second path we find π = (1, 1, 2, 3, 5, 5), ε(π) = 1, and π1 + π2 + π3 + π4 = 7
is odd. We compute λ = (1, 1, 2, 3, 5, 6).

Finally, for the third path we find π = (3, 3, 3, 3, 3), ε(π) = −1, and π1 + π2 + π3 = 9
is odd. Hence λ = (−3, 3, 3, 3, 6).

It is easy to see that signed lattice paths represent the orbits of the finite torus under
the action of the Weyl group.

Proposition 40. The map ψ : L•n−1,n → Q̌ ∩ (2n− 1)A◦ defined by (13) is a bijection.

Proof. Suppose π ∈ L•n−1,n is a signed lattice path. Clearly |λ1| 6 λ2 6 . . . 6 λn−1.
Moreover, πn−1 6 2πn−πn−1 < 2n−1−πn−1 and πn−1 < 2n−1−2πn+πn−1 6 2n−1−πn−1

hence λn−1 6 λn 6 2n− 1− λn−1. Since λ1 + · · ·+ λn is even by definition, we conclude
that λ ∈ Q̌ ∩ (2n− 1)A◦.

By adding suitable labels to the signed lattice paths, we obtain a combinatorial model
for the finite torus of type Dn. This definition is very much in the spirit of the vertically
labelled Dyck paths in type An−1 and the vertically labelled lattice paths in type Cn.

Definition 41. A vertically labelled signed lattice path (π, v) is a pair of a signed lattice
path π ∈ L•n−1,n and a signed permutation v ∈ SB

n such that v(i) < v(i+ 1) for each rise
i of π, |v(1)| < v(2) if π begins with two North steps, and

n∏
i=1

sgn(v(i)) = ε(π)(−1)λn−1+λn ,

where λ is defined by (13). We denote the set of all vertically labelled signed lattice paths
by Vert(Dn).
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Furthermore, given a vertically labelled signed lattice path (π, v) define a signed per-
mutation u ∈ SD

n , by setting

u(1) = ε(π)v(1),

u(i) = v(i) for 1 < i < n and (14)

u(n) = (−1)λn−1+λnv(n).

Note that by definition u has an even number of sign changes.

Example 42. We can confirm that the vertically labelled lattice paths in Figure 12 fulfil
all requirements. Consider the left path first. Since ε(π)(−1)λ4+λ5 = 1 · (−1)4+4 = 1 we
must have v ∈ SD

5 , that is, v must have an even number of sign changes. Since π begins
with two North steps we require |v(1)| = 3 < v(2) = 4. Additionally, 3 and 4 are rises
of π thus v(3) = −2 < v(4) = 1 < v(5) = 5. The even signed permutation u is given by
u = v = [−3, 4,−2, 1, 5].

Secondly, for the middle path we find ε(π)(−1)λ5+λ8 = 1 · (−1)5+6 = −1. Accordingly
the signed permutation v = [1, 3,−2,−5,−4, 6] has an odd number of sign changes,
that is, v ∈ SB

6 − SD
6 . The path π has two rises 1 and 5, and v fulfils the conditions

v(1) = 1 < v(2) = 3 and v(5) = −4 < v(6) = 6. The associated even signed permutation
u = [1, 3,−2,−5,−4,−6] ∈ SD

6 is obtained from v by changing the sign of v(6).
Finally, for the right path we compute ε(π)(−1)λ4+λ5 = (−1)·(−1)3+6 = 1. Accordingly

the signed permutation v = [−5,−4, 1, 2, 3] ∈ SD
5 has an even number of sign chances.

The rises of π are 1, 2, 3 and 4, and we have v(1) < v(2) < v(3) < v(4) < v(5). Moreover
the even signed permutation u = [5,−4, 1, 2,−3] is obtained from v by changing the signs
of v(1) and v(5).

We now extend the bijection of Proposition 40 to the finite torus.

Proposition 43. The map ψ : Vert(Dn)→ Q̌/(2n−1)Q̌ given by (π, v) 7→ u·λ+(2n−1)Q̌,
where λ and u are defined in (13) and (14), is a bijection.

Proof. Let π ∈ L•n−1,n be a signed lattice path and u ∈ SD
n an even signed permutation.

Using Proposition 40 and Lemma 5 it suffices to show that (π, v) ∈ Vert(Dn) if and only
if u · J(λ) ⊆ Φ+.

This is not a difficult task and is accomplished by distinguishing a few cases. For
example consider the two simple roots in S = {e2− e1, e2 + e1}. If (π, v) ∈ Vert(Dn) then

S ∩ J(λ) = {e2 − e1} ⇔ λ1 = λ2 > 0⇔ π1 = π2 and ε(π) = 1

⇒ v(1) < v(2) and ε(π) = 1

⇒ u(1) < u(2)⇔ u · (e2 − e1) ∈ Φ+,

S ∩ J(λ) = {e2 + e1} ⇔ λ1 = −λ2 < 0⇔ π1 = π2 and ε(π) = −1

⇒ v(1) < v(2) and ε(π) = −1

⇒ −u(1) < u(2)⇔ u · (e2 + e1) ∈ Φ+,

S ⊆ J(λ)⇔ λ1 = λ2 = 0⇔ π begins with two North steps
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⊕ 	

Figure 13: The set B•3 of signed ballot paths of length three.

⇒ |v(1)| < v(2)⇔ |u(1)| < u(2)⇔ u · S ⊆ Φ+.

Conversely, assume that u · J(λ) ⊆ Φ+. Then

π1 = π2 > 0 and ε(π) = 1⇔ λ1 = λ2 > 0⇔ S ∩ J(λ) = {e2 − e1}
⇒ u · (e2 − e1) ∈ Φ+ and ε(π) = 1

⇔ u(1) < u(2) and ε(π) = 1

⇒ v(1) < v(2),

π1 = π2 > 0 and ε(π) = −1⇔ λ1 = −λ2 > 0⇔ S ∩ J(λ) = {e2 + e1}
⇒ u · (e2 + e1) ∈ Φ+ and ε(π) = −1

⇔ −u(1) < u(2) and ε(π) = −1

⇒ v(1) < v(2),

π begins with two North steps⇔ λ1 = λ2 = 0⇔ S ⊆ J(λ)

⇒ u · S ⊆ Φ+ ⇔ |u(1)| < u(2)⇔ |v(1)| < v(2).

All other roots α ∈ ∆ ∪ {α̃} are treated similarly (See also the proofs of Proposition 17
and Proposition 68).

5.2 Non-nesting parking functions

In this section we present an interpretation of the non-nesting parking functions of type
Dn in terms of labelled ballot paths of odd length.

One aspect of the root system of type Dn that is different from the other infinite
families (An−1, Bn and Cn) is the fact that the root poset is no longer planar. For this
reason its antichains are seldom associated with lattice paths in the literature. However,
we have found a simple way to represent antichains by ballot paths of odd length by
adding a sign to a certain East step.

Definition 44. A signed ballot path β ∈ B•2n−1 is a ballot path with 2n− 1 steps except
that if its n-th North step is followed by an East step, then this East step is replaced with
a signed East step from the set {E+, E−}. We define a sign function ε : B•2n−1 → {±1}
in the same way as for signed lattice paths, that is, ε(π) = −1 if π contains the step E−

and ε(π) = 1 otherwise.

For example the set B•3 = {NEN,NNE+, NNE−, NNN} is pictured in Figure 13.
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Let β ∈ B•2n−1 be a signed ballot path and (i, j) a valley of β. We define the corre-
sponding root αi,j ∈ Φ+ by

αi,j =


en+1−i − en+1−j if j 6 n− 1,

en+1−i − ε(β)e1 if j = n,

en+1−i + ε(β)e1 if j = n+ 1,

en+1−i + ej−n if j > n+ 2.

Furthermore set

Aβ =
{
αi,j : (i, j) is a valley of β

}
,

except if β has a valley (i, n) and the n-th North step of β is not followed by an East
step, in which case both αi,n and αi,n+1 are added to Aβ due to the valley (i, n). It is easy
to check that this correspondence connects signed ballot paths to antichains in the root
poset.

Proposition 45. The map ϕ : B•2n−1 → Antichains(Φ+) given by β 7→ Aβ is a bijection
between signed ballot paths and antichains in the root poset Φ+ of type Dn.

Example 46. Consider the signed ballot paths in Figure 14 (disregarding the labels
for the moment). The first path has three valleys (1, 3), (2, 5) and (3, 7). The second
valley, marked with a star in Figure 14, is of the special form (i, n) where the n-th North
step is not followed by an East step, and therefore contributes two roots. We obtain
Aβ = {e5 − e3, e4 − e1, e4 + e1, e3 + e2}.

The second path has two valleys (1, 7) and (2, 10). Since 7 = n + 1 the former
contributes the root e6 + ε(β)e1 = e6 − e1. We obtain Aβ = {e6 − e1, e5 + e4}.

For the third path we compute Aβ = {e5 − e4, e4 − e2, e3 + e1, e2 − e1}.

Next we extend signed ballot paths (introducing diagonal labellings) to obtain a com-
binatorial model for the non-nesting parking functions of type Dn. This construction is
akin to diagonally labelled Dyck path in type An−1 and diagonally labelled ballot paths
in type Cn.

Definition 47. A diagonally labelled signed ballot path (β, w) is a pair of a signed ballot
path β ∈ B•2n−1 and a signed permutation with an even number of sign changes w ∈ SD

n

such that for each valley (i, j) of β we have

w(n+ 1− i) >


w(n+ 1− j) if j 6 n− 1,

ε(β)w(1) if j = n,

−ε(β)w(1) if j = n+ 1,

w(n− j) if j > n+ 2,

and such that w(n + 1− i) > |w(1)| if β has a valley (i, n) and the n-th North step of β
is not followed by an East step. We denote the set of all diagonally labelled signed ballot
paths by Diag(Dn).
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Figure 14: Three diagonally labelled signed ballot paths.

Hence, if we place the labels w(i), where i = n, n − 1, . . . , 2, ε(β),−ε(β),−2, . . . ,−n,
in the diagonal then for each valley the label to its right has to be smaller than the label
below it.

Example 48. Let us return to the diagonally labelled ballot paths of Figure 14. First
consider the leftmost path. From ε(β) = 1 we obtain w = [−3, 5,−1, 4, 2] ∈ SD

5 . We can
confirm that w fulfils the conditions w(6− 1) = 2 > w(6− 3) = −1 and w(6− 3) = −1 >
w(5 − 7) = −5, which are imposed by the valleys (1, 3) and (3, 7). Moreover we have
w(6− 2) = 4 > |w(1)| = 3 in accordance with the special valley (2, 5).

For the middle path we find ε(β) = −1 and w = [−3,−2,−5, 6, 4,−1] ∈ SD
6 . Note

that w(7 − 1) = −1 > −ε(β)w(1) = w(1) = −3 as it is required by the presence of a
valley (1, 7) = (1, n+ 1).

In case of the rightmost path we find ε(β) = −1 and thus w = [−2,−1, 3, 4, 5]. We
verify that w(5) = 5 > w(4) = 4 > w(2) = −1 > −ε(β)w(1) = −2 and w(3) = 3 >
ε(β)w(1) = 2.

We conclude this section by extending Proposition 45 to a bijection between diagonally
labelled signed ballot paths an non-nesting parking functions.

Proposition 49. The map ϕ : Diag(Dn) → Park(Dn) given by (β, w) 7→ [w,Aβ] is a
bijection.

Proof. Let (β, w) ∈ Diag(Dn) be a diagonally labelled signed ballot path. In order to
prove that ϕ is injective, it suffices to show that w is the canonical coset representative
of [w,Aβ] described in Lemma 8, that is, w · Aβ ⊆ Φ+. This is a simple consequence of
the definitions, for example

αi,n = en+1−i − ε(β)e1 ∈ Aβ ⇔ (i, n) is a valley of β
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⇒ w(n+ 1− i) > ε(β)w(1)⇔ w(αi,n) ∈ Φ+.

Conversely suppose that [w,Aβ] ∈ Park(Dn), where w ∈ SD
n is chosen such that w ·Aβ ⊆

Φ+. Then it is not difficult to show that (w, β) is a diagonal labelling, and thus ϕ is
surjective. For example,

(i, n) is a valley of β ⇔ αi,n ∈ Aβ
⇒ w(αi,n) ∈ Φ+ ⇔ w(n+ 1− i) > ε(β)w(1).

5.3 The area vector

Let π ∈ L•n−1,n be a signed lattice path and define λ as in Proposition 40. Recall that λ
represents an orbit of the finite torus under the action of the Weyl group, and therefore
corresponds to a dominant Shi region with minimal alcove w̃DA◦ via the Anderson map
of Section 2.5. The main goal of this section is to recover the element w̃D of the affine
Weyl group from π.

As before we write w̃−1
D = tµσ where µ ∈ Q̌ and σ ∈ SD

n . Since w̃−1
D is Graßmannian,

the signed permutation σ is given by Lemma 15 once we know µ. We will see shortly that
µ can be interpreted as an area vector of the signed lattice path π, similar to the area
vector of a Dyck path in type An−1 or a lattice path in type Cn.

Recall from Section 2.7 that µ appears implicitly in the identity λ = w̃f w̃
−1
D · 0. To

find µ we need an explicit description of wf .

Lemma 50. We have wf = tντ , where ν ∈ Q̌ and τ ∈ SD
n are given by

ν =

{
(0, 1, . . . , n− 2, n− 1)

(0, 1, . . . , n− 2, n)
τ =

{
[1, 2, . . . , n− 1, n]

[−1, 2, . . . , n− 1,−n]

if n− 1 ≡ 0, 3 mod 4,
if n− 1 ≡ 1, 2 mod 4.

Proof. By Lemma 3 it suffices to show that tντ(∆̃) = (∆ − δ) ∪ {−α̃ + hδ}. Suppose
n− 1 ≡ 0, 3 modulo 4, then

tντ(αi) = αi − 〈τ, αi〉δ = αi − δ for all 0 6 i 6 n− 1,

tντ(−α̃ + δ) = −α̃ + (1 + 〈τ, α̃〉)δ = −α̃ + (2n− 2)δ.

If n− 1 ≡ 1, 2 modulo 4, then four cases are different:

tντ(α0) = α1 − δ,
tντ(α1) = α0 − δ,

tντ(αn−1) = −α̃ + 〈τ, α̃〉δ = −α̃ + (2n− 2)δ and

tντ(−α̃ + δ) = αn−1 + (1− 〈τ, αn−1〉)δ = αn−1 − δ.

For example in dimensions n = 5 and n = 6 we have

wf = [1,−9,−19,−29,−39] and wf = [−1,−11,−23,−35,−47, 72].
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⊕ 	

Figure 15: Signed lattice paths with area vectors (0,−1, 2, 1, 0), (−1, 0, 0, 0, 1, 0) and (−3, 2, 1, 0, 2).

Definition 51. Let π ∈ L•n−1,n be a signed lattice path, and define λ as in Proposition 40,

and ν ∈ Q̌ and τ ∈ SD
n as in Lemma 50. We define the type Dn area vector of π as

µ = τ(λ− ν).

Indeed note that for 1 < i < n the entry µi counts the number of boxes in the i-th
row between the path π and the alternating path ρ = N(EN)n−1 ∈ Ln−1,n (the number
being negative while π is above ρ). Furthermore µ1 counts the number of such boxes in
the first row up to a sign, while µn is a little mysterious if one only looks at the picture
of π.

Example 52. We revisit the signed lattice paths from our running example that are
drawn again in Figure 15. The first path begins with a North step, thus the entries µi
of the area vector count the number of shaded boxes between π and ρ = N(EN)4 for all
i ∈ [n − 1]. Here µ2 = −1 is negative because π is above ρ in the second row. Moreover
n−1 = 4 ≡ 0 modulo 4. Thus µn = λn−(n−1) = 4−4 = 0. We obtain µ = (0,−1, 2, 1, 0).

For the second path we find ε(π) = 1 but n− 1 = 5 ≡ 1 modulo 4. Hence τ(1) = −1
and µ1 = −1. Note that this is the number of boxes between π and ρ = N(EN)5 in
the first row with a negative sign even though π is below ρ in this row. For 1 < i < 6
the entries µi give the number of boxes between π and ρ in the i-th row. Furthermore
µn = −(n− λn) = −(6− 6) = 0. We obtain µ = (−1, 0, 0, 0, 1, 0).

In case of the third path we have ε(π) = −1 and n− 1 ≡ 0 modulo 4. Thus µ1 = −3
is the number of boxes between π and the alternating path ρ in the first row with the
“wrong” sign. Moreover µn = λn − (n− 1) = 6− 4 = 2. We compute µ = (−3, 2, 1, 0, 2).

From the area vector we can compute the affine permutation w̃D that takes the fun-
damental alcove to the minimal alcove of the dominant Shi region corresponding to the
signed path π. We do so for the middle path of Figure 15. The translation tµ ∈

∼
SD
n

is given by tµ = [14, 2, 3, 4,−8, 6]. The unique even signed permutation σ ∈ SD
n such

that (σtµ)−1A◦ lies in the dominant chamber is σ = [−2, 3, 4, 6,−5, 1]. We obtain
w̃−1
D = tµσ = [−2, 3, 4, 6, 8, 14] and w̃D = [−7,−1, 2, 3, 8, 4].

We conclude this section by proving a simple lemma that will be useful later on. The
description of the representatives for the orbits of the Weyl group action on the finite
torus given in (12) imposes certain restrictions on the area vector of a signed lattice path.
Our lemma captures some of these properties.
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Lemma 53. Let π ∈ L•n−1,n be a signed lattice path with area vector µ.

(i) Let i, j ∈ [n] with i < j such that µj = µi − 1 and µ` /∈ {µi − 1, µi} for all ` with
i < ` < j. Then j = i+ 1.

(ii) Let i ∈ [n] such that µi 6 0 and µ` /∈ {µi, µi + 1} for all ` with 1 6 ` < i. Then
i = 1 or i = 2, µ2 = 0.

(iii) If µ1 < 0 then there exists i ∈ [n] with µi ∈ {−µ1 − 1,−µ1}.

(iv) Assume µ1 < 0 and let i ∈ [n] such that µi = −µ1 − 1 and µ` /∈ {−µ1,−µ1 − 1} for
all ` with 1 < ` < i. Then i = 2.

(v) Let i ∈ [n] such that µi > 0 and µ` /∈ {µi − 1, µi} for all ` with i < ` 6 n. Then
i = n.

(vi) If µn > 0 then there exists i ∈ [n] with µi ∈ {−µn + 1,−µn + 2}.

(vii) Assume µn > 0 and let i ∈ [n−1] such that µi = −µn+2 and µ` /∈ {−µn+1,−µn+2}
for all ` with i < ` < n. Then i = n− 1.

Proof. We first prove claim (i). From λ = τ · µ + ν we obtain λ` = µ` + ` − 1 for all `
with 1 < ` < n. Thus, in the described situation we have λ` /∈ {µi + ` − 2, µi + ` − 1}
for all ` with i < ` < j. If n − 1 ≡ 0, 3 modulo 4 or if j < n then λj = µi + j − 2.
Hence λ` 6 λ`+1 implies λ` < µi + ` − 2 for all ` with i < ` < j. On the other hand if
n − 1 ≡ 1, 2 modulo 4 and j = n, then λn = −µi + n + 1. Since λn−1 + λn 6 2n − 1 we
obtain that λn−1 6 µi + n− 2, and again we have λ` < µi + `− 2 for all ` with i < ` < j.
But for ` = i+1 this yields a contradiction, namely |λi| = |µi + i− 1| 6 λi+1 < µi+ i−1.
Therefore we must have j = i+ 1.

To see (ii) note that by the same argument as in the proof of (i) we obtain λ` < µi+`−1
for all ` with 1 < ` < i. Thus if i > 2 then 0 6 λ2 < µi + 1 implies µi = 0, λ2 = 0 and
µ1 = λ1 = 0, which is a contradiction. If i = 2 and µ2 = −1 then λ2 = 0 and µ1 = λ1 = 0,
which is again a contradiction. Hence either i = 1 or i = 2 and µ2 = 0 as claimed.

To see claim (iii) assume that µi /∈ {−µ1 − 1,−µ1} for all i ∈ [n]. From λi > |λi−1|
we obtain λi > i− 1− µ1 > i for all i with 1 < i < n. In particular λn−1 > n, which is a
contradiction.

Similarly in the situation of (iv) we have λ` > ` − 1 − µ1 for all ` with 1 < ` < i. If
2 < i < n, then we obtain λi−1 > i − 2 − µ1 = λi which is a contradiction. If i = n > 2
then λn−1 > n is the same contradiction as in the proof of (iii). Thus i = 2 by elimination.

In the situation of (v) we have λ` > `− 1 +µi > ` for all ` with i < ` < n by the same
argument as in the proof of (iii). Hence, if i < n− 1 then λn−1 > n is a contradiction. If
i = n − 1 and µn−1 = 1, then λn−1 = n − 1. Therefore λn ∈ {n − 1, n} and µn ∈ {0, 1},
which is a contradiction. The only remaining possibility is i = n.

To see (vi) assume that µ` /∈ {−µn + 1,−µn + 2} for all ` ∈ [n]. If n− 1 ≡ 0, 3 modulo
4 then 2n− 1− λn = n− µn. If n− 1 ≡ 1, 2 modulo 4 then λn = n− µn. In both cases
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we have λn−1 6 n− µn. Hence λ` /∈ {`− µn, `− µn + 1} implies λ` < `− µn for all ` with
1 < ` < n. This yields a contradiction for ` = 2.

Next consider claim (vii). By the same argument used in the proof of (vi) λ` /∈
{`−µn, `−µn+1} implies λ` < `−µn for all ` with i < ` < n. This yields a contradiction
for ` = i+ 1, namely λi+1 < i+ 1− µn = |λi|. Therefore we must have i = n− 1.

5.4 The diagonal reading word

Let (π, v) ∈ Vert(Dn) be a vertically labelled signed lattice path. Recall that (π, v)
corresponds to an element u ·λ+(2n−1)Q̌ of the finite torus by Proposition 43, and hence
to a region of the Shi arrangement with minimal alcove w̃RA◦ by Theorem 7. Decompose
w̃R = ww̃D such that w ∈ SD

n and w̃DA◦ is the dominant Shi alcove corresponding to π
as in the previous section. Our aim in this section is to recover the signed permutation
w, and thereby the element w̃R of the affine Weyl group, from (π, v).

To this end let u, τ ∈ SD
n be defined as in Proposition 43 and Lemma 50 respectively.

Recall that w = uτσ by Proposition 11. Consequently one can obtain w by computing
σ from π as in the previous section. We show that w can also be read off the vertically
labelled signed lattice path (π, v) in similar fashion as in type Cn.

Definition 54. Let (π, v) ∈ L•n−1,n×SB
n , µ be the type Dn area vector of π and define ν

as in Lemma 50 above. Define the type Dn diagonal reading word dD(π, v) as follows: For
each i = 0, 1, 2, . . . first write down the labels v(j) of the rows with µj = −i from bottom
to top, then write down the negative labels −v(j) of rows with µj = i + 1 from top to
bottom. Finally we need to adjust some signs: Multiply the label coming from the top
row by (−1)1+µn−1+µn and the label coming from the bottom row by ε(π)(−1)1+νn−1+νn .
Then change the sign of dD(π, v)(1) if the number of positive entries of µ is odd.

Except for some necessary twists, the definition of the diagonal reading word of typeDn

follows very similar rules as the counterparts in types An−1 and Cn. Note that dD(π, v) ∈
SD
n , that is, the diagonal reading word has an even number of sign changes.

Example 55. Let us return to the vertically labelled signed lattice paths from Figure 12.
The first path has labels v = [−3, 4,−2, 1, 5] and area vector µ = (0,−1, 2, 1, 0). Read-

ing off the labels according to the entries of the area vector yields the signed permutation
[−3, 5,−1, 4, 2]. As (−1)1+µn−1+µn = 1 and ε(π)(−1)1+νn−1+νn = 1 · 1 = 1 and since µ has
two positive entries, which is an even number, all signs remain unchanged. We obtain
dD(π, v) = [−3, 5,−1, 4, 2].

In case of the second path we have v = [1, 3,−2,−5,−4, 6] and µ = [−1, 0, 0, 0, 1, 0].
Reading off the labels according to the entries of the area vector yields the signed per-
mutation [3,−2,−5, 6, 4, 1]. We have (−1)1+µn−1+µn = 1, however, ε(π)(−1)1+νn−1+νn =
1 · (−1)1+4+6 = −1. Thus we need to change the sign of the label coming from the bottom
row from 1 to −1. Additionally µ has an odd number of positive entries, namely a single
one. Consequently we change 3 to −3. We obtain dD(π, v) = [−3,−2,−5, 6, 4,−1].
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The third path has labels v = [−5,−4, 1, 2, 3] and area vector µ = (−3, 2, 1, 0, 2).
Reading off the labels according to the entries of the area vector yields the signed per-
mutation [2,−1,−3, 4,−5]. Since (−1)1+µn−1+µn = −1 and ε(π)(−1)1+νn−1+νn = (−1) · 1
and µ has three positive entries, all three signs have to be changed. We obtain dD(π, v) =
[−2,−1, 3, 4, 5].

In light of the next following proposition we compute that for the second path we have

dD(π, v) = [1, 3,−2,−5,−4,−6] · [−1, 2, 3, 4, 5,−6] · [−2, 3, 4, 6,−5, 1] = uτσ,

where the respective signed permutations are taken from Example 42 and Example 52.

The following proposition asserts that our definition always yields the desired signed
permutation.

Proposition 56. Let (π, v) ∈ Vert(Dn) be a vertically labelled signed lattice path with area
vector µ and chose σ ∈ SD

n as in Lemma 15 such that tµσ is Graßmannian. Moreover let
u, τ ∈ SD

n be defined as in Proposition 43 and Lemma 50 respectively. Then dD(π, v) =
uτσ.

Proof. Let i, j ∈ [n]. By Lemma 15 we have |σ(i)| = j if and only if

i = #
{
r ∈ [n] : |µr| < |µj|

}
+ #

{
r ∈ [n] : j 6 r, µr = µj > 0

}
+ #

{
r ∈ [j] : µr = µj 6 0

}
+ #

{
r ∈ [n] : µr = −µj > 0

}
Comparing this to the definition of dD(π, v) we obtain

|dD(π, v)(i)| = |v(j)| = |vσ(i)| = |uτσ(i)| .

Comparing Lemma 15 to the description of u in (14), τ in Lemma 50 and the definition
of the diagonal reading word, one can check that all signs work out and we may indeed
drop the absolute value in the above identity.

5.5 The zeta map

We are now in a position to present the combinatorial definition of the (Haglund–Loehr)
zeta map of type Dn.

Definition 57. Let π ∈ L•n−1,n be a signed lattice path with area vector µ. Its image
ζD(π) under the type Dn zeta map is obtained from

←−
S−2n−1(µ)

−→
S+

2n−1(µ)
←−
S−2n−2(µ)

−→
S+

2n−2(µ) · · ·
←−
S−1 (µ)

−→
S+

1 (µ)
←−
S−0 (µ)

−→
S+

0 (µ)

by deleting the last letter and, if the n-th North step is followed by an East step, adding
a sign to this East step such that

ε(ζD(π)) = (−1)#{r∈[n]:µr>0}.

Moreover, given a vertically labelled signed lattice path (π, v) ∈ Vert(Dn) we define its
image under the Haglund–Loehr-zeta map of type Dn as

ζD(π, v) = (ζD(π), dD(π, v)).
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Note that by definition ζD(π) is a signed ballot path, that is, ζD : L•n−1,n → B•2n−1.

Example 58. For a first example consider Figure 16. Recall that µ = (0,−1, 2, 1, 0). We
obtain

−→
S+

2 (µ) = N,
←−
S−1 (µ) = N,

−→
S+

1 (µ) = EN,
←−
S−0 (µ) = NEN,

−→
S+

0 (µ) = NEN,

which combines to β = ζD(π) = NNENNENNE. The last North step of
−→
S+

0 (µ) is
deleted. Note that in this example π begins with two North steps, which translates into
a valley of β of the special form (x, n), where the n-th North step of β is followed by a
North step. The condition |v(1)| = 3 < v(2) = 4 on (π, v) corresponds to the condition
w(6− 2) = 4 > |w(1)| = 3 on (β, w). We shall later see that this is always the case.

The signed lattice path in Figure 17 has area vector µ = (−1, 0, 0, 0, 1, 0). We compute

←−
S−1 (µ) = N,

−→
S+

1 (µ) = N,
←−
S−0 (µ) = NNNNE,

−→
S+

0 (µ) = NNNEN.

The final North step of
−→
S+

0 (µ) is deleted. Moreover the sixth North step is followed by
an East step. Since µ has an odd number of positive entries we have ε(β) = −1, and this
East step is replaced by E−. We conclude ζD(π) = NNNNNNE−NNNE.

The signed lattice path in Figure 18 has area vector µ = (−3, 2, 1, 0, 2). We compute

←−
S−3 (µ) = N,

←−
S−2 (µ) = E,

−→
S+

2 (µ) = NN,
−→
S+

1 (µ) = ENE,
←−
S−0 (µ) = N,

−→
S+

0 (µ) = EN.

As above the final step of
−→
S+

0 (µ) is deleted, and East step following the n-th North step
is replaced by an East step with a negative sign because µ has an odd number of positive
entries. We obtain ζD(π) = NENNENENE−.

In the remainder of this section we will prove that both maps defined above are the
type Dn instances of the uniform bijections given in (2) and (1). Thereby we establish
the following theorem, which is the main result of this section.
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Theorem 59. The Haglund–Loehr-zeta map ζD : Vert(Dn) → Diag(Dn) is a bijection
from vertically labelled signed lattice paths to diagonally labelled signed ballot paths.

From Theorem 59 we may derive some nice consequences. Since the underlying ballot
path of ζD(π, v) only depends on π and not on v, we have the following result.

Theorem 60. The zeta map ζD : L•n−1,n → B•2n−1 is a bijection from signed lattice paths
to signed ballot paths.

Moreover, given any signed path ρ define ρ∗ as the path obtained from ρ by replacing
all signed East steps E+, E− by simple East steps E. Define ζ∗D(π∗) = (ζD(π))∗ for all
π ∈ L•n−1,n. The zeta map of type Dn thereby gives rise to a new bijection between lattice
paths in an n− 1× n rectangle and ballot paths of odd length.

Theorem 61. The map ζ∗D : Ln−1,n → B2n−1 is a well-defined bijection.

Proof. Suppose π, ρ ∈ L•n−1,n differ only by the sign of the initial East step. Then their
respective area vectors differ only by the sign of the first entry. It is easy to see that
ζD(π) and ζD(ρ) can only differ by the sign of an East step. For example, suppose
a = (k, a2, . . . , an) and b = (−k, a2, . . . , an), where k > 0, then

←−
S−k (a)N =

←−
S−k (b) and

−→
S+
k (a) = N

−→
S+
k (b).

Hence

←−
S−k (a)

−→
S+
k (a) =

←−
S−k (b)

−→
S+
k (b).

Consequently ζ∗D is well-defined and bijectivity follows from Theorem 60.
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Before we attack the proof of Theorem 59 we need another lemma. In combination
with Lemma 15 it gives a criterion for when |σ−1(i)| = 1.

Lemma 62. Let π be a signed lattice path with area vector µ, and let i ∈ [n] be such that

1 = #
{
r ∈ [n] : |µrK − r| 6 |µiK − i|

}
.

Then either i is minimal such that µi = 0 or µj 6= 0 for all j ∈ [n], µn = 1 and i = n.

Proof. Clearly µi 6= 0 implies that µ` 6= 0 for all ` ∈ [n]. Moreover µ` 6= 0 for all ` ∈ [n]
and µn = 1 implies i = n. Thus assume that µ` 6= 0 for all ` ∈ [n] and µn 6= 1. From
λn−1 6 min{λn, 2n − 1 − λn} we obtain µn−1 < 0. Thus µ` < 0 for all ` with 1 < ` < n
which yields a contradiction for ` = 2.

We proof Theorem 59 in two steps. First we prove Theorem 63, which establishes a
strong correspondence between the rises of (π, v) and the valleys of ζD(π, v).

Let (π, v) ∈ L•n−1,n × SB
n and let i be a rise of π. We say the rise i is labelled by

(v(i), v(i + 1)). If π begins with two North steps and i = 1, then we say i is labelled by
(± |v(i)| , v(i+ 1)) instead. Given (β, w) ∈ B•2n−1 ×SB

n and a valley (i, j) of β, we say

(i, j) is labelled by


(
w(n+ 1− i), w(n+ 1− j)

)
if j < n,(

w(n+ 1− i), ε(β)w(1)
)

if j = n,(
w(n+ 1− i), ε(β)w(−1)

)
if j = n+ 1,(

w(n+ 1− i), w(n− j)
)

if j > n+ 1.

If j = n and the n-th North step of β is followed by another North step, then we say (i, j)
is labelled by (w(n+ 1− i),± |w(1)|) instead.

Note that if we place the labels w(i), where i = n, . . . , 2, ε(β),−ε(β),−2, . . . ,−n, in
the diagonal, then each valley is labelled by the number below it and the number to its
right.
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Theorem 63. Let (π, v) ∈ L•n−1,n × SB
n be a pair of a signed lattice path and a signed

permutation, and let a, b ∈ v([n]). Then (π, v) has a rise labelled (a, b) if and only if
(ζD(π), dD(π, v)) has a valley labelled (b, a) or (−a,−b). Moreover (π, v) has a rise labelled
(± |a| , b) if and only if (ζD(π), dD(π, v)) has a valley labelled (b,± |a|).

Example 64. Consider once more the labelled paths in Figure 18. The vertically labelled
signed lattice path has four rises that are labelled by (−5,−4), (−4, 1), (1, 2) and (2, 3).
This corresponds exactly to the valleys of the diagonally labelled signed ballot path, which
are labelled by (5, 4), (4,−1), (3, 2) and (−1,−2).

Moreover, the vertically labelled signed lattice path in Figure 16 has a rise labelled by
(±3, 4), and its image under the zeta map has a valley labelled by (4,±3).

Proof of Theorem 63. Define λ ∈ Q̌ ∩ (h + 1)A◦ and u ∈ SD
n as in Proposition 43. Let

ν ∈ Q̌ and τ ∈ SD
n be as in Lemma 50. Moreover, let µ be the type Dn area vector of π

and let σ ∈ SD
n be given by Lemma 15 such that tµσ is Graßmannian.

(Part 1) We start out by demonstrating the backward implication. Therefore assume

that ζD(π) has a valley (x, y). Recall that ζD(π) is the concatenation of sequences
←−
S−k (µ)

and
−→
S+
k (µ), thus there are multiple situations in which a valley can arise: within such a

sequence or at the join of two sequences. These cases, while being similar, have to be
treated separately.

(1.1) The valley (x, y) appears within a sequence
←−
S−k (µ). Then there exist indices

i, j ∈ [n] with i < j such that µi = −k, µj = −k− 1 and µ` /∈ {−k,−k− 1} for all ` with
i < ` < j. By Lemma 53 (i) we have j = i+ 1.

If i = 1 then λ2 = 1 + µ2 = −k 6 0 thus λ1 = λ2 = 0. It follows that π1 = π2 = 0 and
i is a rise of π. If n − 1 ≡ 1, 2 modulo 4 and i = n − 1 then λn = n − µn = n + k + 1
and λn−1 = n − 2 − k. Hence λn−1 + λn = 2n − 1 and i is a rise of π. In all other cases
λi = i− 1− k and λi+1 = i− k− 1. Thus πi = λi = λi+1 = πi+1 and again i is a rise of π.

The number x equals the number of East steps in the sequence

←−
S−2n+1(µ)

−→
S+

2n−1(µ) · · ·
←−
S−k+1(µ)

−→
S+
k+1(µ)

←−
S−k (µi+1, . . . , µn).

Hence,

x = #
{
r ∈ [n] : |µr| > k + 1

}
+ #

{
r ∈ [n] : i+ 1 6 r, µr = −k − 1

}
= #

{
r ∈ [n] : |µrK − r| > |(−k − 1)K − (i+ 1)|

}
.

Note that |σ−1(i+ 1)| 6= 1 by Lemma 62 because µi+1 < 0. Lemma 15 therefore provides

n+ 1− x = #
{
r ∈ [n] : |µrK − r| 6 |µi+1K − (i+ 1)|

}
=
∣∣σ−1(i+ 1)

∣∣ = σ−1(i+ 1).

We conclude that

dD(π, v)(n+ 1− x) = uτσ(n+ 1− x) = uτ(i+ 1) = v(i+ 1)
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because even if i+ 1 = n we have µn−1 + µn = −2k − 1, which is odd.
On the other hand, y equals the number of North steps in the sequence

←−
S−2n−1(µ)

−→
S+

2n−1(µ) · · ·
←−
S−k+1(µ)

−→
S+
k+1(µ)

←−
S−k (µi, . . . , µn).

By Lemma 15 we therefore have

n+ 1− y = #
{
r ∈ [n] : |µrK − r| 6 |µiK − i|

}
=
∣∣σ−1(i)

∣∣ .
We first treat the case where |σ−1(i)| 6= 1. Note that this implies i > 1. Then by
Lemma 15 we have n+ 1− y = σ−1(i) because µi 6 0. We conclude that

dD(π, v)(n+ 1− y) = uτσ(n+ 1− y) = uτ(i) = v(i),

and the valley is labelled by (v(i+ 1), v(i)).
Next assume that |σ−1(i)| = 1, that is, y = n. Then k = 0. If i = 1 then we have

already seen that π begins with two North steps. Since
←−
S−0 (µ) ends with a valley and

−→
S+

0 (µ) begins with a North step, we are in the special situation that the valley (x, n) is
labelled by (v(2),± |v(1)|).

Finally if i > 1 then µ` 6= 0 for all ` with 1 6 ` < i. It follows that there has to
be an index ` ∈ [i − 1] such that µ` ∈ {1,−1} and thus the n-th North step of ζD(π) is
followed by an East step. Consequently ζD(π) contains a signed East step whose sign is
determined by the number of positive entries of µ. We conclude that

dD(π, v)(1) = uτσ(1) = (−1)#{r∈[n]:µr>0}uτ(i) = ε(ζD(π))v(i),

in which case the valley is labelled by (v(i+ 1), v(i)).

(1.2) Secondly, assume that the valley (x, y) arises within a sequence
−→
S+
k (µ) for some

k > 0. Then there exist indices i, j ∈ [n] with i < j such that µi = k + 1, µj = k and
µ` /∈ {k, k + 1} for all ` with i < ` < j. From Lemma 53 (i) we obtain j = i+ 1.

If n − 1 ≡ 1, 2 modulo 4 and i = 1, then λ1 = −k − 1 < 0 and λ2 = 1 + k. Hence
π1 = π2 = k+1, ε(π) = −1 and i is a rise of π. Note that i = n−1 yields a contradiction:
Either n − 1 ≡ 0, 3 modulo 4, then λn−1 = (n − 2) + (k + 1) and λn = n − 1 + k thus
λn−1 + λn > 2n, or n − 1 ≡ 1, 2 modulo 4, then λn = n − k and λn−1 > λn. In all other
cases we have λi = (i − 1) + (k + 1) = i + k = λi+1. Thus πi = πi+1 and i is a rise of π.
Note that if n− 1 ≡ 0, 3 modulo 4 and i = 1 then λ1 = k + 1 > 0 and ε(π) = 1.

Similar to the case above, x equals the number of East steps in the sequence

←−
S−2n−1(µ)

−→
S+

2n−1(µ) · · ·
−→
S+
k+1(µ)

←−
S−k (µ)

−→
S+
k (µ1, . . . , µi).

Using Lemma 15 we conclude

n+ 1− x = #
{
r ∈ [n] : |µrK − r| 6 |µiK − i|

}
=
∣∣σ−1(i)

∣∣ .
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By Lemma 62 we have |σ−1(i)| 6= 1 because µi > 1, thus Lemma 15 yields −σ−1(i) =
n+ 1− x. We obtain

dD(π, v)(n+ 1− x) = uτσ(n+ 1− x) = −uτ(i) = −v(i),

where we use that ε(π) = −1 if and only if n− 1 ≡ 1, 2 modulo 4 in the case where i = 1.
On the other hand, y equals the number of North steps in the sequence

←−
S−2n−1(µ)

−→
S+

2n−1(µ) · · ·
−→
S+
k+1(µ)

←−
S−k (µ)

−→
S+
k (µ1, . . . , µi+1).

It follows that

n+ 1− y = #
{
r ∈ [n] : |µrK − r| 6 |µi+1K − (i+ 1)|

}
=
∣∣σ−1(i+ 1)

∣∣ .
Suppose y = n, then by Lemma 62 we see that µ` 6= 0 for all ` ∈ [n], k = 1 and i+ 1 = n,
which is a contradiction as mentioned above. Thus y < n. From µi+1 > 0 and Lemma 15
we obtain −σ−1(i+ 1) = n+ 1− y. Therefore

dD(π, v)(n+ 1− y) = uτσ(n+ 1− y) = −uτ(i+ 1) = −v(i+ 1),

and the valley is labelled by (−v(i),−v(i+ 1)).

(1.3) The sequence
←−
S−k (µ) ends with an East step and the next non-empty sequence

begins with a North step. If
←−
S−k (µ) ends with an East step then there exists an index

i ∈ [n] such that µi = −k − 1 and µ` /∈ {−k − 1,−k} for all ` with 1 6 ` < i. By

Lemma 53 (ii) we have i = 1. Consequently by Lemma 53 (iii) the sequence
−→
S+
k (µ)

is non-empty. By assumption this means that there exists an index j ∈ [n] such that
µj = k = −µ1 − 1 and µ` /∈ {k, k + 1} for all ` with 1 < ` < j. Now Lemma 53 (iv)
implies that j = 2.

If n− 1 ≡ 0, 3 modulo 4 then λ1 = −k− 1 and λ2 = k+ 1. Hence π1 = π2 = k+ 1 and
ε(π) = −1. On the other hand if n− 1 ≡ 1, 2 modulo 4 then π1 = λ1 = k + 1 = λ2 = π2

and ε(π) = 1. In both cases i is a rise of π.

(1.3.1) Assume that k > 0, and let (x, y) be the valley under consideration. Then x
equals the number of East steps in the sequence

←−
S−2n−1(µ)

−→
S+

2n−1(µ) · · ·
−→
S+
k+1(µ)

←−
S−k (µ).

We deduce that

n+ 1− x = #
{
r ∈ [n] : |µrK − r| 6 |(−k − 1)K − 1|

}
=
∣∣σ−1(1)

∣∣ ,
and since µ1 < 0, implying |σ−1(1)| 6= 1, that n+ 1− x = σ−1(1). Moreover

dD(π, v)(n+ 1− x) = uτσ(n+ 1− x) = uτ(1) = −v(1),

because ε(π) = −1 is and only if n− 1 ≡ 0, 3 modulo 4.
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On the other hand, y equals the number of North steps in the sequence

←−
S−2n−1(µ)

−→
S+

2n−1(µ) · · ·
−→
S+
k+1(µ)

←−
S−k (µ)

−→
S+
k (µ1, µ2).

As before we obtain

n+ 1− y = #
{
r ∈ [n] : |µrK − r| 6 |kK − 2|

}
=
∣∣σ−1(2)

∣∣ .
We know that |σ−1(2)| 6= 1 because of Lemma 62. Since µ2 = k > 0 we conclude

dD(π, v)(n+ 1− y) = uτσ(n+ 1− y) = −uτ(2) = −v(2).

(1.3.2) Next assume that k = 0. In this case the valley is of the form (x, n + 1), where
n+ 1− x = σ−1(1) just as in (1.3.1) above. On the other hand by Lemma 62 we see that

|σ−1(2)| = 1. Note that
←−
S−0 (µ) ending with an East step implies that the n-th North step

of ζD(π) is followed by an East step. We obtain

dD(π, v)(1) = uτσ(1) = (−1)#{r∈[n]:µr>0}uτ(2) = ε(ζD(π))v(2),

and the valley (x, n+ 1) is labelled by(
dD(π, v)(n+ 1− x),−ε(ζD(π))dD(π, v)(1)

)
=
(
− v(1),−v(2)

)
.

(1.4) For some k > 0 the sequence
−→
S+
k (µ) ends with an East step and the next non-

empty sequence begins with a North step. Then there exists an index j ∈ [n] such that
µj = k + 1 and µ` /∈ {k, k + 1} for all ` with j < ` 6 n. By Lemma 53 (v) and (vi) we

know that j = n and that
←−
S−k−1(µ) is non-empty. By assumption

←−
S−k−1(µ) begins with a

North step, thus there exists an index i ∈ [n] such that µi = −k+1 and µ` /∈ {−k,−k+1}
for all ` with i < ` 6 n. Using Lemma 53 (vii) we see that i = n− 1.

If n−1 ≡ 0, 3 modulo 4 then λn−1 +λn = (n−k−1)+(n+k) = 2n−1. If n−1 ≡ 1, 2
modulo 4 then λn−1 = n− k − 1 = λn. In both cases i is a rise of π.

Once more let (x, y) be the valley under consideration. Then x is the number of East
steps in the sequence

←−
S−2n−1(µ)

−→
S+

2n−1(µ) · · ·
←−
S−k (µ)

−→
S+
k (µ),

and therefore

n+ 1− x = #
{
r ∈ [n] : |µrK − r| 6 |(k + 1)K − n|

}
=
∣∣σ−1(n)

∣∣
From µn > 1 we obtain n+ 1− x = −σ−1(n) and

dD(π, v)(n+ 1− x) = uτσ(n+ 1− x) = −uτ(n) = v(n)

because µn−1 + µn = (k + 1) + (−k + 1) = 2 is even.
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Moreover y equals the number of North steps in the sequence

←−
S−2n−1(µ)

−→
S+

2n−1(µ) · · ·
←−
S−k (µ)

−→
S+
k (µ)
←−
S−k−1(µn−1, µn).

Thus,

n+ 1− y = #
{
r ∈ [n] : |µrK − r| 6 |(−k + 1)K − (n− 1)|

}
=
∣∣σ−1(n− 1)

∣∣ .
First suppose that |σ−1(n− 1)| 6= 1. Then µn−1 6 0 implies n+ 1− y = σ−1(n− 1), and
we obtain

dD(π, v)(n+ 1− y) = uτσ(n+ 1− y) = uτ(n− 1) = v(n− 1).

On the other hand if |σ−1(n− 1)| = 1 then y = n, µn−1 = 0, k = 1 and µ` 6= 0 for all

` ∈ [n − 2]. We claim that the n-th North step of ζD(π), which belongs to
←−
S−0 (µ) and

corresponds to µn−1 = 0, is followed by an East step. To see this assume that µ` /∈ {0,−1}
for all ` ∈ [n − 2]. Then there has to be an index ` ∈ [n − 2] with µ` = 1. Thus

−→
S+

0 (µ)

begins with an East step and this East step is not the last step of
−→
S+

0 (µ). Consequently,
this East step is replaced by a signed East step such that ε(ζD(π)) = (−1)#{r∈[n]:µr>0}.
From

dD(π, v)(1) = uτσ(1) = (−1)#{r∈[n]:µr>0}uτ(n− 1) = ε(ζD(π))v(n− 1).

we obtain that the valley is labelled by (v(n), v(n− 1)).

(1.5) The the valley arises within (or at the end of) the sequence
−→
S+

0 (µ). Note that
−→
S+

0 (µ) is non-empty by Lemma 62, and recall that the last letter of
−→
S+

0 (µ) does not
contribute to ζD(π).

(1.5.1) There exist indices i, j ∈ [n] with i < j such that µi = 1, µj = 0 and
µ` /∈ {0, 1} for all ` with i < ` < j. Note that it does not make a difference if the North
step corresponding to µj = 0 is deleted. In this case ζD(π) ends with an East step, which
is still counted as a valley. By Lemma 53 (i) we have j = i+ 1.

If i = 1 and n − 1 ≡ 1, 2 modulo 4, then λ1 = −1 and λ2 = 1. Hence π1 = π2 = 1
and ε(π) = −1. If i = n − 1 and n − 1 ≡ 1, 2 modulo 4, then λn−1 = n − 1, λn = n and
λn−1 + λn = 2n − 1. Otherwise πi = λi = i = λi+1 = πi+1. In all cases i is a rise of π.
Also note that ε(π) = 1 if i = 1 and n− 1 ≡ 0, 3 modulo 4.

Denote the present valley by (x, y). Then x equals the number of East steps in the
sequence

←−
S−2n−1(µ)

−→
S+

2n−1(µ) · · ·
←−
S−0 (µ)

−→
S+

0 (µ1, . . . , µi),

We obtain

n+ 1− x = #
{
r ∈ [n] : |µrK − r| 6 |K − i|

}
=
∣∣σ−1(i)

∣∣ .
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Since µi = 1 and µi+1 = 0 we have |σ−1(i)| 6= 1 and −σ−1(i) = n+ 1− x. Thus

dD(π, v)(n+ 1− x) = uτσ(n+ 1− x) = −uτ(i) = −v(i)

as even if i = 1 we have ε(π) = −1 if and only if n− 1 ≡ 1, 2 modulo 4.
On the other hand y is the number of North steps in the sequence

←−
S−2n−1(µ)

−→
S+

2n−1(µ) · · ·
←−
S−0 (µ)

−→
S+

0 (µ1, . . . , µi+1).

Hence

y − n = #
{
r ∈ [i+ 1] : µr = 0

}
=
{
r ∈ [n] : |µrK − r| 6 i+ 1

}
=
∣∣σ−1(i+ 1)

∣∣ .
First assume that y > n+1, then by Lemma 15 we have σ−1(i+1) = y−n since µi+1 = 0.
It follows that

dD(π, v)(n− y) = −uτσ(y − n) = −uτ(i+ 1) = −v(i+ 1)

because even if i + 1 = n then µn−1 + µn = 1, which is odd. Thus the valley under
consideration is labelled by (−v(i),−v(i+ 1)).

If y = n+ 1 then there are exactly n North steps in ζD(π) that occur before the East
step corresponding to µi = 1. Hence the n-th North step of ζD(π) is followed by an East
step, and ζD(π) contains a signed East step. Thus

dD(π, v)(y) = uτσ(1) = (−1)#{r∈[n]:µr>0}uτ(i+ 1) = ε(ζD(π))v(i+ 1)

because even if i+ 1 = n then µn−1 + µn = 1, which is odd. Thus the valley (x, n+ 1) is
labelled by (−v(i),−v(i+ 1)) in this case as well.

(1.5.2) There exist indices i, j ∈ [n] with i < j such that µi = µj = 1 and µ` /∈ {0, 1}
for all ` with i < ` < j or j < ` 6 n. In this case the final two steps of

−→
S+

0 (µ) are East
steps. The latter one is deleted and ζD(π) ends with an East step.

From Lemma 53 (v) we obtain j = n, hence by Lemma 53 (vii) we have i = n− 1. If
n− 1 ≡ 0, 3 modulo 4 then λn = n and λn−1 = n− 1 hence λn−1 + λn = 2n− 1. On the
other hand, if n− 1 ≡ 1, 2 modulo 4 then λn−1 = λn = n− 1. In both cases i is a rise of
π.

Let (x, y) be the valley under consideration. Then x equals the number of East steps
in the sequence

←−
S−2n−1(µ)

−→
S+

2n−1(µ) · · ·
←−
S−0 (µ)

−→
S+

0 (µ1, . . . , µn−1).

Therefore

n+ 1− x = #
{
r ∈ [n] : |µrK − r| 6 n+ 2

}
=
∣∣σ−1(n− 1)

∣∣ .
From Lemma 15 and Lemma 62 we obtain n + 1 − x = −σ−1(n − 1) because µn−1 = 1.
As above we conclude that

dD(π, v)(n+ 1− x) = uτσ(n+ 1− x) = −uτ(n− 1) = −v(n− 1).
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On the other hand y equals one plus the number of North steps in ζD(π), that is,

y − n = 1 + #
{
r ∈ [n] : µr = 0

}
= #

{
r ∈ [n] : |µrK − r| 6 n+ 1

}
=
∣∣σ−1(n)

∣∣ .
First assume that µ` = 0 for some ` ∈ [n]. Then |σ−1(n)| 6= 1. Lemma 15 and Lemma 62
therefore imply y − n = −σ−1(n), and we obtain

dD(π, v)(n− y) = −uτσ(y − n) = uτ(n) = −v(i)

because µn−1 + µn = 2, which is even. The valley is thus labelled by (−v(n− 1),−v(n)).
On the other hand if µ` 6= 0 for all ` ∈ [n], then y − n = |σ−1(n)| = 1 by Lemma 62.

Note that the n-th North step of ζD(π) is followed by an East step, because ζD(π) only
has n North steps and ends with an East step. Hence ζD(π) contains a signed East step.
Since µn = 1, Lemma 15 then implies that

dD(π, v)(1) = uτσ(1) = −(−1)#{r∈[n]:µr=0}uτ(n) = ε(ζD(π))v(n),

where we again use that µn−1 + µn is even. The valley under consideration is labelled by(
dD(π, v)(n+ 1− x),−ε(ζD(π))dD(π, v)(1)

)
=
(
− v(n− 1),−v(n)

)
.

(Part 2) In the second part of the proof we demonstrate the forward implication.
Therefore let i ∈ [n − 1] be a rise of π. We have to show that we are in one of the five
cases of Part 1 of the proof.

(2.1) Assume 1 < i < n − 1. Then πi = λi = i − 1 + µi and πi+1 = λi+1 = i + µi+1,
hence πi = πi+1 implies

µi = µi+1 + 1.

If µi = −k 6 0 then there is a valley in the sequence
←−
S−k (µ) and we are in case (1.1).

If µi = k + 1 > 0 then there is a valley in the sequence
−→
S+
k (µ) and we are in case (1.2)

or (1.5.1).

(2.2) Next assume i = 1. Then π1 = |λ1| = |µ1| and π2 = λ2 = 1 + µ2, hence π1 = π2

implies |µ1| = µ2 + 1. If µ1 > 0 we are in the same situation as in (2.1). On the other
hand if µ1 < 0 then

−µ1 = µ2 + 1.

Set −k−1 = µ1 then the sequence
←−
S−k (µ) ends with an East step and the sequence

−→
S+
k (µ)

begins with a North step. We are therefore in case (1.3).

(2.3) Finally assume that i = n− 1. Then πn−1 = λn−1 = n− 2 + µn−1.

(2.3.1) Suppose n−1 ≡ 0, 3 modulo 4, thus λn = n−1+µn. If π1 + · · ·+πn−2 is even,
then πn−1 = πn implies λn = 2πn−πn−1 = πn−1 and µn−1 = µn + 1 as in (2.1). Otherwise
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π1 + · · ·+ πn−2 is odd and πn−1 = πn implies λn = 2n− 1− 2πn + πn−1 = 2n− 1− πn−1

and

µn−1 = −µn + 2.

If µn−1 = −k 6 0 then the sequence
−→
S+
k+1(µ) ends with an East step and the sequence

←−
S−k (µ) begins with a North step. We are therefore in case (1.4). If µn−1 = k + 1 > 1

then the sequence
−→
S+
k (µ) ends with an East step while the sequence

←−
S−k−1(µ) begins with

a North step. This again corresponds to case (1.4). If µn−1 = 1 then also µn = 1 which
puts us into case (1.5.2).

(2.3.2) Suppose n− 1 ≡ 1, 2 modulo 4, thus λn = n− µn. If π1 + · · ·+ πn−2 is even,
then πn−1 = πn implies λn = πn−1 and µn−1 = −µn + 2. If π1 + · · · + πn−2 is odd, then
πn−1 = πn implies λn = 2n − 1 − πn−1 and µn−1 = µn + 1. Hence we are in the same
situation as in (2.3.1).

We now use Theorem 63 to show that the Haglund–Loehr-zeta map of type Dn does in-
deed correspond to the specialisation of the uniform zeta map to this case. This completes
the proof of Theorem 59.

Theorem 65. Let Φ be the root system of type Dn with coroot lattice Q̌ and zeta map ζ,
and let ψ and ϕ be defined as in Proposition 43 and Proposition 49. Then the following
diagram commutes.

Q̌/(2n− 1)Q̌ Park(Φ)

Vert(Dn) Diag(Dn)

ζ

ζD

ψ ϕ

Proof. Let (π, v) ∈ Vert(Dn) and (β, w) = ζD(π, v) ∈ Diag(Dn). Furthermore, let λ and
u be defined as in (13) and (14) such that ψ(π, v) = u · λ + (2n − 1)Q̌. Finally, let µ be
the area vector of π, chose σ ∈ SD

n as in Lemma 15 such that tµσ is a Graßmannian affine
permutation and fix τ as in Lemma 50. Recall from Proposition 10 and Proposition 11
that it suffices to show w = uτσ and Aβ = A, where

A =
{

(τσ)−1 · α : α ∈ ∆ ∪ {−α̃} and sα · λ = λ
}
.

The first claim is immediate from Proposition 56. In order to show the second claim, we
first prove A ⊆ Aβ. Assume (τσ)−1 · αi ∈ A for some 1 < i < n− 1. Then si · λ = λ and
λi = λi+1. Thus πi = πi+1 and i is a rise of π. By Theorem 63 ζD(π, v) has a valley (x, y)
labelled either (v(i+ 1), v(i)) or (−v(i),−v(i+ 1)). That is, either u(i+ 1) = w(n+ 1−x)
and

u(i) =


w(n+ 1− y) if y < n,

w(ε(β)) if y = n,

w(−ε(β)) if y = n+ 1,

w(n− y) if y > n+ 1,
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or −u(i) = w(n+ 1− x) and

−u(i+ 1) =


w(n+ 1− y) if y < n,

w(ε(β)) if y = n,

w(−ε(β)) if y = n+ 1,

w(n− y) if y > n+ 1.

Note that we may replace v(i), v(i + 1) by u(i), u(i + 1) by the choice of i. Applying
u−1 to the above identities and using w = uτσ, we see that τσ · αx,y = αi. Hence
(τσ)−1 · αi = αx,y ∈ Aβ.

Next set S = {(τσ)−1 ·α0, (τσ)−1 ·α1}. If S ∩A = {(τσ)−1 ·α1} then λ1 = λ2 > 0. We
have ε(π) = 1 and 1 is a rise of π. In particular u(1) = v(1). By Theorem 63 (β, w) has
a valley (x, y) labelled by (u(2), u(1)) or (−u(1),−u(2)). We obtain τσ · αx,y = e2 − e1.
Consequently (τσ)−1 · α1 = αx,y ∈ Aβ.

If S ∩ A = {(τσ)−1 · α0} then λ1 = −λ2 > 0. We have ε(π) = −1 and 1 is a rise
of π. In particular u(1) = −v(1). By Theorem 63 (β, w) has a valley (x, y) labelled by
(u(2),−u(1)) or (u(1),−u(2)). We obtain τσ ·αx,y = e2 + e1 and thus (τσ)−1 ·α1 = αx,y ∈
Aβ.

If S ⊆ A then λ1 = λ2 = 0. Hence π begins with two North steps. By The-
orem 63 (β, w) has a valley (x, n) labelled by (u(2),± |u(1)|). As above we see that
τσ · {αx,n, αx,n+1} = {α0, α1}. Hence S ⊆ Aβ.

If (τσ)−1 ·αn−1 ∈ A then λn−1 = λn. It follows that πn−1 = πn, that is, n−1 is a rise of
π, and π1 + · · ·+ πn−2 is even. Moreover u(n) = v(n). By Theorem 63 (β, w) has a valley
(x, y) labelled (u(n), u(n−1)) or (−u(n−1),−u(n)). We obtain τσ ·αx,y = en− en−1 and
thus (τσ)−1 · αn−1 ∈ Aβ.

If (τσ)−1 · (−α̃) ∈ A then λn−1 + λn = 2n − 1. It follows that πn−1 = πn and
π1 + · · ·+ πn−2 is odd. Moreover u(n) = −v(n). By Theorem 63 (β, w) has a valley (x, y)
labelled (−u(n), u(n − 1)) or (−u(n − 1), u(n)). We obtain τσ · αx,y = −en−1 − en and
thus (τσ)−1 · (−α̃) ∈ Aβ.

To complete the proof we need to demonstrate Aβ ⊆ A. Therefore suppose αx,y ∈ Aβ
for some valley (x, y) of (β, w). Then by Theorem 63 (x, y) is labelled either (v(i+1), v(i))
or (−v(i),−v(i + 1)) for some rise i of π, or by (v(2),± |v(1)|) if y = n and the valley is
not followed by an East step.

If u(i) = v(i) and u(i+1) = v(i+1) then the valley (x, y) is labelled by (u(i+1), u(i))
or (−u(i),−u(i+ 1)), and τσ · αx,y = αi for a rise i of π. By similar arguments as above
we see that αx,y ∈ A.

If i = 1 and u(1) = −v(1) then τσ · αx,y = α0, and λ1 = −λ2. Again we obtain
αx,y ∈ A.

If i = n− 1 and u(n) = −v(n) then τσ ·αx,y = −α̃ and λn−1 + λn = 2n− 1. Again we
obtain αx,y ∈ A.

Finally, if the valley is of the special form (x, n), not followed by an East step and
labelled by (v(2),± |v(1)|) then τσ · {αx,n, αx,n+1} = {α0, α1}, π begins with two North
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steps and λ1 = λ2 = 0. We see that αx,n, αx,n+1 ∈ A. Thus Aβ ⊆ A and the proof is
complete.

6 The zeta map of type B

In Sections 6.1 and 6.2 we present combinatorial models for the finite torus of type Bn in
terms of vertically labelled lattice paths and for the non-nesting parking functions in terms
of diagonally labelled ballot paths. These models are almost identical to the respective
objects in type Cn and are compatible with the action of the Weyl group SB

n in the sense
that acting by an element of SB

n only changes the labels and leaves the underlying path
intact. As a nice side result we obtain an explicit SB

n isomorphism between the finite
torus of type Bn and the finite torus of type Cn.

In Section 6.3 we compute the dominant Shi region corresponding to a lattice path
using its area vector. In Section 6.4 we obtain the Shi region corresponding to a vertically
labelled lattice path by means of the diagonal reading word. The combinatorial zeta map,
which we present in Section 6.5, is closely related to the zeta map of type Dn+1. The
proof that our construction coincides with the uniform zeta map relies on the respective
results in Section 5.5. This also accounts for our unusual choice of order: C-D-B.

The examples included in this section are supplemented by Table 3 in the appendix.

6.1 The finite torus

The Coxeter number of type Bn is h = 2n. As always we first recall the analysis of
Athanasiadis [6, Sec. 5.3]. The system of representatives Q̌ ∩ (2n+ 1)A◦ for the orbits of
the finite torus Q̌/(2n+ 1)Q̌ under the action of SB

n is given by{
(λ1, λ2, . . . , λn) ∈ Q̌ : 0 6 λ1 6 λ2 6 . . . 6 λn and λn−1 + λn 6 2n+ 1

}
.

Moreover, the stabiliser Stab(λ) 6 SB
n of such a λ with respect to the action of the Weyl

group on the finite torus is generated by the simple transpositions si for each i ∈ [n− 1]
such that λi = λi+1, the simple transposition s0 if λ1 = 0 and the reflection sα̃ that
exchanges the last two entries and changes their signs if λn−1 + λn = 2n+ 1.

Our first aim is to find a set of lattice paths representing the orbits described above.
Thus let π ∈ Ln,n and, as in the previous section, define πi to be the number of East steps
preceding the i-th North step of π. We define an integer vector λ setting

λi = πi for 1 6 i < n and

λn =

{
2πn − πn−1

2n+ 1− 2πn + πn−1

if π1 + · · ·+ πn−2 is even,
if π1 + · · ·+ πn−2 is odd.

(15)

The following result was already used in [6].

Proposition 66. The map ψ : Ln,n → Q̌ ∩ (2n+ 1)A◦ given by (15) is a bijection.
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Figure 19: Two vertically labelled lattice paths.

The next definition, which extends our model to the finite torus by introducing vertical
labellings, highlights the similarity to type Cn.

Definition 67. Let Vert(Bn) = Vert(Cn).

Given a vertically labelled lattice path (π, v) ∈ Vert(Bn) we define a signed permuta-
tion u ∈ SB

n by

u(i) = v(i) for 1 6 i < n and (16)

u(n) = (−1)λn−1+λnv(n).

The following proposition asserts that our chosen model corresponds to the finite torus
of type Bn nicely.

Proposition 68. The map ψ : Vert(Bn)→ Q̌/(2n+1)Q̌ given by (π, v) 7→ u·λ+(2n+1)Q̌,
where λ and u are defined as in (15) and (16), is a bijection.

Proof. Let π ∈ Ln,n be a lattice path and v ∈ SB
n a signed permutation. Using Proposi-

tion 66 and Lemma 5 it suffices to show that (π, v) ∈ Vert(Bn) if and only if u·J(λ) ⊆ Φ+.
For example consider the two roots αn−1 and α̃. If (π, v) ∈ Vert(Bn), then

en − en−1 ∈ J(λ)⇔ λn−1 = λn ⇔ πn−1 = πn and π1 + · · ·+ πn−2 is even

⇒ v(n− 1) < v(n) and u(n) = v(n)

⇒ u(n− 1) < u(n)⇔ u · (en − en−1) ∈ Φ+,

en−1 + en ∈ J(λ)⇔ λn−1 + λn = 2n+ 1⇔ πn−1 = πn and π1 + · · ·+ πn−2 is odd

⇒ v(n− 1) < v(n) and u(n) = −v(n)

⇒ u(n− 1) < −u(n)⇔ u · (en−1 + en) ∈ Φ+.

Conversely, if u · J(λ) ⊆ Φ+ then

πn−1 = πn and π1 + · · ·+ πn−2 is even⇔ λn−1 = λn ⇔ en − en−1 ∈ J(λ)

⇒ u · (en − en−1) ∈ Φ+ and v(n) = u(n)⇔ u(n− 1) < u(n) and v(n) = u(n)

⇒ v(n− 1) < v(n),
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πn−1 = πn and π1 + · · ·+ πn−2 is odd⇔ λn−1 + λn = 2n+ 1⇔ en−1 + en ∈ J(λ)

⇒ u · (en−1 + en) ∈ Φ+ and v(n) = −u(n)⇔ u(n− 1) < −u(n) and v(n) = −u(n)

⇒ v(n− 1) < v(n).

Other roots are treated similarly (See also the proof of Proposition 17).

Remark 69. Note that together Proposition 17 and Proposition 68 yield an explicit SB
n -set

isomorphism between the finite torus of type Bn and the finite torus of type Cn.

Example 70. Consider the vertically labelled lattice paths of Figure 19. The left path
is the example we also use in Section 4. Indeed we have π = (0, 4, 4, 4, 4, 4) = λ just as in
Example 18. Moreover, u = v = [1,−5,−4, 2, 3, 6], and the corresponding element of the
finite torus u · λ+ 13Q̌ = (0, 4, 4,−4,−4, 4) + 13Q̌ looks the same as in type C6 too.

On the other hand for the right path we compute π = (1, 2, 2, 2) and λ = (1, 2, 2, 7)
which is certainly different from the λ we use in type Cn. Moreover u is obtained from
v = [−1,−4,−3,−2] by changing the sign of v(4), that is, u = [−1,−4,−3, 2]. The
corresponding element of the finite torus of type B4 is u · λ+ 9Q̌ = (−1, 7,−2,−2) + 9Q̌.
However, note that (−1, 7,−2,−2) is not the canonical representative of its class in the
finite torus of type C4.

6.2 Non-nesting parking functions

As in type Cn ballot paths are the correct lattice paths to consider in this context. Let
β ∈ B2n be a ballot path with valley (i, j) then we define a root αi,j ∈ Φ+ by

αi,j =


en+1−i − en+1−j if j < n+ 1,

en+1−i if j = n+ 1,

en+1−i + ej−n−1 if j > n+ 1.

Furthermore define

Aβ =
{
αi,j : (i, j) is a valley of β

}
.

Then it is well-known that this correspondence identifies ballot paths with antichains in
the root poset.

Lemma 71. The map ϕ : B2n → Antichains(Φ+) given by β 7→ Aβ is a bijection between
ballot paths of length 2n and the antichains in the root poset Φ+ of type Bn.

Next we define a combinatorial model for the non-nesting parking functions in terms of
diagonally labelled ballot paths. In contrast to the previous section, the type Bn objects
are very similar to the analogous objects in type Cn, but not quite the same.

Definition 72. A diagonally labelled ballot path of type Bn is a pair (β, w) of a ballot
path β ∈ B2n and a signed permutation w ∈ SB

n such that for each valley (i, j) of β we
have

w(n+ 1− i) > w(n+ 1− j).

We denote the set of all diagonally labelled ballot paths of type Bn by Diag(Bn).
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Figure 20: A diagonally labelled ballot path (β,w) ∈ Diag(B6).

These conditions are even simpler to write down than those we have encountered in
types Cn (or Dn), and can be visualised as follows: Given a ballot path β and a signed
permutation w ∈ SB

n we can determine if the pair (β, w) lies in the set Diag(Bn) by
writing the numbers w(i), where i = n, n − 1 . . . , 1, 0,−1, . . . ,−n, in the main diagonal.
Then for each valley the number below has to be greater than the number to its right.

Example 73. Consider the diagonally labelled ballot path in Figure 20. The path β has
five valleys and corresponds to the antichain Aβ = {e6 − e4, e5 − e2, e4 − e1, e3, e2 + e1}.
We may check that all required conditions on the signed permutation w = [2, 4, 1, 3, 5, 6]
are fulfilled. For example w(6 + 1 − 1) = 6 > w(6 + 1 − 3) = 3 and w(6 + 1 − 4) = 1 >
w(6 + 1− 7) = 0 are the conditions imposed by the valleys (1, 3) and (4, 7).

Proposition 74. The map ϕ : Diag(Bn) → Park(Bn) given by (β, w) 7→ [w,Aβ] is a
bijection.

Proof. Let β ∈ B2n be a ballot path and w ∈ SB
n be a signed permutation. By Lemma 71

and Lemma 8 it suffices to show that (β, w) ∈ Diag(Bn) if and only if w · Aβ ⊆ Φ+.
Suppose w · Aβ ⊆ Φ+. Then an easy case by case check reveals

(i, j) is a valley of β ⇔ αi,j ∈ Aβ
⇒ w · αi,j ∈ Φ+ ⇔ w(n+ 1− i) > w(n+ 1− j).

Conversely if (β, w) ∈ Diag(Bn) then

αi,j ∈ Aβ ⇔ (i, j) is a valley of β

⇒ w(n+ 1− i) > w(n+ 1− j)⇔ w · αi,j ∈ Φ+.
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6.3 The area vector

Let π ∈ Ln,n be a lattice path. By Proposition 66 the path π corresponds bijectively to
an element λ ∈ Q̌∩ (2n+ 1)A◦. The orbit of the finite torus under the action of the Weyl
group represented by λ corresponds to a dominant region of the Shi arrangement via the
Anderson map of Section 2.5 as follows: Let w̃DA◦ be the minimal alcove of this region,
then we have A(w̃D) ∈ W · λ + (2n + 1)Q̌ or equivalently w̃f w̃

−1
D · 0 = λ. In this section

we describe how the affine permutation w̃D can be recovered from the lattice path π.
In order to do so, write w̃−1

D = tµσ where µ ∈ Q̌ and σ ∈ SB
n . Since w̃−1

D is Graß-
mannian the signed permutation σ is determined by Lemma 15 once µ is known. On the
other hand µ is related to λ implicitly by λ = w̃f w̃

−1
D · 0. Hence an explicit description of

w̃f is needed. It is provided by the following lemma.

Lemma 75. Let w̃f = tντ where ν ∈ Q̌ and τ ∈ SB
n . Then

ν =

{
(1, . . . , n− 1, n)

(1, . . . , n− 1, n+ 1)
τ =

{
[1, . . . , n− 1, n] if n ≡ 0, 3 mod 4,

[1, . . . , n− 1,−n] if n ≡ 1, 2 mod 4.

Proof. By Lemma 3 it suffices to show that tντ(∆̃) = (∆ − δ) ∪ {−α̃ + hδ}. Suppose
n ≡ 0, 3 modulo 4, then

tντ(αi) = αi − 〈ν, αi〉δ = αi − δ for all 0 6 i 6 n− 1,

tντ(−α̃ + δ) = −α̃ + (1 + 〈ν, α̃〉)δ = −α̃ + 2nδ.

If n− 1 ≡ 1, 2 modulo 4, then the only difference is

tντ(αn−1) = −α̃ + 〈ν, α̃〉δ = −α̃ + 2nδ and

tντ(−α̃ + δ) = αn−1 + (1− 〈ν, αn−1〉)δ = αn−1 − δ.

For example if n = 4, respectively n = 5, then

wf = [−8,−16,−24,−36], wf = [−10,−20,−30,−40, 61].

Definition 76. Let π ∈ Ln,n be a lattice path, λ be defined as in Proposition 66 and ν
and τ as in Lemma 75 above. Then we define the area vector of type Bn of π as

µ = τ · (λ− ν) =

{
(λ1 − 1, . . . , λn−1 − n+ 1, λn − n) if n ≡ 0, 3 mod 4,

(λ1 − 1, . . . , λn−1 − n+ 1, n+ 1− λn) if n ≡ 1, 2 mod 4.

Note that similarly to the other types, the entry µi of the area vector counts the
number of boxes in the i-th row that lie between the path π and the alternating path
(EN)n ∈ Ln,n, where µi is negative as long as π is above (EN)n. The only exception to
this rule is the top row, where µn does not have as nice of an interpretation.
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Figure 21: The lattice paths with type B area vectors (−1, 2, 1, 0,−1, 3) and (0, 0,−1, 3).

Example 77. Consider the two lattice paths in Figure 21. In case of the first path we have
λ = (0, 4, 4, 4, 4, 4) and n = 6 ≡ 2 modulo 4. Hence we compute µ = (−1, 2, 1, 0,−1, 3).
The corresponding translation in

∼
SB

6 is given by tµ = [14,−24,−10, 4, 18,−33]. The
unique signed permutation σ ∈ SB

6 such that tµσ is Graßmannian is given by σ =
[4,−3, 1, 5,−2,−6]. Thus we obtain

w̃−1
D = tµσ = [4, 10, 14, 18, 24, 33] and w̃D = [−10, 21, 11, 1,−9, 33].

In particular note the difference to Example 25.
In case of the second path we find n = 4 ≡ 0 modulo 4, λ = (1, 2, 2, 7) and therefore

µ = (0, 0,−1, 3). The translation tµ = [1, 2, 12,−23] ∈ ∼
SB

4 determines a unique signed
permutation σ = [1, 2, 3,−4] ∈ SB

4 such that tµσ is Graßmannian. We obtain w̃−1
D =

[1, 2, 12, 23] and w̃D = [1, 2,−6, 23].

6.4 The diagonal reading word

Let (π, v) ∈ Vert(Bn) be a vertically labelled lattice path. By Proposition 68 the pair
(π, v) corresponds to an element u · λ + (2n + 1)Q̌ of the finite torus, and thus via the
Anderson map (Theorem 7) to a region R of the Shi arrangement with minimal alcove
w̃RA◦. Write w̃R = ww̃D where w ∈ SB

n is a signed permutation and w̃DA◦ is the
minimal alcove of a dominant Shi region. Our aim for this section is to recover the signed
permutation w, and thereby w̃R, from the labelled path (π, v).

The affine permutation w̃D = tµσ can be obtained from λ as discussed in the previous
section. Thus in theory we are already able to compute w = uτσ using Proposition 11.
As in types Cn and Dn above, we demonstrate a convenient way to read w off the vertical
labelling.

Definition 78. Let (π, v) ∈ Ln,n × SB
n and µ be the type Bn area vector of π. Define

the type Bn diagonal reading word dB(π, v) as follows: For each i = 0, 1, 2, . . . first write
down the labels v(j) of the rows with µj = −i from bottom to top, then write down the
negative labels −v(j) of rows with µj = i + 1 from top to bottom. Finally, if µn−1 + µn
is even, change the sign of the label coming from the top row.

Note that the diagonal reading word of type Bn is closely related to that of type Dn.
Indeed the above definition is the same as Definition 54 except that some technical details
are less complicated in type Bn.
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Example 79. Let us recall the vertically labelled lattice paths from Figure 19. The
area vector of the first path is µ = (−1, 2, 1, 0,−1, 3) and its labels are given by v =
[1,−5,−4, 2, 3, 6]. Reading off the vertical labels according to the entries of µ yields
[2, 4, 1, 3, 5,−6]. Since µ5 + µ6 = 2 is even we need to change the sign of the label coming
from the top row, that is, v(6) = 6. We obtain dB(π, v) = [2, 4, 1, 3, 5, 6].

In light of Proposition 80 below the reader may wish to verify that

dB(π, v) = uτσ = [1,−5,−4, 2, 3, 6] · [1, 2, 3, 4, 5,−6] · [4,−3, 1, 5,−2,−6],

where σ ∈ SB
6 was already computed in Example 77.

We are also able to compute the affine permutation

w̃R = dB(π, v)w̃D = [−12, 21, 9, 2,−10, 33]

that takes the fundamental alcove to the minimal alcove of the Shi region R corresponding
to the vertically labelled lattice path (π, v). Indeed, we have w̃Rw̃

−1
f = [1, 47, 48, 54, 55, 58]

and

A(w̃R) = −w̃Rw̃−1
f · 0 + 13Q̌ = (0, 4, 4,−4,−4, 4) + 13Q̌,

which agrees with the results in Example 70. Again it is interesting to compare this to
Example 28 to see the differences and similarities between type Bn and Cn.

The second path in Figure 19 has area vector µ = (0, 0,−1, 3) and its labels are
given by v = [−1,−4,−3,−2]. Reading off the labels according to the entries of µ yields
[−1,−4,−3, 2]. As above µ2 +µ3 = 2 is even, thus we need to change the sign of the label
v(4) = −2. We obtain dB(π, v) = [−1,−4,−3,−2]. Using once more the results from
Example 77, we compute w̃R = dB(π, v)w̃D = [−1,−4,−12, 29], w̃Rw̃

−1
f = [8, 14, 15, 65]

and

A(w̃R) = −w̃Rw̃−1
f · 0 + 9Q̌ = (−1, 7,−2,−2) + 9Q̌.

The following proposition asserts that the diagonal reading word is the correct signed
permutation.

Proposition 80. Let (π, v) ∈ Vert(Bn) be a vertically labelled lattice path with area vector
µ, define u and λ as in Proposition 68, τ as in Lemma 75 and σ as in Lemma 15 such
that tµσ is Graßmannian. Then dB(π, v) = uτσ.

Proof. Let i ∈ [n] and chose j ∈ [n] such that |dB(π, v)(i)| = |v(j)|. Then

i = #
{
r ∈ [n] : |µr| < |µj|

}
+ #

{
r ∈ [n] : j 6 r, µr = µj > 0

}
+ #

{
r ∈ [j], µr = µj 6 0

}
+ #

{
r ∈ [n], µr = −µj > 0

}
= #

{
r ∈ [r] : |µrK + r| 6 |µjK − j|

}
=
∣∣σ−1(j)

∣∣
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Figure 22: A vertically labelled lattice path and its image under the Haglund–Loehr-zeta map.

Thus |dB(π, v)(i)| = |vσ(i)| = |uτσ(i)|. If j < n then dB(π, v) = v(j) = uτ(j) if and
only if µj 6 0, which is the case if and only if σ(i) = j. If j < n and µj > 0 then
dB(π, v) = −uτ(j) and σ(i) = −j. If j = n and µn 6 0 then

dB(π, v) = (−1)1+µn−1+µnv(n)

= (−1)1+µn−1+µn(−1)λn−1+λnu(n)

= (−1)1+νn−1+νnu(n)

= uτ(n) = uτ(σ(j))

and analogously one treats the case where j = n and µn > 0.

6.5 The zeta map

We can now define the (Haglund–Loehr) zeta map of type Bn, which is closely related to
type Dn+1.

Definition 81. Given a lattice path π ∈ Ln,n with type Bn area vector µ we define its
image under the type Bn zeta map as

ζB(π) =
←−
S−2n(µ)

−→
S+

2n(µ)
←−
S−2n−1(µ)

−→
S+

2n−1(µ) · · ·
←−
S−1 (µ)

−→
S+

1 (µ)
←−
S−0 (µ)

(
N
−→
S+

0 (µ)
)◦
,

where (N
−→
S+

0 (µ))◦ is obtained from N
−→
S+

0 (µ) by deleting the last letter.
Moreover, given a vertically labelled lattice paths (π, v) ∈ Vert(Bn) we define its image

under the Haglund–Loehr-zeta map of type Bn as

ζB(π, v) = (ζB(π), dB(π, v)).
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Example 82. Consider the vertically labelled lattice path (π, v) ∈ Vert(B6) drawn in
Figure 22, which has area vector µ = (−1, 2, 1, 0,−1, 3). We compute

−→
S+

3 (µ) = N,
←−
S−2 (µ) = ∅,

−→
S+

2 (µ) = NE,
←−
S−1 (µ) = NN,

−→
S+

1 (µ) = EN,
←−
S−0 (µ) = ENE,

−→
S+

0 (µ) = EN,

Note that the last segment is replaced by
(
N
−→
S+

0 (µ)
)◦

= NE. In light of Theorem 84 below
we remark that the initial North step of π labelled by v(1) = 1 corresponds to a valley
labelled (1, 0). Moreover the rises of (π, v), which are labelled (−5,−4), (−4, 2), (2, 3) and
(3, 6), correspond exactly to the remaining valleys of (β, w).

Note that ζB(π) ∈ B2n is by definition a ballot path.

Theorem 83. The zeta map ζB : Ln,n → B2n is a bijection.

Proof. Let π ∈ Ln,n be a lattice path with type Bn area vector µ. Consider the path
Nπ ∈ Ln,n+1. Recalling the bijection ζ∗D : Ln,n+1 → B2n+1 from Theorem 61 we have

ζ∗D(Nπ) =
←−
S−2n(µ)

−→
S+

2n(µ)
←−
S−2n−1(µ)

−→
S+

2n−1(µ) · · ·
←−
S−1 (µ)

−→
S+

1 (µ)
←−
S−0 (µ)N

(
N
−→
S+

0 (µ)
)◦
.

It follows from the proof of Theorem 61 that ζ∗D restricts to a bijection from the set of
lattice paths in Ln,n+1 that begin with a North step to the set of ballot paths in B2n+1

whose (n+1)-st North step is not followed by an East step. Since ζ∗D(Nπ) is easily obtained
from ζB(π) by inserting a North step, we conclude that ζB is also a bijection.

The next theorem further exploits the relation between ζB and ζD to connect the rises
of (π, v) to the valleys of ζB(π, v).

Let (π, v) ∈ Ln,n ×SB
n and i be a rise of π. Recall that we say the rise i is labelled

by (v(i), v(i + 1)). On the other hand let (β, w) be a pair of a ballot path β ∈ B2n and
a signed permutation w ∈ SB

n , and let (i, j) be a valley of β. Then we say (β, w) has a
valley (i, j) that is labelled by (w(n+ 1− i), w(n+ 1− j)).
Theorem 84. Let (π, v) ∈ Ln,n×SB

n be a pair of a lattice path and a signed permutation,
and a, b ∈ v([n]). Then (π, v) has a rise labelled (a, b) if and only if (ζB(π), dB(π, v)) has
a valley labelled (b, a) or (−a,−b). Furthermore π begins with a North step if and only if
(ζB(π), dB(π, v)) has a valley labelled (v(1), 0).

Proof. Let (π, v) ∈ Vert(Bn) and consider the vertically labelled path (Nπ, v̄) where we
label the initial North step by 0 and π retains the labelling v. This is basically an element
of Vert(Dn+1) except that the absolute values of all labels have been decreased by one.

We will prove the claim using Theorem 63. First notice that ζB(π, v) is obtained from
ζD(Nπ, v̄) simply by deleting the (n + 1)-st North step and its label, which is always 0.
Furthermore let a, b ∈ Z−{0}, then (π, v) has a rise i labelled (a, b) if and only if (Nπ, v̄)
has a rise i+1 labelled (a, b). This is the case if and only if ζD(Nπ, v̄) has a valley labelled
(b, a) or (−a,−b) and equivalently ζB(π, v) has a valley labelled (a, b) or (−a,−b). On
the other hand π begins with a North step if and only if (Nπ, v̄) has rise i = 1 labelled
by (±0, v(1)). This is equivalent to ζD(Nπ, v̄) having a valley labelled (v(1),±0), which
is the case if and only if ζB(π, v) has a valley labelled (v(1), 0).
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From Theorem 83 and Theorem 84 we obtain the following.

Theorem 85. The Haglund–Loehr-zeta map ζB : Vert(Bn)→ Diag(Bn) is a bijection.

We conclude this section by proving that the combinatorial zeta ζB map is indeed the
type Bn instance of the uniform zeta map.

Theorem 86. Let Φ be the root system of type Bn with coroot lattice Q̌ and zeta map
ζ. Moreover define ψ and ϕ as in Proposition 68 respectively Proposition 74. Then the
following diagram commutes.

Q̌/(2n+ 1)Q̌ Park(Φ)

Vert(Bn) Diag(Bn)

ζ

ζB

ψ ϕ

Proof. Let (π, v) ∈ Vert(Bn) and set (β, w) = ζB(π, v) ∈ Diag(Bn). Define λ and u as in
(15) respectively (16) such that ψ(π, v) = u ·λ+ (2n+ 1)Q̌. Let τ be as in Lemma 75 and
µ be the type Bn area vector of π. Chose σ ∈ SB

n such that tµσ ∈
∼
SB
n is a Graßmannian

affine permutation.
Recall that by Proposition 10 and Proposition 11 it suffices to show that w = uτσ

and Aβ = A, where

A =
{

(τσ)−1 · α : α ∈ ∆ ∪ {−α̃} and sα · λ = λ
}
.

The first claim is taken care of by Proposition 80. In order to demonstrate the second
claim we first show A ⊆ Aβ. Therefore let i ∈ [n − 2] and suppose that (τσ)−1 · αi ∈ A.
Then λi = λi+1, hence πi = πi+1 and i is a rise of π. By Theorem 84 (β, w) has a valley
(x, y) labelled either (v(i+1), v(i)) or (−v(i),−v(i+1)). Note that in particular y 6= n+1.
Moreover u(i) = v(i) and u(i+ 1) = v(i+ 1) for this choice of i. We obtain

(w(n+ 1− x), w(n+ 1− y)) ∈
{

(u(i+ 1), u(i)), (−u(i),−u(i+ 1))
}
.

Applying u−1 and using the fact that w = uτσ, yields

(τσ(n+ 1− x), τσ(n+ 1− y) ∈
{

(i+ 1, i), (−i,−i− 1)
}
.

Recalling that

αx,y =

{
en+1−x + en+1−y if y < n+ 1,

en+1−x − ey−n−1 if y > n+ 1,

we compute (τσ)−1 · αi = αx,y ∈ Aβ in all cases.
Next suppose (τσ)−1 ·α0 ∈ A. Then λ1 = 0 and thus π1 = 0. By Theorem 84 (β, w) has

a valley (x, n+1) labelled (v(1), 0) = (u(1), 0). From uτσ(n+1−x) = w(n+1−x) = u(1)
we obtain τσ(n+ 1− x) = 1, and compute (τσ)−1 · α0 = en+1−x = αx,n+1 ∈ Aβ.
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Similarly suppose (τσ)−1 · αn−1 ∈ A. Then λn−1 = λn. Consequently πn−1 = πn,
that is, n − 1 is a rise of π, and π1 + · · · + πn−2 is even. In particular u(n) = v(n). By
Theorem 84 (β, w) has a valley (x, y) labelled (u(n), u(n− 1)) or (−u(n− 1),−u(n)). As
in the cases above we conclude that (τσ)−1 · αn−1 = αx,y ∈ Aβ.

Finally suppose (τσ)−1 · (−α̃) ∈ A. Then λn−1 + λn = 2n+ 1. Here again πn−1 = πn,
but contrary to the previous case π1 + · · · + πn−2 is now odd. Therefore u(n) = −v(n).
By Theorem 84 (β, w) has a valley labelled (u(n − 1),−u(n)) or (u(n),−u(n − 1)). As
before we compute (τσ)−1 · (−α̃) = αx,y ∈ Aβ.

It remains to prove the reverse inclusion Aβ ⊆ A. Therefore assume αx,y ∈ Aβ for
some valley (x, y) of (β, w).

If y < n+1 then αx,y = en+1−x−en+1−y. Furthermore by Theorem 84 the valley (x, y)
is labelled

(w(n+ 1− x), w(n+ 1− y)) ∈
{

(v(i+ 1), v(i)), (−v(i),−v(i+ 1))
}

for some rise i of π. If i < n− 1 or if π1 + · · ·+ πn−2 is even, then λi = πi = πi+1 = λi+1

and v(i) = u(i) and v(i+ 1) = u(i+ 1). Thus sαi
· λ = λ and we obtain

αx,y = (τσ)−1 · αi ∈ A.

If i = n− 1 and π1 + · · ·+ πn−2 is odd, then λn−1 + λn = 2n+ 1 and u(n) = −v(n). We
obtain sα̃ · λ = λ and αx,y = (τσ)−1 · (−α̃) ∈ A.

If y = n + 1 then αx,y = en+1−x and the valley (x, y) is labelled (w(n + 1 − x), 0) =
(v(1), 0) by Theorem 84. Moreover π begins with a North step, that is, λ1 = π1 = 0, and
sα0 · λ = λ. We conclude αx,y = (τσ)−1 · α0 ∈ A.

Finally the case y > n + 1 can be treated in a similar fashion as the case y < n + 1
above, which completes the proof.

7 The statistics area and dinv

As mentioned in the very beginning of this paper the main motivation for considering
diagonally and vertically labelled Dyck paths is the fact that together with certain com-
binatorial statistics they yield a combinatorial model for the q, t-Catalan numbers, which
are defined as the Hilbert series of certain bigraded representations of the symmetric
group. Similar representations and the corresponding q, t-Catalan numbers CW (q, t) can
be defined much more generally for any finite complex reflection group W [18], however,
a combinatorial interpretation is missing in other types. When W is the Weyl group of
an irreducible crystallographic root system then Stump [18, Conj. 3.14] conjectured that
the dominant regions of the Shi arrangement together with the coheight statistic pro-
vide a combinatorial model for the q-Catalan numbers CW (q, 1). Similar ideas are due to
Armstrong [2]. In this section we use the zeta map to propose a different combinatorial
model for the q-Catalan numbers CW (q, 1) that relies on the finite torus and a statistic
called dinv. Ideally this new approach could help finding the missing statistic for the
t-parameter and thus a combinatorial interpretation for the full q, t-Catalan numbers in
some other types. See also Problem 99.
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Figure 23: A ballot path β ∈ B12 with area(β) = 9 (left), and a diagonally labelled ballot path (β,w) ∈
Diag(C6) with area′(β,w) = 6 (right). The contributing boxes below the paths are shaded grey.

Definition 87. Let Φ be an irreducible crystallographic root system. Given an antichain
A ⊆ Φ+ in the root poset define an order ideal IA ⊆ Φ+ via

IA =
{
α ∈ Φ+ : there exists no β ∈ A with β 6 α

}
.

The statistic area on the set of antichains in the root poset Φ+ is defined by

area(A) = |IA| .

The statistic area is easily seen to be equivalent to the coheight statistic of Stump under
the correspondence between dominant Shi regions and antichains discussed in Section 2.3.

We extend the area statistic to the set of non-nesting parking functions.

Definition 88. Define area′ : Park(Φ)→ N via

area′([w,A]) = #
{
α ∈ IA : u · α ∈ Φ+

}
,

where (u,A) ∈ [w,A] is assumed to be the canonical representative as in Lemma 8 and
IA is defined as in Definition 87 above.

In type An−1 these statistics corresponds to the well-known area statistic on Dyck
paths and its generalisation area′ on diagonally labelled Dyck paths due to Haglund
and Loehr [10]. In type Cn they have natural interpretations as the area of (diagonally
labelled) ballot paths areaC : B2n → N and area′C : Diag(Cn) → N given by the authors
in [20]. See Figure 23 for an example.

Next we define the somewhat less obvious statistics dinvC and dinv′C on the W -orbits,
respectively the elements, of the finite torus.

Definition 89. Define the statistic dinv : Q̌ ∩ (h+ 1)A◦ → N by

dinv(λ) = #
{
α ∈ Φ+ : 〈λ, α〉 ∈ {ht(α), ht(α) + 1}

}
.
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Definition 90. Define the statistic dinv′ : Q̌/(h+ 1)Q̌→ N by

dinv′(X) = #
{
α ∈ Φ+ : 〈λ, α〉 = ht(α) and u · α ∈ Φ+

}
+ #

{
α ∈ Φ+ : 〈λ, α〉 = ht(α) + 1 and u · α ∈ −Φ+

}
,

where u · λ ∈ X is the canonical representative as in Lemma 5.

In type An−1 these statistics specialise to the dinv statistic on Dyck paths suggested by
Haiman and the dinv′ statistic on vertically labelled Dyck paths that is due to Haglund
and Loehr. Both statistics are found in [10]. Our only proof that the aforementioned
statistics agree is surprisingly involved. It can be obtained by using the zeta map to
transfer the problem to the area statistics, which are easier to handle. Theorem 96 below
asserts that the statistic dinv′ is transferred to the statistic area′ under the uniform zeta
map. Haglund and Loehr prove the analogous statement in type An−1 [10, pp. 17–20].
Moreover it was demonstrated by the second named author that the combinatorial zeta
map of Haglund and Loehr and the uniform zeta map of type An−1 coincide [22, Sec. 13].

In [20] the authors introduced the combinatorial statistics dinvC and dinv′C on (verti-
cally labelled) lattice paths in a square.

Definition 91. Let π ∈ Ln,n be a lattice path with type Cn area vector µ. Then we
define

dinvC(π) = #{(i, j) : i < j, µn−i+1 = µn−j+1}
+ #{(i, j) : i < j, µn−i+1 = µn−j+1 + 1}
+ #{(i, j) : i < j, µn−i+1 = −µn−j+1}
+ #{(i, j) : i < j, µn−i+1 = −µn−j+1 + 1}
+ #{i : µn−i+1 = 0}

A pair (i, j) ∈ [n]×[n] or index i ∈ [n] contributing to dinvC(π) is called diagonal inversion
of π.

Definition 92. Let (π, u) ∈ Vert(Cn) be a vertically labelled lattice path and let µ be
the type Cn area vector of π. Then we define

dinv′C(π, u) = #{(i, j) : i < j, µn−i+1 = µn−j+1, u(i) < u(j)}
+ #{(i, j) : i < j, µn−i+1 = µn−j+1 + 1, u(i) > u(j)}
+ #{(i, j) : i < j, µn−i+1 = −µn−j+1, u(i) < −u(j)}
+ #{(i, j) : i < j, µn−i+1 = −µn−j+1 + 1, u(i) > −u(j)}
+ #{i : µn−i+1 = 0, u(i) < 0}

We call a pair (i, j) ∈ [n] × [n] or index i ∈ [n] contributing to dinv′C(π, u) a diagonal
inversion of (π, u).
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Example 93. Consider the vertically labelled lattice path (π, u) in Figure 5.
The path π has area vector µ = (2, 1, 0,−1,−2, 1). The pair (1, 5) is a diagonal

inversion of type µn−i+1 = µn−j+1, (1, 4) is a diagonal inversion of type µn−i+1 = µn−j+1+1,
(1, 3), (2, 6) and (3, 5) are diagonal inversions of type µn−i+1 = −µn−j+1, (1, 4), (3, 6) and
(4, 5) are diagonal inversions of type µn−i+1 = −µn−j+1 + 1, and 4 is a diagonal inversion
of type µn−i+1 = 0. Together that makes dinv(π) = 9. Note that the pair (1, 4) is counted
twice!

We have u(1) = 1 < u(5) = 3 thus (1, 5) is a diagonal inversion of (π, u) of type
µn−i+1 = µn−j+1 + 1. u(1) = 1 < u(4) = 2 thus (1, 4) is no diagonal inversion of type
µn−i+1 = µn−i+1 + 1. However, u(1) > −u(4) thus (1, 4) is still a diagonal inversion of
type µn−i+1 = −µn−i+1 + 1. The only other two diagonal inversions of π that do not
contribute to dinv′C(π, u) are (2, 6) and 4. We obtain dinv′C(π, u) = 6.

In this case it is quite easy to show that dinvC and dinv′C are the type Cn instances
of the uniform dinv statistics. Moreover, note that if π ∈ Ln,n is a Dyck path then it is
actually assigned two numbers dinvA(π) and dinvC(π). In this case Definition 91 agrees
with the definition of Haiman, that is, dinvA(π) = dinvC(π).

In the remainder of this section we relate area and dinv by means of the zeta map.
We start with a useful and well-known lemma on dominant elements of the affine Weyl
group.

Lemma 94. Let α ∈ Φ+ be a positive root and w̃ ∈ W̃ be dominant with w̃ = tλσ, where
λ ∈ Q̌ and σ ∈ W . If 〈λ, α〉 = 0 then σ−1 · α ∈ Φ+.

Proof. Suppose 〈λ, α〉 = 0. The height function ht : Φ→ R extends to a linear functional
on V . Thus we may choose v ∈ V with 〈v, β〉 = ht(β)/h for all β ∈ Φ, where h is the
Coxeter number of Φ. Note that v ∈ A◦ by definition. Thus 〈w̃ · v, α〉 > 0 since w̃ is
dominant. We compute

ht(σ−1 · α)

h
= 〈v, σ−1(α)〉 = 〈σ · v, α〉 = 〈λ+ σ · v, α〉 = 〈w̃ · v, α〉 > 0.

Furthermore, we need the following property of the affine transformation w̃f .

Lemma 95. Let α ∈ Φ+ be a positive root and ν ∈ Q̌, τ ∈ W such that w̃f = tντ . Then

〈w̃f · 0, α〉 =

{
ht(α) if τ−1 · α ∈ Φ+,

ht(α) + 1 if τ−1 · α ∈ −Φ+.

Proof. Choose v ∈ V such that 〈v, α〉 = ht(α)/h for all α ∈ Φ+. By [21, Thm. 3.6.2]
w̃f · v = (h+ 1)v. It follows that

〈w̃f · 0, α〉 = 〈(h+ 1)v − τ · v, α〉 = ht(α) +
1

h

(
ht(α)− ht(τ−1 · α)

)
.

The claim follows since 〈ν, α〉 is an integer.
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We now state the main result of this section.

Theorem 96. Let Φ be an irreducible crystallographic root system with Weyl group W ,
coroot lattice Q̌, Coxeter number h and zeta map ζ, and let X ∈ Q̌/(h+1)Q̌ be an element
of the finite torus. Let λ ∈ Q̌∩ (h+ 1)A◦ and u ∈ W such that u · λ ∈ X is the canonical
representative as in Lemma 5. Then

dinv(λ) = area(ζ̄(λ)) and dinv′(X) = area′(ζ(X)).

Proof. Choose w̃ ∈ W dom
Shi , µ, ν ∈ Q̌ and σ, τ, w ∈ W such that w̃f = tντ , w̃ = tµσ,

ww̃ ∈ WShi and

u · λ = −ww̃w̃−1
f · 0 = −w(µ) + wστ−1(ν).

By Section 2.7

ζ(u · λ+ (h+ 1)Q̌) = [uτσ−1, στ−1 · J(λ)].

We prove the more precise statement that the bijection

I(στ−1 · J(λ))→
{
± τσ−1(β) : β ∈ I(στ−1 · J(λ))

}
∩ Φ+

maps the positive roots contributing to area(ζ̄(λ)) to the positive roots contributing to
dinv(λ). Furthermore this map restricts to a bijection between the positive roots con-
tributing to area′ and dinv′.

On the one hand a computation shows that

〈λ, α〉 = 〈ν − τσ−1 · µ, α〉

= ht(α) +
1

h

(
ht(α)− ht(τ−1 · α)

)
− 〈µ, στ−1 · α〉

= ht(α)− 〈µ, στ−1 · α〉+

{
0 if τ−1 · α ∈ Φ+,

1 if τ−1 · α ∈ −Φ+,

for all α ∈ Φ+ due to Lemma 95.
On the other hand for each β ∈ Φ+ we have β ∈ στ−1 · J(λ) if and only if Hβ,1 is a

floor of w̃A◦ by the definition of the zeta map. Thus

β ∈ I(στ−1 · J(λ))⇔ Hβ,1 does not separate w̃A◦ and A◦

⇔ w̃−1 · (−β + δ) = −σ−1 · β + (1− 〈µ, β〉)δ ∈ Φ̃+

⇔ 〈µ, β〉 = 0 or 〈µ, β〉 = 1,−σ−1 · β ∈ Φ+.

The proof is completed by distinguishing a few cases.
Let β ∈ Φ+ and choose α ∈ {±τσ−1·β}∩Φ+. First assume 〈µ, β〉 = 0 then σ−1·β ∈ Φ+

by Lemma 94. Also 0 = 〈µ, β〉 = 〈µ, στ−1 ·α〉. If τσ−1 ·β ∈ Φ+ then τ−1 ·α = σ−1 ·β ∈ Φ+

the electronic journal of combinatorics 25(1) (2018), #P1.8 72



and 〈λ, α〉 = ht(α). If τσ−1 · β ∈ −Φ+ then τ−1 · α = −σ−1 · β ∈ −Φ+. Hence 〈λ, α〉 =
ht(α) + 1. Moreover uτσ−1 · β ∈ Φ+ implies that u · α ∈ Φ+ if and only if τσ−1 · β ∈ Φ+.

Secondly suppose that 〈µ, β〉 = 1 and σ−1 · β ∈ −Φ+. If τσ−1 · β ∈ Φ+ then τ−1 · α ∈
−Φ+ and 〈µ, στ−1 · α〉 = 〈µ, β〉 = 1. It follows that 〈λ, α〉 = ht(α) − 1 + 1 = ht(α). If
τσ−1 · β ∈ −Φ+ then τ−1 · α ∈ Φ+ and 〈µ, στ−1 · α〉 = −1. Thus 〈λ, α〉 = ht(α) + 1.
Moreover, uτσ−1 · β ∈ Φ+ implies that u · α ∈ Φ+ if and only if τσ−1 · β ∈ Φ+.

Conversely let α ∈ Φ+ and choose β ∈ {±στ−1 ·α}∩Φ+. First assume 〈λ, α〉 = ht(α).
If τ−1 · α ∈ Φ+ then 0 = 〈µ, στ−1 · α〉 = 〈µ, β〉. By Lemma 94 σ−1 · β ∈ Φ+ and thus
β = στ−1 · α. Consequently u · α ∈ Φ+ implies uτσ−1 · β = u · α ∈ Φ+. If τ−1 · α ∈ −Φ+

then 〈µ, στ−1 ·α〉 = 1 and therefore στ−1 ·α ∈ Φ+ since µ ∈ C. We obtain 〈µ, β〉 = 1 and
σ−1 · β = τ−1 · α ∈ −Φ+. Moreover u · α ∈ Φ+ implies uτσ−1 · β ∈ Φ+ as above.

Finally assume that 〈λ, α〉 = ht(α) + 1. If τ−1 · α ∈ Φ+ then 〈µ, στ−1 · α〉 = −1 and
therefore στ−1 · α ∈ −Φ+ since µ ∈ C. Hence 〈µ, β〉 = 1 and −σ−1 · β = τ−1 · α ∈ Φ+.
Moreover, u · α ∈ −Φ+ implies uτσ−1 · β = −u · α ∈ Φ+. If τ−1 · α ∈ −Φ+ then
0 = 〈µ, στ−1 ·α〉 = 〈µ, β〉 and thus σ−1 · β ∈ Φ+. It follows that β = −στ−1 ·α and hence
u · α ∈ −Φ+ implies uτσ−1 · β = −u · α ∈ Φ+.

8 Open problems

In this final section we discuss some open problems and perspectives for further research.

Problem 97 (The Fuß–Catalan case). In this paper we discuss the combinatorial in-
terpretation of the bijection ζ between the finite torus Q̌/(h + 1)Q̌ and the set of non-
nesting parking functions Park(Φ). However, the zeta map can be defined more generally.
Rhoades [14] defined a Fuß analogue of the non-nesting parking functions Park(m)(Φ) and
proved that it is isomorphic to the generalised finite torus Q̌/(mh+ 1)Q̌ as a W -set. The
second named author [22] defined an explicit W -equivariant bijection ζ : Park(m)(Φ) →
Q̌/(mh+ 1)Q̌ generalising the zeta map treated in this work.

In type An−1 the combinatorial objects allowing for a convenient treatment of the
Fuß–Catalan level are m-Dyck paths, and the combinatorial zeta map was studied by
Loehr [13]. One possible next step would be to develop the combinatorial framework for
the Fuß–Catalan case of the zeta map for the other infinite families of crystallographic
root systems Bn, Cn and Dn.

Problem 98 (The inverse zeta map). Section 4 contains an explicit way to invert the zeta
map of type Cn, namely Theorem 32. As the attentive reader may have noticed, such a
result is missing from the respective chapters on types Bn and Dn. Indeed our only way of
establishing the bijectivity of the zeta maps in these types is to prove that they are special
cases of the uniform zeta map which is known to be bijective. It would be interesting
to have an explicit combinatorial description of the inverse of the zeta map in types Bn

and Dn. One might expect such a description to be connected to the construction of a
suitable bounce path, which also appears in types An−1 and Cn.
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Problem 99 (The missing statistic). There exist generalisations of the algebraic back-
ground motivating the definition of q, t-Catalan numbers that replace the symmetric group
by a Weyl group W of an irreducible crystallographic root system Φ. Consequently q, t-
Coxeter–Catalan numbers CW (q, t) can be defined as the bivariate Hilbert series of certain
W -modules. See for example [18, Appendix A] for a list of the first few polynomials ob-
tained in this way. In type An−1 combinatorial models for these Hilbert series were found
by Haglund using a bounce statistic and Haiman using the dinv statistic. It is an open
problem to find a combinatorial interpretation of these polynomials in any other types.

The following open problem was posed by Stump and also appears in [2]. Find a
statistic tstat on the antichains in the root poset Φ+ such that

CW (q, t) =
∑
A⊆Φ+

qarea(A)ttstat(A),

where the sum ranges over all antichains in the root poset.
We now give an alternative formulation of this problem in terms of the finite torus.

Find a statistic tstat on the W -orbits of the finite torus Q̌/(h+ 1)Q̌ such that

CW (q, t) =
∑

λ∈Q̌∩(h+1)A◦

qdinv(λ)ttstat(λ).

Quite possibly our formulation of the problem is just as difficult as the original one,
however, the dinv statistic at least offers a new angle of attack. Note that even a partial
solution in the form of a conjectured statistic say in type Bn or Cn would be of interest.

Our closing remark addresses an important point that is somewhat counter-intuitive.
One might assume at first glance that knowing the dinv statistic as well as the area
statistic should be sufficient to obtain the q, t-Catalan numbers, as is the case in type
An−1. However, let us emphasise that the dinv statistic is only known for W -orbits of the
finite torus, while the area statistic is only known for antichains of the root poset. It is
a spectacular coincidence that in type An−1 these two objects both correspond naturally
to Dyck paths in such a way that the area statistic, which is natural in the world of
antichains, serves as the mysterious statistic tstat in the world of W -orbits.

9 Appendix

This appendix provides four detailed low-dimensional examples.

Table 1 illustrates type A2 and should be read as follows. The first column lists the
elements of the affine Weyl group corresponding to the minimal alcoves of the Shi arrange-
ment, which is found in Figure 1. The elements of the affine Weyl group are represented
as affine permutations in window notation. We refer the reader to [7, Chap. 8.3] or [22]
for an introduction. The five dominant affine permutations are highlighted.

The second column contains the corresponding non-nesting parking functions obtained
via the map Θ−1 from Theorem 9.
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[8, 4]

[3,−1] [3, 1]

[4, 2][6, 2]

[−2,−6] [−2,−4]

[−1,−3] [1,−3]

[3, 4]

[4, 3]

[7, 4]

[6, 3]

[−2,−1]

[−1,−2]

[−2, 1]

[−1, 2]

[2,−1]

[1,−2]

[2, 1]

[1, 2]

[−2, 4]

[−1, 3]

[2, 4]

[1, 3]

Figure 24: The Shi arrangement of type C2.

The third column contains the corresponding diagonally labelled Dyck paths. To ob-
tain the diagonally labelled Dyck path corresponding to the non-nesting parking function
[w,A], interpret the elements of A as the valleys of a Dyck path in the natural way, and
insert w in the diagonal.

The fourth column contains the corresponding elements of the finite torus that are
obtained from the affine permutation by applying the Anderson map A from Theorem 7.
Dominant (decreasing) elements of the finite torus are highlighted. Note that the coroot
lattice point (−2, 0, 2) counts as decreasing because (−2, 0, 2) + 4Q̌ = (2, 0,−2) + 4Q̌.

The fifth column shows an intermediate step between the finite torus and the set of
classical parking functions. Given an element q + 4Q̌ of the finite torus, define x as the
unique representative of −q + 4Z3 with 0 6 xi 6 3 for all i ∈ [3].

The sixth column contains classical parking functions of length three, that is, vectors
f ∈ N3 such that fi < σ(i) for some permutation σ ∈ Sn. The parking function f
corresponding to an element x ∈ (Z/4Z)3 is the unique parking function in the coset x+A,
where A 6 (Z/4Z)3 denotes the cyclic additive subgroup generated by (1, 1, 1)+4Z3. Note
that classical parking functions of length n are in bijection with the regions of the Shi
arrangement of type An−1. See for example [22, Secc. 11]. Increasing parking functions
are highlighted. We have thus found three distinct subsets of parking functions, all of
which have Catalan cardinality and provide a natural system of representatives for the
orbits under the action of the symmetric group Sn via permutation of labels.

Finally the seventh column contains the corresponding vertically labelled Dyck paths.
The vertically labelled Dyck path can be obtained from the diagonally labelled Dyck path
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be means of the inverse zeta map ζ−1
A of Haglund and Loehr that is defined in Section 2.8.

Alternatively it can be obtained from the corresponding parking function via a simple
bijection.

WShi Park(Φ) Diag(Φ) Q̌/(h+ 1)Q̌ (Z/(h+ 1)Z)n PFn Vert(Φ)

[4, 2, 0] [[1, 2, 3], {α1, α2}]
1

2
3

(0, 0, 0) (0, 0, 0) (0, 0, 0)
1
2
3

[2, 0, 4] [[1, 2, 3], {α2}]
1

2
3

(−2, 1, 1) (2, 3, 3) (0, 1, 1)
1

2
3

[0, 2, 4] [[1, 2, 3], {α̃}]
1

2
3

(−2, 0, 2) (2, 0, 2) (0, 2, 0)
1
3

2

[1, 2, 3] [[1, 2, 3], ∅]
1

2
3

(1, 0,−1) (3, 0, 1) (0, 1, 2)
1

2
3

[0, 4, 2] [[1, 2, 3], {α1}]
1

2
3

(−1,−1, 2) (1, 1, 2) (0, 0, 1)
1
2

3

[1, 0, 5] [[2, 1, 3], {α2}]
2

1
3

(1,−2, 1) (3, 2, 3) (1, 0, 1)
2

1
3

[0, 1, 5] [[2, 1, 3], {α̃}]
2

1
3

(0,−2, 2) (0, 2, 2) (2, 0, 0)
2
3

1

[2, 1, 3] [[2, 1, 3], ∅]
2

1
3

(0, 1,−1) (0, 3, 1) (1, 0, 2)
2

1
3

[−2, 5, 3] [[2, 3, 1], {α1}]
2

3
1

(2,−1,−1) (2, 1, 1) (1, 0, 0)
2
3

1

[2, 3, 1] [[2, 3, 1], ∅]
2

3
1

(−1, 1, 0) (1, 3, 0) (2, 0, 1)
2

3
1

[3, 2, 1] [[3, 2, 1], ∅]
3

2
1

(−1, 0, 1) (1, 0, 3) (2, 1, 0)
3

2
1

[1, 3, 2] [[1, 3, 2], ∅]
1

3
2

(1,−1, 0) (3, 1, 0) (0, 2, 1)
1

3
2

[−1, 4, 3] [[1, 3, 2], {α1}]
1

3
2

(−1, 2,−1) (1, 2, 1) (0, 1, 0)
1
3

2

[−1, 3, 4] [[1, 3, 2], {α̃}]
1

3
2

(−2, 2, 0) (2, 2, 0) (0, 0, 2)
1
2

3

[3, 1, 2] [[3, 1, 2], ∅]
3

1
2

(0,−1, 1) (0, 1, 3) (1, 2, 0)
3

1
2
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[−4, 13]

[1, 8]

[3, 4]

[−3, 4]

[1, 2]

[−4,−3]

Figure 25: The dominant regions of the Shi arrangement of type B2.

[1,−1, 6] [[3, 1, 2], {α2}]
3

1
2

(1, 1,−2) (3, 3, 2) (1, 1, 0)
3

1
2

Table 1: The 4-stable elements of type A2.

Table 2 illustrates type C2 and should be read as follows. The first column lists the
signed affine permutations in window notation corresponding to the regions of the Shi
arrangement, which is show in Figure 24. Dominant regions are highlighted.

Columns two and three show the corresponding non-nesting parking functions and
diagonally labelled paths.

The fourth column contains the element of the finite torus assigned via the Anderson
map. Dominant coroot lattice points are highlighted.

The last two columns contain the vertically labelled path and its area vector. Since
the area vector does not depend on the labels it is only shown for the dominant regions.

Table 3 treats type B2 and follows the same rules as Table 2, except that only dominant
regions are considered. These regions are also shown in Figure 25.

WShi Park(Φ) Diag(Φ) Q̌/(h+ 1)Q̌ Vert(Φ) µ

[8, 4] [[1, 2], {α0, α1}]
2

1
−1

−2

(0, 0)
1

2
(2, 1)
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[1,−3] [[1, 2], {α1}]
2

1
−1

−2

(−2,−2)
−2

−1
(0,−1)

[3, 4] [[1, 2], {α0}]
2

1
−1

−2

(0, 1)
1

2
(1, 1)

[3, 1] [[1, 2], {α0 + α1}]
2

1
−1

−2

(−1, 1)
−1

2
(1, 0)

[1, 2] [[1, 2], ∅]
2

1
−1

−2

(−2,−1)
−2

−1
(0, 0)

[1, 3] [[1, 2], {α̃}]
2

1
−1

−2

(−2, 0)
2

−1
(0, 1)

[3,−1] [[−1, 2], {α0 + α1}]
2
−1

1
−2

(1, 1)
1

2

[−1,−3] [[−1, 2], {α1}]
2
−1

1
−2

(2,−2)
−2

1

[−1, 2] [[−1, 2], ∅]
2
−1

1
−2

(2,−1)
−2

1

[−1, 3] [[−1, 2], {α̃}]
2
−1

1
−2

(2, 0)
2

1

[4, 2] [[2, 1], {α0 + α1}]
1

2
−2

−1

(1,−1)
−2

1

[4, 3] [[2, 1], {α0}]
1

2
−2

−1

(1, 0)
2

1

[2, 1] [[2, 1], ∅]
1

2
−2

−1

(−1,−2)
−1

−2
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[2, 4] [[2, 1], {α̃}]
1

2
−2

−1

(0,−2)
1

−2

[6, 2] [[2,−1], {α0 + α1}]
−1

2
−2

1

(−1,−1)
−2

−1

[6, 3] [[2,−1], {α0}]
−1

2
−2

1

(−1, 0)
2

−1

[2,−1] [[2,−1], ∅]
−1

2
−2

1

(1,−2)
1

−2

[−2,−4] [[−2, 1], {α1}]
1
−2

2
−1

(−2, 2)
−1

2

[−2, 1] [[−2, 1], ∅]
1
−2

2
−1

(−1, 2)
−1

2

[−2, 4] [[−2, 1], {α̃}]
1
−2

2
−1

(0, 2)
1

2

[−2,−6] [[−2,−1], {α1}]
−1
−2

2
1

(2, 2)
1

2

[−2,−1] [[−2,−1], ∅]
−1
−2

2
1

(1, 2)
1

2

[7, 4] [[1,−2], {α0}]
−2

1
−1

2

(0,−1)
1

−2

[1,−2] [[1,−2], ∅]
−2

1
−1

2

(−2, 1)
2

−1

[−1,−2] [[−1,−2], ∅]
−2
−1

1
2

(2, 1)
2

1

Table 2: The 5-stable elements of type C2.
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WShi Park(Φ) Diag(Φ) Q̌/(h+ 1)Q̌ Vert(Φ) µ

[−4, 13] [[1, 2], {α0, α1}]
2

1
0

−1

(0, 0)
1

2
(−1, 3)

[1, 8] [[1, 2], {α1}]
2

1
0

−1

(1, 1)
1

2
(0, 2)

[3, 4] [[1, 2], {α̃}]
2

1
0

−1

(2,−2)
−2

1
(1, 1)

[−3, 4] [[1, 2], {α0 + α1}]
2

1
0

−1

(2, 0)
2

1
(−1, 1)

[1, 2] [[1, 2], ∅]
2

1
0

−1

(1,−3)
1

−2
(0, 0)

[−4,−3] [[1, 2], {α0}]
2

1
0

−1

(0,−4)
1

−2
(−1,−1)

Table 3: The dominant 5-stable elements of type B2.

In Table 4 the dominant regions of the Shi arrangement of type D3 are considered.
The first two columns contain affine permutations and their images under the Anderson
map. Columns three to five encode the corresponding vertically labelled signed lattice
paths by means of a path π ∈ Ln−1,n, a sign ε(π) and a signed permutation v ∈ SB

n .
Moreover, the last column includes the area vector of the signed lattice path. Further
objects as well as pictures of the paths are omitted due to limited space.

WShi Q̌/(h+ 1)Q̌ π ε(π) v µ
[−1,−5, 18] (0, 0, 0) (0, 0, 0) 1 [1, 2, 3] (0,−1, 3)
[−11, 5, 6] (2,−2,−2) (2, 2, 2) 1 [−3,−2, 1] (−2, 1, 1)
[−4,−1, 5] (−1, 2,−1) (1, 1, 2) 1 [−3,−1,−2] (−1, 0, 1)
[−1,−4, 5] (0, 2, 0) (0, 0, 1) 1 [1, 3, 2] (0,−1, 1)
[−5, 1,−4] (1,−1,−4) (1, 1, 1) 1 [−2, 1, 3] (−1, 0,−1)
[1,−5,−4] (0, 0,−4) (0, 0, 2) 1 [−1, 2,−3] (0,−1,−1)
[−1, 2, 11] (0, 1, 1) (0, 1, 1) 1 [1, 2, 3] (0, 0, 2)
[−4, 5,−1] (3,−2,−1) (1, 2, 2) 1 [−3,−2,−1] (−1, 1, 0)

[1, 2, 3] (0, 1,−3) (0, 1, 2) 1 [−1, 2,−3] (0, 0, 0)
[1, 4, 5] (0, 2,−2) (0, 2, 2) 1 [−1,−3, 2] (0, 1, 1)
[4, 1, 5] (1, 2,−1) (1, 1, 2) −1 [−3, 1,−2] (1, 0, 1)

[5,−1,−4] (−1,−1,−4) (1, 1, 1) −1 [−2,−1, 3] (1, 0,−1)
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[4, 5, 1] (−3,−2,−1) (1, 2, 2) −1 [−3,−2, 1] (1, 1, 0)
[11, 5, 8] (−2,−2,−2) (2, 2, 2) −1 [−3,−2,−1] (2, 1, 1)

Table 4: The dominant 5-stable elements of type D3
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