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Abstract

It is known that for graphs A and B with odd cycles, the direct product A ×B
is vertex-transitive if and only if both A and B are vertex-transitive. But this is
not necessarily true if one of A or B is bipartite, and until now there has been no
characterization of such vertex-transitive direct products. We prove that if A and
B are both bipartite, or both non-bipartite, then A ×B is vertex-transitive if and
only if both A and B are vertex-transitive. Also, if A has an odd cycle and B
is bipartite, then A × B is vertex-transitive if and only if both A ×K2 and B are
vertex-transitive.

Mathematics Subject Classifications: 05C76, 05C75

1 Introduction

Our graphs are finite, without multiple edges, but may have loops. The set of isomorphism
classes of graphs that may have loops is denoted Γ0, while Γ denotes those without loops.
Thus Γ ⊂ Γ0. We denote the complete graph on n vertices as Kn, whereas K∗

n is Kn with a
loop added to each vertex. The automorphism group of a graph G is denoted as Aut(G).
We say G is vertex-transitive if for any two vertices x, y ∈ V (G), there is a ϕ ∈ Aut(G)
for which ϕ(x) = y.

Recall that the direct product of two graphs A,B in Γ0 or Γ is the graph A×B with
vertices V (A) × V (B) and edges

E(A ×B) = {(a, b)(a′, b′) ∣ aa′ ∈ E(A) and bb′ ∈ E(B)}.

Figure 1 shows an example.

∗Supported by Simons Foundation Collaboration Grant for Mathematicians 523748.
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K2 A ×K2

A

Figure 1: The direct product of graphs.

This product is commutative and associative in the sense that the maps (x, y)↦ (y, x)
and (x, (y, z))↦ ((x, y), z) are isomorphisms A×B → B×A and A×(B×C)→ (A×B)×C.
If + represents disjoint union, then the distributive law A × (B + C) = A × B + A × C
holds, which is equality of graphs, rather than just isomorphism. Recall also Weichsel’s
theorem [4, Theorem 5.9].

Theorem 1. A direct product A × B of connected graphs is connected if and only if
at least one factor has an odd cycle; if both factors are bipartite, then the product has
exactly two components. In general, if both A and B have odd cycles, then so does A×B.
Moreover, if B is bipartite, with bipartition X ∪Y , then A×B is bipartite, with bipartition
V (A) ×X ∪ V (A) × Y .

It is easy to verify that if B is bipartite, then K2 ×B = B +B.
Note that G ×K∗

1 ≅ G for any G, so K∗
1 is the unit for the direct product. A graph

G is called prime over the direct product if it has more than one vertex, and whenever
G ≅ A×B, one of A or B is isomorphic to G, and the other is K∗

1 . A result of McKenzie [6]
implies that any finite, connected non-bipartite graph factors uniquely into prime graphs
over the direct product, up to order and isomorphism of the factors. See also Chapter 8
of [4].

A consequence of unique prime factorization of connected non-bipartite graphs over
the direct product, Theorem 8.19 of [4] states that any [non-bipartite] direct product is
vertex-transitive if an only if each factor is vertex-transitive. Unfortunately, the condition
of non-bipartiteness was inadvertently omitted in the statement of Theorem 8.19 [4].
Indeed, the theorem is false for non-bipartite graphs, as is seen in Figure 1, where A×K2

is the (vertex-transitive) 6-cycle, but A is not vertex-transitive.
Until now, no characterization of bipartite vertex-transitive direct products had been

known. In Section 5 we give the following complete characterization.

Theorem 13. If A and B are both bipartite or both non-bipartite, then A ×B is vertex-
transitive if and only if both A and B are vertex-transitive. If A has an odd cycle and B
is bipartite, then A ×B is vertex-transitive if and only if both A ×K2 and B are vertex-
transitive.

One direction of this theorem is elementary, and follows from our next proposition.

Proposition 2. If both A and B are vertex-transitive graphs, then A × B is vertex-
transitive. If both A × K2 and B are vertex-transitive, and B is bipartite, then A × B
is vertex-transitive.
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Proof. For the first statement, suppose both A and B are vertex-transitive. Given two
vertices (a, b) and (a′, b′) of A × B, select automorphisms α of A and β of B for which
α(a) = a′ and β(b) = b′. By the definition of the direct product, (x, y) ↦ (α(x), β(y)) is
an automorphism of A ×B sending (a, b) to (a′, b′), so A ×B is vertex-transitive.

For the second statement, suppose both A ×K2 and B are vertex-transitive and B is
bipartite. Then the above paragraph implies that (A ×K2) ×B is vertex-transitive. But

(A ×K2) ×B ≅ A × (K2 ×B) ≅ A × (B +B) = A ×B +A ×B,

which is to say that the graph consisting of two copies of A×B is vertex-transitive. Then
certainly each copy of A ×B is vertex-transitive.

The converse of our main theorem is more subtle, and some machinery is needed to
attack it. To this end, Section 2 reviews the Cartesian product of graphs, and their unique
prime factorizations. This is followed by sections on R-thinness and Cartesian skeletons.
Section 5 proves our main theorem. There we will need the Lovász cancellation laws:

Theorem 3 (Lovász [5]). Suppose A,B and C are graphs, and C has at least one edge.
Then A ×C ≅ B ×C implies A ≅ B provided that

• C has an odd cycle, or
• A and B are both bipartite.

But before reviewing further preliminaries, some examples will put our results in
context. Example 1 involves a factor with loops, Example 2 a disconnected factor without
loops, and Example 3 involves a connected factor without loops.

Example 4. The graph A in Figure 1 is not vertex-transitive. However, the figure shows
that A×K2 is vertex-transitive. If B is a bipartite vertex-transitive graph (such as the 4-
cycle), then A×B is vertex-transitive by Proposition 2. So here we have a vertex-transitive
product A ×B, where A is not vertex-transitive, but both A ×K2 and B are.

Example 5. The graph A = C3 + C6 is not vertex-transitive because one component is
a triangle and the other is a hexagon. But Figure 2 shows that A ×K2 is three copies
of a hexagon, which is vertex-transitive. If B is a bipartite vertex-transitive graph, then
Proposition 2 says A × B is vertex-transitive. So A × B is vertex-transitive, where A is
not vertex-transitive, but both A ×K2 and B are.

K2

A

A ×K2

Figure 2: The disconnected graph A is not vertex-transitive, but its product with K2 is.
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Example 6. Figure 3 shows a graph A and the product A ×K2. For brevity, vertices
(x, ε) of A ×K2 are written as xε, and, for clarity, edges are encoded dashed, dotted,
solid black and solid gray. The dashed outer hexagon H in A corresponds to a subgraph
H ×K2 = H +H in the product, which is shown as two dashed copies of H. Similarly
each solid (black or gray) triangle T in A corresponds to a solid (black or gray) hexagon
T ×K2 in the product.

A A ×K2

a

b

c

d

e

f 0

1

2
3

4

5

×

1

0
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20

c1

b0

11

50

f1
e0

41 00
a1

f0

51

30

d1

Figure 3: The graph A is not vertex-transitive, but its product with K2 is.

The graph A is not vertex-transitive because some of its vertices are on triangles and
others are not. But the product A ×K2 is vertex-transitive, though seeing this may take
a moment of reflection. Note that the permutation π = (a b c d e f)(0 1 2 3 4 5) that rotates
A by 60○ induces an automorphism xε ↦ π(x)ε of A ×K2 that sends the “twisted” solid
black hexagon to the “untwisted” solid gray hexagon.

Also the following automorphism of order 2 exchanges the two dashed hexagons in the
product with the two solid hexagons.

a0 b1 c0 d1 e0 f1 a1 b0 c1 d0 e1 f0
↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕
01 40 21 00 41 20 30 11 50 31 10 51

The other symmetries are more transparent, arising from rotations and reflections of the
product’s drawing.

Now, if B is a bipartite vertex-transitive graph, then A × B is vertex-transitive by
Proposition 2. So we have a vertex-transitive product A × B, where A is not vertex-
transitive, but both A ×K2 and B are.

Now we cover the preliminary material needed to prove our main theorem, Theorem 13.
We begin with the Cartesian product.
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2 The Cartesian Product

The Cartesian product of two graphs A,B ∈ Γ is the graph A ◻ B ∈ Γ with vertices
V (A) × V (B) and edges

E(A ◻B) = {(a, b)(a′, b′) ∣ aa′ ∈ E(A) and b = b′, or a = a′ and bb′ ∈ E(B)}.

(See Figure 4.) The Cartesian product is commutative and associative in the sense that
A ◻B ≅ B ◻A and A ◻ (B ◻C) ≅ (A ◻B) ◻C. Letting B +C denote the disjoint union
of graphs B and C, we also get the distributive law

A ◻ (B +C) = A ◻B +A ◻C, (1)

which is true equality, rather than mere isomorphism.

A

B A ◻B

Figure 4: Cartesian product of graphs.

Clearly K1 ◻A ≅ A for any graph A, so K1 is the unit for the Cartesian product. A
nontrivial graph G is prime over ◻ if for any factoring G ≅ A ◻B, one of A or B is K1

and the other is G. Certainly every finite graph can be factored into prime factors in Γ.
Sabidussi and Vizing [7, 8] proved that this prime factorization is unique for connected
graphs. More precisely, we have the following.

Theorem 7 (Theorem 6.8 of [4]). Let G,H ∈ Γ be isomorphic connected graphs with
G = G1 ◻ ⋯ ◻ Gk and H = H1 ◻ ⋯ ◻H`, where the factors Gi and Hi are prime. Then
k = `, and for any isomorphism ϕ ∶ G → H, there is a permutation π of {1,2, . . . , `} and
isomorphisms ϕi ∶ Gπ(i) →Hi for which

ϕ(x1, x2, . . . , x`) = (ϕ1(xπ(1)), ϕ2(xπ(2)), . . . , ϕ`(xπ(`))).

Notice that cancellation is a consequence of unique prime factorization: For connected
graphs, A ◻ C ≅ B ◻ C implies A ≅ B. (Cancellation holds also for disconnected graphs,
but we shall not need this stronger result.)
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3 R-Thin Graphs

The notion of so-called R-thinness is an important issue in factorings over the direct
product. McKenzie [6] uses this idea (in a somewhat more general form), citing an earlier
use by Chang [1]. In other contexts, R-thin graphs have been called worthy graphs [9].
See Chapter 8 of [4] for proofs of the assertions made in this section.

A graph G is R-thin if no two vertices have the same open neighborhood, that is, if
NG(x) = NG(y) implies x = y. Said differently, any vertex is uniquely determined by its
open neighborhood.

More generally, we form a relation R on the vertices of an arbitrary graph. Two
vertices x and y of G are in relation R, written xRy, precisely if their open neighborhoods
are identical, that is, if NG(x) = NG(y). It is easy to check that R is an equivalence
relation on V (G).

An R-equivalence class of a graph is called an R-class. Given two R-classes X and Y
(not necessarily distinct), it is easy to check that either every vertex in X is adjacent to
every vertex in Y , or no vertex in X is adjacent to any in Y . In particular, this means
that an R-class X of G induces either a complete subgraph K∗

n or a totally disconnected
subgraph K∗

n.
As the relation R is defined entirely in terms of adjacencies, it is clear that given an

isomorphism ϕ ∶ G→H we have xRy in G if and only if ϕ(x)Rϕ(y) in H. Thus ϕ maps
R-classes of G bijectively to R-classes of H.

Take any vertex x of a vertex-transitive graph G, and say x belongs to the R-class X.
Because an automorphism ϕ of G carries R-classes to R-classes, the R-class containing
α(x) has ∣X ∣ vertices. Thus, by vertex-transitivity, all R-classes of G have size ∣X ∣.

Given a graph G, we define a quotient graph G/R (in Γ0) whose vertex set is the set
of R-classes of G, and for which two classes are adjacent if they are joined by an edge of
G. (And a single class carries a loop provided that an edge of G has both endpoints in
that class.) If G is R-thin, then G/R ≅ G. An easy check confirms that G/R is R-thin for
any G ∈ Γ0.

Any automorphism ϕ ∶ G → G induces an automorphism G/R → G/R defined as X ↦
ϕ(X). Conversely, if all R-classes have the same size, then we can lift any automorphism
ϕ ∶ G/R → G/R to an automorphism of G by simply declaring that each R-class X maps
to α(X) by an arbitrary bijection. Moreover, if x and y are two vertices in the same
R-class, then transposition of x with y is an automorphism of G. This implies a lemma.

Lemma 8. If a graph G is vertex-transitive, then G/R is vertex-transitive. If G/R is
vertex-transitive, and all R-classes of G have the same size, then G is vertex-transitive.

Because NA×B(a, b) = NA(a)×NB(b), it follows that the R-classes of A×B are precisely
the sets X × Y , where X is an R-class of A, and Y is an R-class of B. In fact, the map
(A × B)/R → A/R × B/R given by X × Y ↦ (X,Y ) is an isomorphism, as is proved in
Section 8.2 of [4]. Thus A ×B is R-thin if and only if both A and B are.

Note also that G is bipartite if and only if G/R is bipartite.
We will use these ideas frequently, sometimes without comment.
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4 The Cartesian Skeleton

We now recall the definition of the Cartesian skeleton S(G) of an arbitrary graph G in
Γ0. The Cartesian skeleton S(G) is a graph on the vertex set of G that has the property
S(A × B) = S(A) ◻ S(B) in the class of R-thin graphs, thereby linking the direct and
Cartesian products.

We construct S(G) as a certain subgraph of the Boolean square of G. The Boolean
square of G is the graph Gs with V (Gs) = V (G) and E(Gs) = {xy ∣ NG(x)∩NG(y) ≠ ∅}.
Thus, xy is an edge of Gs whenever G has an x, y-walk of length two. The left side of
Figure 5 shows graphs A,B and A×B (bold) together with their Boolean squares As,Bs

and (A ×B)s (dotted).
If G has an x, y-walk W of even length, then Gs has an x, y-walk of length ∣W ∣/2 on

alternate vertices of W . Thus Gs is connected if G is connected and has an odd cycle.
(An odd cycle guarantees an even walk between any two vertices.) On the other hand, if
G is connected and bipartite, then Gs has exactly two components, whose vertex sets are
the two partite sets of G.

We now show how to form S(G) as a certain spanning subgraph of Gs. Consider
an arbitrary factorization G ≅ A × B, by which we identify each vertex of G with an
ordered pair (a, b). We say that an edge (a, b)(a′, b′) of Gs is Cartesian relative to the
factorization A×B if either a = a′ and b ≠ b′, or a ≠ a′ and b = b′. For example, in Figure 5
edges xz and zy of Gs are Cartesian (relative to the factorization A ×B), but edges xy
and yy of Gs are not Cartesian. We make S(G) from Gs by removing the edges of Gs that
are not Cartesian, but we do this in a way that does not reference the factoring A ×B of
G. We next identify two intrinsic criteria for a non-loop edge of Gs that tell us if it may
fail to be Cartesian relative to some factoring of G.

B

A

x′ x

z′ z y′ y

B

A

Figure 5: Left: graphs A,B,A×B and their Boolean squares As,Bs and (A×B)s (dotted).
Right: graphs A,B,A×B and their Cartesian skeletons S(A), S(B) and S(A×B) (dotted).
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The criteria are as follows. (Note that the symbol ⊂ means proper inclusion, and the
neighborhoods are neighborhoods of G, not Gs.)

(i) In Figure 5, the edge xy of Gs is not Cartesian, and there is a z ∈ V (G) with
NG(x) ∩NG(y) ⊂ NG(x) ∩NG(z) and NG(x) ∩NG(y) ⊂ NG(y) ∩NG(z).

(ii) In Figure 5, the edge x′y′ of Gs is not Cartesian, and there is a z′ ∈ V (G) with
NG(x′) ⊂ NG(z′) ⊂ NG(y′).

Our aim is to remove from Gs all edges that meet one of these criteria. We package the
above criteria into the following definition. An edge xy of Gs is dispensable if x = y or
there exists z ∈ V (G) for which both of the following statements hold.

(1) NG(x) ∩NG(y) ⊂ NG(x) ∩NG(z) or NG(x) ⊂ NG(z)⊂ NG(y),

(2) NG(y) ∩NG(x) ⊂ NG(y) ∩NG(z) or NG(y) ⊂ NG(z)⊂ NG(x).

Observe that the above statements (1) and (2) are symmetric in x and y. It is easy to
check that (i) or (ii) holding for a triple x, y, z is equivalent to both of (1) and (2) holding.
Now we come to this section’s main definition. The Cartesian skeleton of a graph G is
the spanning subgraph S(G) of Gs obtained by removing all dispensable edges from Gs.

The right side of Figure 5 is the same as its left side, except all dispensable edges
of As,Bs and (A × B)s are deleted. Thus the remaining dotted edges are S(A), S(B)
and S(A ×B). Note that although S(G) was defined without regard to the factorization
G = A × B, we nonetheless have S(A × B) = S(A) ◻ S(B). The following proposition
from [3] asserts that this always holds for R-thin graphs.

Proposition 9. If A,B are R-thin graphs, then S(A ×B) = S(A) ◻ S(B), provided that
neither A nor B has any isolated vertices. This is equality, not mere isomorphism; the
graphs S(A ×B) and S(A) ◻ S(B) have identical vertex and edge sets.

As S(G) is defined entirely in terms of the adjacency structure of G, we have the
following immediate consequence.

Proposition 10. Any isomorphism ϕ ∶ G → H, as a map V (G) → V (H), is also an
isomorphism ϕ ∶ S(G)→ S(H).

We will also need a result concerning connectivity of Cartesian skeletons. The following
result (which does not require R-thinness) is from [3]. (For another proof, see Chapter 8
of [4].)

Proposition 11. Suppose G is connected.

(i) If G has an odd cycle, then S(G) is connected.

(ii) If G is nontrivial bipartite, then S(G) has two connected components. Their respec-
tive vertex sets are the two partite sets of G.
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5 Main Result

The next proposition is the technical heart of this paper, and uses the material of the
previous three sections. It is followed by (and implies part of) Theorem 13, our main
characterization of vertex-transitive direct products.

Proposition 12. Let A and B be R-thin, connected graphs, either both non-bipartite, or
both bipartite. If A ×B is vertex-transitive, then both A and B are vertex-transitive.

Proof. The proof has two parts. Part 1 proves the result assuming that A and B are both
non-bipartite. Part 2 proves it if they are both bipartite.

Part 1. Assume A and B are non-bipartite and A × B is vertex-transitive. We will
prove that A is vertex-transitive. (The same reasoning works for B.) In what follows,
a, a′ ∈ V (A) are two arbitrary vertices. We will construct θ ∈ Aut(A) with θ(a) = a′.

Fix b ∈ V (B) and select ϕ ∈ Aut(A × B) with ϕ(a, b) = (a′, b). By Proposition 10,
ϕ is also an automorphism ϕ ∶ S(A × B) → S(A × B), and by Proposition 9, it is an
automorphism ϕ ∶ S(A) ◻ S(B) → S(A) ◻ S(B). By Proposition 11, S(A) and S(B) are
connected. Form prime factorizations S(A) = G1 ◻⋯◻Gk, and S(B) = Gk+1 ◻⋯◻G`, so

S(A) ◻ S(B) =
S(A)

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
G1 ◻⋯◻Gk ◻

S(B)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Gk+1 ◻⋯◻G`,

We’ve now coordinatized S(A) and S(B) (hence also A and B) so that

a = (a1, . . . , ak), a′ = (a′1, . . . , a′k), b = (bk+1, . . . , b`)

for tuples of ai, a′i ∈ V (Gi) (1 ≤ i ≤ k), and bi ∈ V (Gi) (k + 1 ≤ i ≤ `). Furthermore, ϕ is

ϕ ∶ (G1 ◻⋯◻Gk) ◻ (Gk+1 ◻⋯◻G`) Ð→ (G1 ◻⋯◻Gk) ◻ (Gk+1 ◻⋯◻G`.) (2)

Theorem 7 applied to (2) says there is a permutation π of {1,2, . . . , `} and isomor-
phisms ϕi ∶ Gπ(i) → Gi for which

ϕ((x1, . . . , xk), (xk+1, . . . , x`)) = ((ϕ1(xπ(1)), . . . , ϕk(xπ(k))), (ϕk+1(xπ(k+1)), . . . , ϕ`(xπ(`)))). (3)

If we are lucky, then π permutes the indices {1, . . . , k} among themselves, and {k+1, . . . , `}
among themselves. We can then define θ ∶ A→ A, as

θ(x1, . . . , xk) = (ϕ1(xπ(1)), ϕ2(xπ(2)), . . . , ϕk(xπ(k))).

It is easy to check (and is proved below) that θ is an automorphism of A sending a =
(a1, . . . , ak) to a′ = (a′1, . . . , a′k), as desired.

But in general, π will not respect the indices like this, and constructing θ involves more
care. In general, if we decompose π into disjoint cycles, some of them may interchange
some indices in {1, . . . , k} with those in {k + 1, . . . , `}. Figure 6 illustrates a typical such
cycle (i π (i) π2(i) . . . π6(i)) of length 7.
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⋯ ⋯ ⋯ ⋯ ⋯Gπ4(i) Gi Gπ(i) Gπ2(i) Gπ3(i)Gπ5(i) Gπ6(i)

ϕπ4(i) ϕπ5(i) ϕπ6(i) ϕi ϕπ (i) ϕπ2(i)
ϕπ3(i)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S(A)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S(B)

Figure 6: Effect of ϕ on coordinates corresponding to a typical cycle of π

To control such mixing of coordinates, we define a stacking operation on V (A×B).
This will allow us to modify ϕ so its S(A) coordinate functions do not depend on the
factors of S(B). The idea, introduced in [2], takes an input vertex (x, y0) ∈ V (A × B),
applies ϕ to get ϕ(x, y0) = (x1, y1), then replaces the x1 with x.

Stacking Operation

0. Begin with input vertex (x, y0) ∈ V (S(A) ◻ S(B)) = V (A ×B)
1. Apply ϕ: (x1, y1) ∈ V (S(A) ◻ S(B)) = V (A ×B)
2. Replace x1 with x: (x, y1) ∈ V (S(A) ◻ S(B)) = V (A ×B)

The stacking operation sends a vertex (x, y0) to an output (x, y1), to which we can
again apply the stacking operation to get (x, y2), etc. This process yields a sequence

(x, y0), (x, y1), (x, y2), (x, y3), . . . . (4)

For example, let’s trace this sequence with x = (r, s, . . . , t, . . . , u, . . .), and where we only
consider those coordinates which correspond to the cycle of π indicated in Figure 6. The
first five terms are as follows, where for typographical efficiency we use the abbreviations
r̄ = ϕπ3(i)(r) as well as ¯̄r = ϕπ2(i) ○ ϕπ3(i)(r) and ¯̄̄r = ϕπ(i) ○ ϕπ2(i) ○ ϕπ3(i)(r).

⋯ ⋯ ⋯ ⋯ ⋯(u0, v0) =

ϕπ5(i) ϕπ6(i) ϕi ϕπ (i) ϕπ2(i)
ϕπ3(i)

⋯ ⋯ ⋯ ⋯ ⋯(x, y0) = r u ∗ ∗ ∗s t

⋯ ⋯ ⋯ ⋯ ⋯(x, y1) = r s t u ∗ ∗ r̄

⋯ ⋯ ⋯ ⋯ ⋯(x, y2) = r s t u ∗ ¯̄r r̄

⋯ ⋯ ⋯ ⋯ ⋯(x, y3) = r s t u ¯̄̄r ¯̄r r̄

⋯ ⋯ ⋯ ⋯ ⋯(x, y4) = r s t u ¯̄̄r ¯̄r r̄

Figure 7: The effect of the stacking operation on a typical cycle of π.

the electronic journal of combinatorics 25(2) (2018), #P2.10 10



By the third iteration, the coordinates of y0 in this cycle have been “flushed out” and
replaced (or “stacked”) with images of r. Also, further iterations affect no further changes
on this cycle. For M ≥ ` − k, the terms (x, yM) of Sequence 4 agree on all cycles that
permute at least one vertex of {1, . . . , k}. (A cycle permuting only indices in {k+1, . . . , `}
has not been flushed out.)

Consider now what happens when we apply ϕ to the stacked vertex (x, yM). This
is shown in Figure 8, with (x, y0) as in the bottom of Figure 7. Notice that ϕ(x, yM) =
(θ(x), η(yM)), where θ ∶ V (A)→ V (A) is a bijection and η(yM) is some vertex of S(B).
Remark 1: Note that η need not be the identity. If π has a non-trivial cycle that
permutes only indices in {k + 1, . . . , `}, then the corresponding coordinates of yM do not
get stacked, so ϕ may alter these coordinates.

ϕπ4(i) ϕπ5(i) ϕπ6(i)

ϕi ○ ϕπ(i) ○ ϕπ2(i) ○ ϕπ3(i)

id id id

⋯ ⋯ ⋯ ⋯ ⋯(x, yM) = r ¯̄̄r ¯̄r r̄

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S(A)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S(B)

Figure 8: The effect of ϕ on a stacked vertex (x, yM).

Remark 2: Our cycle (π4(i), π5(i), π6(i), i, π(i), π2(i), π3(i)) of figures 6, 7 and 8 has a
string of entries between 1 and k, followed by a string between k + 1 and `. In general a
cycle of π may alternate between these two types of strings numerous times. Notice that
in such a case coordinates of S(B) still get stacked with images coordinates of S(A).

Since ϕ(a, b) = (a′, b), the stacking operation does not alter (a, b). After M iterations
we still have (a, bM) = (a, b), so (a′, b) = ϕ(a, b) = ϕ(a, bM) = (θ(a), η(bM)). This implies

θ(a) = a′. (5)

To complete Part 1, we just need to show θ ∈ Aut(A). Take xy ∈ E(A). We claim
θ(x)θ(y) ∈ E(A). Fix bb′ ∈ E(B), so that (x, b)(y, b′) ∈ E(A × B). Apply the stacking
operation on the two endpoints, in parallel.

0. Begin with input edge: (x, b)(y, b′) ∈ E(A ×B)
1. Apply ϕ to endpoints: (x1, b1)(y1, b′1) ∈ E(A ×B)
2. Replace x1 with x, and y1 with y: (x, b1)(y, b′1) ∈ E(A ×B)

After M ≥ ` − k iterations, we have (x, bM)(y, b′M) ∈ E(A × B). Applying ϕ to both
endpoints gives (θ(x), η(bM))(θ(y), η(b′M)) ∈ E(A ×B). Thus θ(x)θ(y) ∈ E(A), meaning
θ ∶ A→ A is a bijective homomorphism, hence also an automorphism because A is finite.

In summary, θ ∈ Aut(A), and θ(a) = a′ by Equation (5). This means A is vertex-
transitive. Because the direct product is commutative, it follows that the other factor B
is also vertex transitive.
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Part 2. Assume A and B are bipartite and A ×B is vertex-transitive. We will show A
is vertex-transitive. (And thus so is B, by commutativity of ×.) To begin, we analyze
skeletons. Proposition 11 implies S(A) = A0+A1 is the disjoint union of two graphs whose
respective vertex sets are the partite sets of A. Similarly S(B) = B0 +B1. Thus

S(A ×B) = S(A) ◻ S(B) = (A0 +A1) ◻ (B0 +B1)
= A0 ◻B0 +A0 ◻B1 +A1 ◻B0 +A1 ◻B1.

This is illustrated in Figure 9. By Weichsel’s theorem, A × B is bipartite and has two
components. One component has as partite sets the vertices of A0 ◻B0 and A1 ◻B1, and
the other component’s partite sets are the vertices of A0 ◻B1 and A1 ◻B0.

b
(a,b) (a′,b)

a a′

A0 A1

B0

B1

A

B

A ×B

A1◻B1A0◻B1

A1◻B0A0◻B0

ψ1

ψ0

Figure 9: The effect of ϕ on a direct product of two connected bipartite graphs A and B.

As A×B is vertex-transitive, it has automorphisms mapping any of its partite sets to
any other, so by Proposition 10, the four skeleton components A0 ◻B0, A0 ◻B1, A1 ◻B0

and A1 ◻B1 are all isomorphic to one other. By cancellation, A0 ≅ A1 and B0 ≅ B1.
Let a, a′ ∈ V (A). We will produce an automorphism θ of A with θ(a) = a′. Notice that

it suffices to prove this for a and a′ in different partite sets of A. For if this is established
and a, a′ are in the same partite set, then we can take an a′′ in the opposite partite set.
The composition of two automorphisms mapping a↦ a′′ and a′′ ↦ a′ is an automorphism
of A mapping a to a′. Thus assume a ∈ V (A0) and a′ ∈ V (A1). Fix some b ∈ V (B0), and
let ϕ be an automorphism of A ×B with ϕ(a, b) = (a′, b). (See Figure 9.) From this we
will now construct θ ∈ Aut(A) with θ(a) = a′.

The map ϕ restricts to isomorphisms ψ1 ∶ A1◻B1 → A0◻B1 and ψ0 ∶ A0◻B0 → A1◻B0,
which, together, send one component of A ×B to the other. (See Figure 9.)

Prime factor A0 as A0 = G1 ◻⋯◻Gk, and B0 as B0 = Gk+1 ◻⋯◻G`. As A1 ≅ A0 and
B1 ≅ B0, we can label the vertices of A1 and B1 so that they also have prime factorizations
A1 = G1 ◻⋯◻Gk and B1 = Gk+1 ◻⋯◻G`. Then

A0◻B1 =

A0
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
G1 ◻⋯◻Gk ◻

B1
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Gk+1 ◻⋯◻G`, A1◻B1 =

A1
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
G1 ◻⋯◻Gk ◻

B1
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Gk+1 ◻⋯◻G`,

A0◻B0 =

A0
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
G1 ◻⋯◻Gk ◻

B0
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Gk+1 ◻⋯◻G`, A1◻B0 =

A1
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
G1 ◻⋯◻Gk ◻

B0
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Gk+1 ◻⋯◻G`,
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and our restricted isomorphisms ψ1 and ψ0 are

ψ1 ∶ (G1 ◻⋯◻Gk) ◻ (Gk+1 ◻⋯◻G`) Ð→ (G1 ◻⋯◻Gk) ◻ (Gk+1 ◻⋯◻G`), (6)

ψ0 ∶ (G1 ◻⋯◻Gk) ◻ (Gk+1 ◻⋯◻G`) Ð→ (G1 ◻⋯◻Gk) ◻ (Gk+1 ◻⋯◻G`). (7)

We have now coordinatized A0, A1, B0 and B1 (hence also A ×B) so that

a = (a1, . . . , ak), a′ = (a′1, . . . , a′k), b = (bk+1, . . . , b`)

for tuples of ai, a′i ∈ V (Gi) (1 ≤ i ≤ k), and bi ∈ V (Gi) (k + 1 ≤ i ≤ `).
Theorem 7 applied to (6) and (7) yields permutations π and σ of {1, . . . , `} and iso-

morphisms ϕi ∶ Gπ(i) → Gi and ϕ′i ∶ Gσ(i) → Gi so that

ψ1((x1, . . . xk), (xk+1, . . . , x`)) = ((ϕ1(xπ(1)), . . . , ϕk(xπ(k))), (ϕk+1(xπ(k+1)), . . . , ϕ`(xπ(`)))), (8)

ψ0((x1, . . . xk), (xk+1, . . . , x`)) = ((ϕ′1(xσ(1)), . . . , ϕ
′
k(xσ(k))), (ϕ

′
k+1(xσ(k+1)), . . . , ϕ

′
`(xσ(`)))). (9)

Consider the effect of ψ1 on a typical cycle of π, say a cycle (i, π(i), π2(i), . . . , π6(i))
of length 7, similar to that of Figure 6 (except that this time the map is A1◻B1 → A0◻B1

rather than S(A)◻S(B)→ S(A)◻S(B)). This is represented schematically in Figure 10.

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

Gπ4(i)

Gπ4(i)

Gi

Gi

Gπ(i)

Gπ(i)

Gπ2(i)

Gπ2(i)

Gπ3(i)

Gπ3(i)

Gπ5(i)

Gπ5(i)

Gπ6(i)

Gπ6(i)

ϕπ4(i) ϕπ5(i) ϕπ6(i) ϕi ϕπ (i) ϕπ2(i)
ϕπ3(i)

A1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
B1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B1

Figure 10: The effect of ψ1 on coordinates corresponding to a typical cycle of π.

Notice that when we apply the stacking operation to a vertex (x, y0) ∈ V (A1 ◻ B1),
we arrive at a vertex (x, y1) that is still in V (A1 ◻ B1). Furthermore, iterations of the
stacking operation on (x, y0) are exactly as indicated in Figure 7, and we get a sequence

(x, y0), (x, y1), (x, y2), . . . , (x, yM) in A1 ◻B1.

As in the first part of the proof, if M ≥ ` − k, then, in general, any jth coordinate of yM
for which πs(j) ≤ k (for some s) has been flushed out and replaced with the image of
a vertex of some Gi with 1 ≤ i ≤ k. It follows that ψ1(x, yM) = (θ1(x), η1(yM)), where
θ1 ∶ V (A1)→ V (A0) is a bijection. (This is illustrated in Figure 11.)
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⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯(x, yM) =

ψ1(x, yM) =

r u

¯̄̄r

¯̄̄r

¯̄r

¯̄r

r̄

r̄s t

ϕi○ϕπ(i)○ϕπ2(i)○ϕπ3(i)
ϕπ4(i) ϕπ5(i) ϕπ6(i)

id id id

A1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
B1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B1

Figure 11: The effect of ψ1 on a stacked vertex.

Likewise the stacking operation applied to a vertex (w, z0) ∈ V (A0 ◻ B0) yields a
vertex (w, z1) ∈ V (A0 ◻B0). Applying the stacking operation iteratively to (w, z0), gives
a sequence

(w, z0), (w, z1), (w, z2), . . . , (w, zM) in A0 ◻B0.

As before, ψ0(w, zM) = (θ0(w), η0(zM)), for some bijection θ0 ∶ V (A0)→ V (A1).
Let θ ∶ A → A be the map that restricts to θ0 on V (A0) and θ1 on V (A1). Thus θ

reverses the bipartition of A. Because ϕ(a, b) = (a′, b), the stacking operation does not
alter (a, b). That is, applying it M times to (a, b) yields (a, bM) with bM = b. Therefore

(a′, b) = ϕ(a, b) = ϕ(a, bM) = ψ0(a, bM) = (θ0(a), σ0(a, bM)),

which means θ0(a) = a′, that is, θ(a) = a′.
To complete the proof we need to show θ ∈ Aut(A). For this, take an edge wx ∈ E(A),

with w ∈ V (A0) and x ∈ V (A1). We claim θ(w)θ(x) ∈ E(A). Fix an edge z0y0 of B with
z0 ∈ V (B0) and y0 ∈ V (B1), so (w, z0)(x, y0) is an edge of A×B with (w, z0) ∈ V (A0◻B0)
and (x, y0) ∈ V (A1 ◻B1). Apply the stacking operation on the two endpoints, in parallel.

0. Begin with input edge: (w, z0)(x, y0) ∈ E(A ×B)
1. Apply ϕ (ψ0 on left, ψ1 on right): (w1, z1)(x1, y1) ∈ E(A ×B)
2. Replace w1 with w, and x1 with x: (w, z1)(x, y1) ∈ E(A ×B)

Iterating this M times produces an edge (w, zM)(x, yM) ∈ E(A×B). Applying ϕ to both
endpoints, we get

(θ0(w), σ0(zM))(θ1(x), σ1(yM)) ∈ E(A ×B).
From this, θ0(w)θ1(x) ∈ E(A), meaning θ(w)θ(x) ∈ E(A). Thus θ ∶ A → A is a bijective
homomorphism, hence also an automorphism because A is finite. As θ(a) = a′, the graph
A is vertex transitive. The proof is complete.

We now reach our main theorem.
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Theorem 13. If A and B are both non-bipartite or both bipartite, then A ×B is vertex-
transitive if and only if both A and B are vertex-transitive. If A has an odd cycle and B
is bipartite, then A ×B is vertex-transitive if and only if both A ×K2 and B are vertex-
transitive.

Proof. If both A and B are vertex-transitive, then Proposition 2 implies A ×B is vertex-
transitive. By the same proposition, if both A ×K2 and B are vertex-transitive and B
is bipartite, then A ×B is vertex-transitive (as A ×K2 is bipartite). Thus it remains to
prove the converses of the two statements.

First, suppose A and B are non-bipartite, and A × B is vertex-transitive. Write
A = A1 + ⋯ + Am and B = B1 + ⋯ + Bm as disjoint unions of their components, with
A1 and B1 non-bipartite. Then A ×B = ∑i,j Ai ×Bj. By Weichsel’s theorem, Ai ×B1 and
Aj ×B1 are connected for any i, j, so these are two components of A×B. But as A×B is
vertex-transitive, all its components are isomorphic, so Ai ×B1 ≅ Aj ×B1 and Ai ≅ Aj by
Theorem 3. Thus any two components of A are isomorphic (and non-bipartite). By the
same argument, any two components of B are isomorphic (and non-bipartite).

In the previous paragraph we remarked that A1×B1 is vertex-transitive. By Lemma 8,
(A1 ×B1)/R is vertex-transitive, and it is R-thin by the remarks in Section 3. Because
(A1 ×B1)/R ≅ A1/R ×B1/R, and both A1/R and B1/R are non-bipartite, Proposition 12
says A1/R and B1/R are vertex-transitive.

Now, because all R-classes of A × B have the same size, and each R-class of A × B
is a product of R-classes of A and B, respectively, we conclude that all R-classes of A
(hence of A1) have the same size, and all R-classes of B (hence of B1) have the same size.
Lemma 8 now implies that A1 and B1 are vertex-transitive. But the components of A are
all isomorphic to A1, so A is vertex-transitive. Likewise, so is B.

Next suppose A and B are both bipartite, and A × B is vertex-transitive. Again,
A ×B = ∑i,j Ai ×Bj, and by Weichsel’s theorem, each summand Ai ×Bi has exactly two
components. Because A ×B is vertex-transitive, its components are all isomorphic, and
vertex-transitive themselves, and it follows that each Ai ×Bi is vertex-transitive.

Thus Ai ×B1 ≅ Aj ×B1 for any i, j, so Ai ≅ Aj by Theorem 3, that is, all components
of A are isomorphic. Similarly, all components of B are isomorphic.

By Lemma 8, (A1×B1)/R is vertex-transitive, and it is also R-thin. As (A1×B1)/R ≅
A1/R ×B1/R, and A1/R and B1/R are both bipartite, Proposition 12 implies that both
A1/R and B1/R are vertex-transitive.

From here, the proof proceeds exactly as in the non-bipartite case, and we conclude
that both A1 and B1 are vertex-transitive, thus also A and B.

For the second statement’s converse, let A be non-bipartite, B bipartite, and A ×B
vertex-transitive. By Proposition 2, (A ×B) ×K2 ≅ (A ×K2) ×B is vertex-transitive. As
A ×K2 and B are bipartite, the first statement of the theorem (proved above) implies
that A ×K2 and B are vertex-transitive.
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