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Abstract

Let c ∈ (0, 1] be a real number and let n be a sufficiently large integer. We prove
that every n-vertex cn-regular graph G contains a collection of b1/cc paths whose
union covers all but at most o(n) vertices of G. The constant b1/cc is best possible
when 1/c /∈ N and off by 1 otherwise. Moreover, if in addition G is bipartite, then
the number of paths can be reduced to b1/(2c)c, which is best possible.

Mathematics Subject Classifications: 05C38

1 Introduction

Paths and cycles are fundamental objects in graph theory. The path cover number is the
minimum number of vertex-disjoint paths whose union covers all vertices of G. Note that
we allow paths of length 0 (single vertices) in the definition above. Trivially the path
cover number of a graph G is upper bounded by the independence number of G, because
the set of the (arbitrary one out of the two) end vertices of the paths in a minimal path
cover form an independent set in G. It is evident that for general graphs, determining
the path cover number is NP-hard, because deciding if the path cover number equals 1
is equivalent to the decision problem for a Hamiltonian path, which is NP-complete. For
bounds on the path cover number for general graphs, see e.g. [3, 6]. For regular graphs,
Magnant and Martin [5] made the following conjecture and confirmed it for 0 6 k 6 5.

Conjecture 1. If G be a k-regular graph of order n, then the path cover number of G is
at most n/(k + 1).
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If true, the bound in Conjecture 1 would be tight as seen by disjoint copies of complete
graph Kk+1 (if n ≡ j modulo k + 1 and j 6= 0, then we change one copy of Kk+1 to a k-
regular subgraph of Kk+1+j). By the celebrated Dirac theorem on Hamiltonian paths [2],
Conjecture 1 is true for k > (n − 1)/2. As far as we know, Conjecture 1 is open for all
other cases. To provide more evidence on the validity of the conjecture, in this note we
prove the following result for dense regular graphs.

Theorem 2. For any c, α > 0, there exists n0 ∈ N such that the following holds for every
integer n > n0.

1. Every dcne-regular graph of order n contains a collection of at most b1/cc vertex-
disjoint paths whose union covers all but αn vertices.

2. Every bipartite dcne-regular graph of order n contains a collection of at most b1/(2c)c
vertex-disjoint paths whose union covers all but αn vertices.

Note that Part (2) of the theorem corresponds to the bipartite version of Conjecture 1:
if G is a bipartite k-regular graph of order n, then the path cover number of G can be as
large as n/(2k), as seen by the vertex-disjoint copies of Kk,k. Note that

−2

c(dcne+ 1)
6

n

dcne+ 1
− 1

c
=
cn− dcne − 1

c(dcne+ 1)
< 0.

So when n is large, if 1/c /∈ N, then b n
dcne+1

c = b1/cc, i.e., the number of paths in

Theorem 2 matches the quantity in Conjecture 1; however if 1/c ∈ N, then the quantity
b1/cc is off by 1. On the other hand, the quantity b1/(2c)c in Part (2) is optimal.

At last, we remark that the bound in Conjecture 1 is not tight if we restrict the
problem on connected regular graphs, see [7] for connected cubic graphs.

2 A weaker result

We first prove the following weaker result. For reals a, b, c, we write a = (1± b)c if there
exists a real x ∈ (1− b, 1 + b) such that a = xc.

Theorem 3. Given any reals c, α > 0, there exists ε > 0 and integer C > 0 such that
the following holds for sufficiently large integer n. Let G be a graph of order n such that
deg(v) = (1± ε)cn for every v ∈ V (G). Then there exists a collection of C vertex-disjoint
cycles in G whose union covers all but αn vertices of G.

Our main tools for embedding the cycles are the Regularity Lemma of Szemerédi [11]
and the Blow-up Lemma of Komlós et al. [4]. For any two disjoint vertex-sets A and B
of a graph G, the density of A and B is defined as d(A,B) := e(A,B)/(|A||B|), where
e(A,B) is the number of edges with one end vertex in A and the other in B. Let ε and δ
be two positive real numbers. The pair (A,B) is called ε-regular if for every X ⊆ A and
Y ⊆ B satisfying |X| > ε|A|, |Y | > ε|B|, we have |d(X, Y )− d(A,B)| < ε. Moreover, the
pair (A,B) is called (ε, δ)-super-regular if (A,B) is ε-regular and degB(a) > δ|B| for all
a ∈ A and degA(b) > δ|A| for all b ∈ B.
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Lemma 4 (Regularity Lemma – Degree Form). For every ε > 0 there is an M = M(ε)
such that for any graph G = (V,E) and any real number d ∈ [0, 1], there is a partition of
the vertex set V into t+ 1 clusters V0, V1, . . . , Vt, and there is a subgraph G′ of G with the
following properties:

• t 6M ,

• |Vi| 6 ε|V | for 0 6 i 6 t and |V1| = |V2| = · · · = |Vt|,

• degG′(v) > degG(v)− (d+ ε)|V | for all v ∈ V ,

• G′[Vi] = ∅ for all i,

• each (Vi, Vj), 1 6 i < j 6 t, is ε-regular with d(Vi, Vj) = 0 or d(Vi, Vj) > d in G′.

The Blow-up Lemma allows us to regard a super regular pair as a complete bipartite
graph when embedding a graph with bounded degree. Since we will always use it to
embed a cycle, we state it in the following special form.

Lemma 5. For every δ > 0, there exists an ε > 0 such that the following holds for
sufficiently large integer N . Let (X, Y ) be an (ε, δ)-super-regular pair with |X| = |Y | = N .
Then (X, Y ) contains a spanning cycle (a cycle of length 2N).

A fractional matching is a function f that assigns to each edge of a graph a real number
in [0, 1] so that, for each vertex v, we have

∑
f(e) 6 1 where the sum is taken over all

edges incident to v. The fractional matching number µf (G) of a graph G is the supremum
of

∑
e∈E(G) f(e) over all fractional matchings f . We use the following so-called ‘fractional

Berge-Tutte formula’ of Scheinerman and Ullman [10, Theorem 2.2.6]. Note that it is also
proved in [10] that (see Theorem 2.1.5) in a graph G, the maximum fractional matching,
i.e., with weight µf (G), can be achieved with weights only chosen from {0, 1/2, 1}.

Theorem 6 ([10]). For any graph G,

µf (G) =
1

2
(|V (G)| −max{i(V (G) \ S)− |S|}) ,

where i(X) denotes the number of isolated vertices in G[X], and the maximum is taken
over all S ⊆ V (G).

Proof of Theorem 3. Given c, α > 0, let d = αc/9. We apply Lemma 5 with δ = d/2 and
obtain ε1 > 0. Let ε = min{ε1, d/6, 3d/(2c)}. We then apply Lemma 4 with ε and obtain
M = M(ε). Let n ∈ N be sufficiently large. Let G = (V,E) be a graph of order n such
that deg(v) = (1± ε)cn for every v ∈ V . We apply the Regularity Lemma (Lemma 4) on
G with the constants ε, d chosen as above and obtain a partition of V into V0, V1, . . . , Vt
for some t 6 M , and a subgraph G′ of G with the properties as described in Lemma 4.
By moving at most one vertex from each Vi, i ∈ [t] to V0, we can assume that m := |Vi|
is even. Thus we have |V0| 6 εn+ t 6 2εn. Now for any v ∈ V ,

degG′(v)− |V0| > degG(v)− (d+ ε)n− 2εn > (c− 2d)n.
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Let β = 3d/c. Let H be the graph on [t] such that ij ∈ E(H) if and only if d(Vi, Vj) >
d. We first assume that there exists a set S ⊆ [t], such that i(V (H) \ S) − |S| > βt. In
particular, let T be the collection of |S|+ βt isolated vertices in H − S. Thus we have

eG(T, S) > |T |m(degG′(v)− |V0|) > |T |m(c− 2d)n.

However, by averaging, this implies that there exists a vertex v ∈ V such that

degG(v) > degG′(v) >
|T |m(c− 2d)n

|S|m
>

t

t− βt
(c− 2d)n > (1 + ε)cn,

by the definition of β and ε, a contradiction. Thus we have i(V (H)\S)−|S| 6 βt for any
S ⊆ [t]. So by Theorem 6, we get µf (H) > (1−β)t/2. Moreover, there exists a fractional
matching f such that

∑
e∈E(H) f(e) = µf (H) > (1−β)t/2 and f(e) ∈ {0, 1/2, 1} for every

edge e ∈ E(H).
For each i ∈ [t] we arbitrarily split Vi into V 1

i and V 2
i each of size m/2. Thus the

existence of f implies that we can partition V \ V0 into at least (1 − β)t/2 pairs of sets
each of form (V a

i , V
b
j ) with density at least d, where i, j ∈ [t], i 6= j and a, b ∈ [2], and a

set of at most 2βt ·m vertices. Note that here (to simplify the argument) even if an edge
ij ∈ E(H) receives weight 1, we still split it, e.g., as (V 1

i , V
1
j ) and (V 2

i , V
2
j ). Thus every

vertex of H is in at most two pairs so there are at most t pairs.
We will show that each such pair contains a cycle that covers all but at most 2εm

vertices. Indeed, fix any pair (V a
i , V

b
j ), let A be the set of vertices in V a

i whose degree
to V b

j is less than (d − ε)|V b
j |. Since d(A, V b

j ) < d − ε and |V b
j | > εm, the regularity of

(Vi, Vj) implies that |A| 6 εm. Similarly let B be the set of vertices in V b
j whose degree

to V a
i is less than (d − ε)|V a

i | and we have |B| 6 εm. Let A′ ⊇ A and B′ ⊇ B be
arbitrary subsets of V a

i and V b
j , respectively, of size exactly εm. Now let X = V a

i \A′ and
Y = V b

j \ B′, we get that (X, Y ) is (ε, d − 3ε)-super-regular with density at least d − 3ε,
and |X| = |Y | = m − εm. Since d − 3ε > d/2, by Lemma 5, (X, Y ) contains a spanning
cycle and we are done.

Let C = M . Thus we obtain a set of at most t 6 M = C vertex-disjoint cycles in G
that covers all but at most

t · 2εm+ |V0|+ 2βt ·m 6 3βn = αn

vertices, completing the proof.

3 Proof of Theorem 2

In the proof of Theorem 2 we use the trick of a ‘reservoir lemma’ from [8, 9]. Roughly
speaking, we will reserve a random set R of vertices at the beginning of the proof, and use
them to connect the paths returned by applying Theorem 3 on G−R. We first recall the
following Chernoff’s bounds (see, e.g., [1]) for binomial random variables and for x > 0:

P[Bin(n′, ζ) > n′ζ + x] < e−x
2/(2n′ζ+x/3)

P[Bin(n′, ζ) 6 n′ζ − x] < e−x
2/(2n′ζ).
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Lemma 7. Given any c, γ, ε > 0, the following holds for sufficiently large integer n.
Let G be a dcne-regular graph of order n. Then there exists a set R ⊆ V (G) such that
|R| = (1± ε)γn and every vertex of G has degree (1± ε)cγn in R.

Proof. We select the set R by including each vertex of G independently and randomly
with probability γ. Note that |R| and deg(v,R) for each v ∈ V (G) are both binomial
random variables with expectation γn and γdcne, respectively. By Chernoff’s bounds, we
get

P[|R| > (1 + ε)γn] < e−ε
2γn/3, P[|R| < (1− ε)γn] < e−ε

2γn/3,

P[xv > (1 + ε)cγn] < e−ε
2cγn/3, P[xv < (1− ε)cγn] < e−ε

2cγn/3,

where xv := deg(v,R) for all v ∈ V (G). Since (2n + 2)e−ε
2cγn/3 < 1 because n is large

enough, there is a choice of R with the desired properties.

Proof of Theorem 2. Given c, α ∈ (0, 1), let γ = α/4. We apply Theorem 3 with c and
α/2 in place of α and obtain ε1 and C ∈ N. Let ε = min{ε1, ((b1/cc+1)c−1)/3}. Let G be
a dcne-regular graph of order n. We first pick the set R by Lemma 7. Let G1 = G−R and
n1 = n−|R|. Thus for every vertex v ∈ V (G1), we know that degG1

(v) = dcne−(1±ε)cγn.
Since |R| = (1± ε)γn we know that degG1

(v) = (1± ε)cn1. Indeed, for the upper bound
we have

degG1
(v) 6 c(n1 + |R|) + 1− (1− ε)cγn 6 cn1 + 1 + 2εcγn 6 (1 + ε)cn1,

where in the last inequality we use n < 2n1 and γ 6 1/4; and the lower bound can be
shown similarly. By applying Theorem 3 with α/2 in place of α, we obtain a collection of
at most C vertex-disjoint paths whose union covers all but at most α|V (G1)|/2 6 αn/2
vertices of G1.

Next we iteratively use the property of R to connect some pair of paths. We first
explain the general case. Suppose there are at least b1/cc + 1 paths left. Indeed, let
v1, v2, . . . , vb1/cc+1 be the (arbitrary one out of the two) ends of the b1/cc+ 1 paths. Note
that throughout the iteration there are at most C vertices in R that have been used for
connecting and thus removed from R. So for each i, by deg(vi, R)−C > (1− ε)cγn−C >
(1− 2ε)c|R|, we have

(b1/cc+ 1)(deg(vi, R)− C) > (1 + 3ε)(1− 2ε)|R| > |R|,

by the definition of ε. Thus there exist two vertices vi, vj which have a common neighbor
w in R so that we can connect the corresponding two paths by w. At the end, we obtain
a collection of at most b1/cc vertex-disjoint paths whose union covers all but at most
αn/2 + (1 + ε)γn 6 αn vertices in G.

Second, assume that there are at least b1/(2c)c+1 paths left and in addition that G is
bipartite with bipartition X and Y . Note that since G is regular we have |X| = |Y | = n/2
(so in particular n must be even). Fix b1/(2c)c+ 1 paths. By throwing away at most one
vertex from each path we can assume that each path has exactly one end vertex in X and
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one in Y . Let v1, v2, . . . , vb1/(2c)c+1 be the end vertices in X. By the similar calculation,
we can find a vertex w ∈ R∩Y which connects some pair of paths. At the end, we obtain
a collection of at most b1/(2c)c vertex-disjoint paths whose union covers all but at most
αn/2 + (1 + ε)γn+C2 6 αn vertices in G, because the iteration has at most C steps and
in each step we threw away at most C vertices from the current paths.
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