Erdős-Ginzburg-Ziv constants by avoiding three-term arithmetic progressions

Jacob Fox ${ }^{*}$ Lisa Sauermann ${ }^{\dagger}$
Department of Mathematics
Stanford University
Stanford, CA 94305, U.S.A.
\{jacobfox,1sauerma\}@stanford.edu

Submitted: Aug 30, 2017; Accepted: Apri 10, 2018; Published: Apr 27, 2018 (c) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

For a finite abelian group G, the Erdős-Ginzburg-Ziv constant $\mathfrak{s}(G)$ is the smallest s such that every sequence of s (not necessarily distinct) elements of G has a zero-sum subsequence of length $\exp (G)$. For a prime p, let $r\left(\mathbb{F}_{p}^{n}\right)$ denote the size of the largest subset of \mathbb{F}_{p}^{n} without a three-term arithmetic progression. Although similar methods have been used to study $\mathfrak{s}(G)$ and $r\left(\mathbb{F}_{p}^{n}\right)$, no direct connection between these quantities has previously been established. We give an upper bound for $\mathfrak{s}(G)$ in terms of $r\left(\mathbb{F}_{p}^{n}\right)$ for the prime divisors p of $\exp (G)$. For the special case $G=\mathbb{F}_{p}^{n}$, we prove $\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right) \leqslant 2 p \cdot r\left(\mathbb{F}_{p}^{n}\right)$. Using the upper bounds for $r\left(\mathbb{F}_{p}^{n}\right)$ of Ellenberg and Gijswijt, this result improves the previously best known upper bounds for $\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right)$ given by Naslund.

Mathematics Subject Classifications: 11B25, 11B30, 05D40, 05D10

1 Introduction

Let G be a non-trivial finite abelian group, additively written. We denote the exponent of G by $\exp (G)$; this is the least common multiple of the orders of all elements of G.

The Erdős-Ginzburg-Ziv constant $\mathfrak{s}(G)$ is the smallest integer s such that every sequence of s (not necessarily distinct) elements of G has a subsequence of length $\exp (G)$ whose elements sum to zero in G. Furthermore, let $\mathfrak{g}(G)$ denote the smallest integer a such that every subset $A \subseteq G$ of size $|A| \geqslant a$ contains $\exp (G)$ distinct elements summing to zero in G. It is easy to see that $\mathfrak{g}(G) \leqslant \mathfrak{s}(G)$ and $\mathfrak{s}(G) \leqslant(\exp (G)-1)(\mathfrak{g}(G)-1)+1$.

[^0]A three-term arithmetic progression is a subset of G consisting of three distinct elements such that the sum of two of these elements equals twice the third element, i.e. a set of the form $\{x, y, z\} \subseteq G$ with x, y, z distinct and $x+z=2 y$. For $y \in G$, a three-term arithmetic progression with middle term y is a set of the form $\{x, y, z\} \subseteq G$ with x, y, z distinct and $x+z=2 y$. For a finite abelian group G, let $r(G)$ denote the largest size of a subset of G without a three-term arithmetic progression. Note that $r\left(\mathbb{F}_{2}^{n}\right)=2^{n}$, since there are no three-term arithmetic progressions in \mathbb{F}_{2}^{n}. Also note that in the case of $G=\mathbb{F}_{3}^{n}$, a three-term arithmetic progression is the same as a set of three distinct elements summing to zero, hence $r\left(\mathbb{F}_{3}^{n}\right)=\mathfrak{g}\left(\mathbb{F}_{3}^{n}\right)-1$ (see also [2] and [10]).

In 1961, Erdős, Ginzburg and Ziv [13] proved for each positive integer k that any sequence of $2 k-1$ integers contains a subsequence of length k whose sum is divisible by k. The same statement is clearly not true for sequences of length $2 k-2$. Thus, their result can be reformulated as $\mathfrak{s}(\mathbb{Z} / k \mathbb{Z})=2 k-1$. The work of Erdős, Ginzburg and Ziv [13] was the starting point for a whole field studying different zero-sum problems in various finite abelian groups; see for example the survey article by Gao and Geroldinger [15].

Note that $\mathfrak{s}\left((\mathbb{Z} / k \mathbb{Z})^{n}\right)$ has a simple geometric interpretation: it is the smallest number s such that among any s points in the lattice \mathbb{Z}^{n} one can choose k points such that their centroid is again a lattice point in \mathbb{Z}^{n}. Harborth [18] investigated $\mathfrak{s}\left((\mathbb{Z} / k \mathbb{Z})^{n}\right)$ in this context and was the first to study Erdős-Ginzburg-Ziv constants for non-cyclic groups. He proved

$$
(k-1) 2^{n}+1 \leqslant \mathfrak{s}\left((\mathbb{Z} / k \mathbb{Z})^{n}\right) \leqslant(k-1) k^{n}+1,
$$

where the upper bound is easily obtained from the pigeonhole principle. Harborth [18] also established $\mathfrak{s}\left(\left(\mathbb{Z} / 2^{m} \mathbb{Z}\right)^{n}\right)=\left(2^{m}-1\right) 2^{n}+1$ and in particular $\mathfrak{s}\left(\mathbb{F}_{2}^{n}\right)=2^{n}+1$. For $n=2$, Reiher [20] determined that $\mathfrak{s}\left((\mathbb{Z} / k \mathbb{Z})^{2}\right)=4 k-3$ for all positive integers k. Alon and Dubiner [3] proved $\mathfrak{s}\left((\mathbb{Z} / k \mathbb{Z})^{n}\right) \leqslant(c n \log n)^{n} k$ for some absolute constant c. Hence, for any fixed n, the quantity $\mathfrak{s}\left((\mathbb{Z} / k \mathbb{Z})^{n}\right)$ grows linearly with k. It remains an interesting question to estimate $\mathfrak{s}\left((\mathbb{Z} / k \mathbb{Z})^{n}\right)$ when k is fixed and n is large. Elsholtz [12] obtained the lower bounds $\mathfrak{s}\left((\mathbb{Z} / k \mathbb{Z})^{n}\right) \geqslant 1.125^{\lfloor n / 3\rfloor}(k-1) 2^{n}+1$ for $k \geqslant 3$ odd and all n, and in particular $\mathfrak{s}\left((\mathbb{Z} / k \mathbb{Z})^{n}\right) \geqslant 2.08^{n}$ if $k \geqslant 3$ is odd and n is sufficiently large.

For general finite abelian groups, Gao and Yang [16] proved the upper bound $\mathfrak{s}(G) \leqslant$ $|G|+\exp (G)-1$ (see also [17, Theorem 5.7.4]). Alon and Dubiner's result [3] has been used to obtain upper bounds on $\mathfrak{s}(G)$ when G has small rank (the rank of G is $\max \left(n_{1}, \ldots, n_{m}\right)$, where n_{1}, \ldots, n_{m} are defined as in Theorem 1 below), see [10, Theorem 1.4] and [8, Theorem 1.5]. In this paper, we will focus on the opposite case where at least one of n_{1}, \ldots, n_{m} is large compared to $\exp (G)$.

The case $G=\mathbb{F}_{p}^{n}$ for a prime $p \geqslant 3$ has attracted particular interest. In this case, Naslund [19] proved that $\mathfrak{g}\left(\mathbb{F}_{p}^{n}\right) \leqslant\left(2^{p}-p-2\right) \cdot(J(p) p)^{n}$ and $\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right) \leqslant(p-1) 2^{p} \cdot(J(p) p)^{n}$, where $0.8414 \leqslant J(p) \leqslant 0.9184$. To prove these bounds, Naslund introduced a variant of Tao's slice rank method [22]. Tao developed this method as an alternative formulation of the proof of $r\left(\mathbb{F}_{p}^{n}\right) \leqslant(J(p) p)^{n}$ by Ellenberg and Gijswijt [11], which in turn used the new polynomial method introduced by Croot, Lev and Pach [9] to prove $r\left((\mathbb{Z} / 4 \mathbb{Z})^{n}\right) \leqslant 3.62^{n}$. Note that the constant $J(p) p$ in Naslund's bounds for $\mathfrak{g}\left(\mathbb{F}_{p}^{n}\right)$ and $\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right)$ is the same as in the bound $r\left(\mathbb{F}_{p}^{n}\right) \leqslant(J(p) p)^{n}$ by Ellenberg and Gijswijt [11], see also [6].

While similar methods have been applied to prove upper bounds for the Erdős-Ginzburg-Ziv constant and upper bounds for sets without arithmetic progressions, no direct connection between the two problems has previously been established (apart from the case $G=\mathbb{F}_{3}^{n}$ mentioned above). In this note, we derive upper bounds for $\mathfrak{s}(G)$ for all finite abelian groups G in terms of $r\left(\mathbb{F}_{p}^{n}\right)$ for the prime divisors p of $\exp (G)$. It is also possible to prove an upper bound of the form $\mathfrak{s}(G) \leqslant O(\exp (G) r(G))$. However, $\exp (G) r(G)$ is usually much larger than our upper bound in Theorem 1 .

Theorem 1. Let G be a non-trivial finite abelian group. Let p_{1}, \ldots, p_{m} be the distinct prime factors of $\exp (G)$. When writing G as a product of cyclic groups of prime power order, all the occurring prime powers are powers of p_{1}, \ldots, p_{m}. For $i=1, \ldots, m$, let n_{i} be the number of cyclic factors of G whose order is a power of p_{i}. Then we have

$$
\mathfrak{s}(G)<3 \exp (G) \cdot\left(r\left(\mathbb{F}_{p_{1}}^{n_{1}}\right)+\cdots+r\left(\mathbb{F}_{p_{m}}^{n_{m}}\right)\right) .
$$

For the case $G=(\mathbb{Z} / k \mathbb{Z})^{n}$ we obtain the following corollary (note that $\mathbb{Z} / k \mathbb{Z}$ has precisely one cyclic factor of prime power order for each distinct prime dividing k, hence $(\mathbb{Z} / k \mathbb{Z})^{n}$ has precisely n cyclic factors for each distinct prime dividing k).

Corollary 2. Let $k \geqslant 2$ be an integer and let p_{1}, \ldots, p_{m} be its distinct prime factors. Then we have

$$
\mathfrak{s}\left((\mathbb{Z} / k \mathbb{Z})^{n}\right)<3 k\left(r\left(\mathbb{F}_{p_{1}}^{n}\right)+\cdots+r\left(\mathbb{F}_{p_{m}}^{n}\right)\right)
$$

for every positive integer n.
Recall that $r\left(\mathbb{F}_{2}^{n}\right)=2^{n}$. For primes $p \geqslant 3$ it is known from [11] and [6] that $r\left(\mathbb{F}_{p}^{n}\right) \leqslant$ $(J(p) p)^{n}$, with $0.8414 \leqslant J(p) \leqslant 0.9184$ and with $J(p)$ being a decreasing function that tends to $0.8414 \ldots$ as $p \rightarrow \infty$ (see [6] for more details and for the precise definition of the function $J(p))$. As a lower bound, we have $r\left(\mathbb{F}_{p}\right) \geqslant p^{1-o(1)}$ by Behrend's construction [5] and $r\left(\mathbb{F}_{p}^{n}\right) \geqslant p^{(1-o(1)) n}$ by taking a product with Behrend's construction in each coordinate (here $o(1) \rightarrow 0$ as $p \rightarrow \infty$ independently of n). Furthermore, Alon, Shpilka and Umans [4], relying on a construction of Salem and Spencer [21], proved $r\left(\mathbb{F}_{p}^{n}\right) \geqslant(p / 2)^{(1-o(1)) n}$, where $o(1) \rightarrow 0$ as $n \rightarrow \infty$ with p fixed. A variant of Behrend's construction due to Alon gives an improvement of the $o(1)$-term (see [14, Lemma 17]). Note that in light of $r\left(\mathbb{F}_{p}^{n}\right) \geqslant(p / 2)^{(1-o(1)) n}$, for large n and odd $k \geqslant 3$ there is still a big gap between Elsholtz' lower bound $\mathfrak{s}\left((\mathbb{Z} / k \mathbb{Z})^{n}\right) \geqslant 2.08^{n}$ and the upper bound for $s\left((\mathbb{Z} / k \mathbb{Z})^{n}\right)$ in Corollary 2.

The bounds in Theorem 1 and Corollary 2 look clean and simple, but they are not the optimal results that can be obtained from our arguments (see Remark 9 and the second inequality in Lemma 10 where certain terms are just ignored). However, the improvements when optimizing the estimates in our proof are not very significant as long as $\exp (G)$ is small compared to at least one of n_{1}, \ldots, n_{m}.

In Section 2, we will first prove the following upper bounds for $\mathfrak{g}\left(\mathbb{F}_{p}^{n}\right)$ and $\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right)$ using the probabilistic method. In Section 3 we will then deduce Theorem 1 from Theorem 4.

Theorem 3. Let $p \geqslant 3$ be a prime and $n \geqslant 2$ be an integer. Then $\mathfrak{g}\left(\mathbb{F}_{p}^{n}\right) \leqslant 2 p \cdot r\left(\mathbb{F}_{p}^{n-1}\right)$.

Theorem 4. Let $p \geqslant 3$ be a prime and $n \geqslant 1$ be an integer. Then $\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right) \leqslant 2 p \cdot r\left(\mathbb{F}_{p}^{n}\right)$.
For $p \geqslant 3$ prime, using $r\left(\mathbb{F}_{p}^{n}\right) \leqslant(J(p) p)^{n}$, we obtain

$$
\mathfrak{g}\left(\mathbb{F}_{p}^{n}\right) \leqslant 2 p \cdot r\left(\mathbb{F}_{p}^{n-1}\right) \leqslant 2 p \cdot(J(p) p)^{n-1}<3(J(p) p)^{n}
$$

and

$$
\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right) \leqslant 2 p \cdot r\left(\mathbb{F}_{p}^{n}\right) \leqslant 2 p \cdot(J(p) p)^{n},
$$

which slightly improves the previously best known bounds for $\mathfrak{g}\left(\mathbb{F}_{p}^{n}\right)$ and $\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right)$ from [19].
To obtain an upper bound for $\mathfrak{g}\left(\mathbb{F}_{p}^{n}\right)$ in terms of $r\left(\mathbb{F}_{p}^{n}\right)$, note that a product construction shows

$$
r\left(\mathbb{F}_{p}^{n}\right) \geqslant r\left(\mathbb{F}_{p}^{n-1}\right) \cdot r\left(\mathbb{F}_{p}\right) \geqslant 2 r\left(\mathbb{F}_{p}^{n-1}\right) p^{1-o(1)} .
$$

Hence, Theorem 3 implies $\mathfrak{g}\left(\mathbb{F}_{p}^{n}\right) \leqslant p^{o(1)} r\left(\mathbb{F}_{p}^{n}\right)$, where $o(1) \rightarrow 0$ as $p \rightarrow \infty$ independently of n.

2 Proof of Theorems 3 and 4

Lemma 5. Let $p \geqslant 3$ be a prime and $n \geqslant 1$. If $A \subseteq \mathbb{F}_{p}^{n}$ does not contain p distinct elements summing to zero, then for every $x \in A$ the set A contains at most $\frac{p-3}{2}$ different three-term arithmetic progressions with middle term x.

Proof. Suppose that for some $x \in A$ the set A contains $\frac{p-1}{2}$ different three-term arithmetic progressions with middle term x. Each of them consists of x and two more elements of A whose sum equals $2 x$. So we obtain $\frac{p-1}{2}$ pairs of elements of A, each pair with sum $2 x$. It is not hard to see that the $p-1$ elements of A involved in these $\frac{p-1}{2}$ pairs are all distinct and distinct from x. So taking these $p-1$ elements together with x itself, we obtain p distinct elements of A with sum $\frac{p-1}{2} \cdot 2 x+x=p \cdot x=0$. This is a contradiction to the assumption on A.

Remark 6. By definition, $r\left(\mathbb{F}_{p}^{n-1}\right)$ is the largest size of a subset of \mathbb{F}_{p}^{n-1} without a threeterm arithmetic progression. Let V be an affine subspace of dimension $n-1$ in \mathbb{F}_{p}^{n}, i.e. a hyperplane in \mathbb{F}_{p}^{n}. We can consider a translation moving V to the origin (so that it becomes a linear subspace of dimension $n-1$) and then an isomorphism to \mathbb{F}_{p}^{n-1}. This gives a bijection between V and \mathbb{F}_{p}^{n-1} which preserves three-term arithmetic progressions. Hence the largest size of a subset of V without a three-term arithmetic progression is also equal to $r\left(\mathbb{F}_{p}^{n-1}\right)$.

We will now prove Theorem 3. Note that $\exp \left(\mathbb{F}_{p}^{n}\right)=p$.
Proof of Theorem 3. Let $A \subseteq \mathbb{F}_{p}^{n}$ be a subset that does not contain p distinct elements summing to zero. We need to show that $|A|<2 p \cdot r\left(\mathbb{F}_{p}^{n-1}\right)$.

By Lemma 5 we know that for every $x \in A$ the set A contains at most $\frac{p-3}{2}$ different three-term arithmetic progressions with middle term x. Hence the total number of threeterm arithmetic progressions contained in the set A is at most $\frac{p-3}{2}|A|$.

Pick an affine subspace V of dimension $n-1$ in \mathbb{F}_{p}^{n} uniformly at random. Let $X_{1}=$ $|A \cap V|$ and let X_{2} be the number of three-term arithmetic progressions that are contained in $A \cap V$. Since each point of A is contained in V with probability $\frac{1}{p}$, we have $\mathbb{E}\left[X_{1}\right]=\frac{1}{p}|A|$.

For any three-term arithmetic progression, the probability that its first element is contained in V is equal to $\frac{1}{p}$. Conditioned on this, the probability that its second element is also contained in V is $\frac{p^{n-1}-1}{p^{n}-1}<\frac{1}{p}$ (and note that then the third element will be contained in V as well). Hence for any three-term arithmetic progression contained in A, the probability that it is contained in $A \cap V$ is less than $\frac{1}{p^{2}}$. Since A contains at most $\frac{p-3}{2}|A|$ three-term arithmetic progressions, we obtain

$$
\mathbb{E}\left[X_{2}\right]<\frac{1}{p^{2}} \cdot \frac{p-3}{2}|A|<\frac{1}{2 p}|A| .
$$

Thus, $\mathbb{E}\left[X_{1}-X_{2}\right]>\frac{1}{2 p}|A|$. So we can choose an affine subspace V of dimension $n-1$ in \mathbb{F}_{p}^{n} such that $X_{1}-X_{2}>\frac{1}{2 p}|A|$. Let B be a set obtained from $A \cap V$ after deleting one element from each three-term arithmetic progression contained in $A \cap V$. Then $|B| \geqslant X_{1}-X_{2}>\frac{1}{2 p}|A|$. By construction, B is a subset of V that does not contain any three-term arithmetic progression. By Remark 6 , we can conclude that $|B| \leqslant r\left(\mathbb{F}_{p}^{n-1}\right)$. Thus, $\frac{1}{2 p}|A|<|B| \leqslant r\left(\mathbb{F}_{p}^{n-1}\right)$ and therefore $|A|<2 p \cdot r\left(\mathbb{F}_{p}^{n-1}\right)$.

Our proof of Theorem 3 is somewhat similar to the first half of the proof of Proposition 2.5 in Alon's paper [1]. There, he also considered points which are the middle term of only few three-term arithmetic progressions and obtained a subset without any three-term arithmetic progressions, yielding a contradiction. However, Alon's work [1] is in a very different context and does not use a subspace sampling argument.

Finally, we will deduce Theorem 4 from Theorem 3.
Proof of Theorem 4. Assume we are given a sequence of vectors in \mathbb{F}_{p}^{n} without a zero-sum subsequence of length p. Every vector occurs at most $p-1$ times in the sequence. Hence by attaching one additional coordinate we can make all the vectors in the sequence distinct. This way, we obtain a subset of \mathbb{F}_{p}^{n+1} without p distinct elements summing to zero. Since this subset has size at most $\mathfrak{g}\left(\mathbb{F}_{p}^{n+1}\right)-1$, we can conclude that the original sequence had length at most $\mathfrak{g}\left(\mathbb{F}_{p}^{n+1}\right)-1$. This shows $\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right) \leqslant \mathfrak{g}\left(\mathbb{F}_{p}^{n+1}\right)$ and together with Theorem 3 with n replaced by $n+1$, we obtain $\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right) \leqslant \mathfrak{g}\left(\mathbb{F}_{p}^{n+1}\right) \leqslant 2 p \cdot r\left(\mathbb{F}_{p}^{n}\right)$ as desired.

3 Proof of Theorem 1

In this section we will first bound $\mathfrak{s}(G)$ for any finite abelian group G by terms of the form $\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right)$. Then, applying Theorem 4, we will obtain Theorem 1 .

The following lemma was proved by Chi, Ding, Gao, Geroldinger and Schmid [7, Proposition 3.1] and is a generalization of [18, Hilfssatz 2]. For the reader's convenience we repeat the proof here.

Lemma 7 (Proposition 3.1 in [7]). Let G be a non-trivial finite abelian group and $H \subseteq G$ be a subgroup such that $\exp (G)=\exp (H) \exp (G / H)$. Then

$$
\mathfrak{s}(G) \leqslant \exp (G / H)(\mathfrak{s}(H)-1)+\mathfrak{s}(G / H)
$$

Proof. Consider a sequence of length $\exp (G / H)(\mathfrak{s}(H)-1)+\mathfrak{s}(G / H)$ with elements in G. Then we can find a subsequence of length $\exp (G / H)$ summing to zero in G / H, i.e. summing to an element of H. Delete this subsequence and repeat. We can do this $\mathfrak{s}(H)$ many times (since after $\mathfrak{s}(H)-1$ many times we still have $\mathfrak{s}(G / H)$ elements left). So we find $\mathfrak{s}(H)$ disjoint subsequences each of length $\exp (G / H)$ and the sum of each of the subsequences is in H. Now writing down these $\mathfrak{s}(H)$ sums, we get a sequence of length $\mathfrak{s}(H)$ with elements in H. So we can choose $\exp (H)$ of them summing to zero. Now taking the union of the corresponding subsequences of the original sequence we obtain $\exp (H) \exp (G / H)=\exp (G)$ elements summing to zero.

Lemma 8. For any finite abelian p-group $G=\left(\mathbb{Z} / p^{a_{1}} \mathbb{Z}\right) \times \cdots \times\left(\mathbb{Z} / p^{a_{n}} \mathbb{Z}\right)$, where $a_{1} \geqslant$ $\ldots \geqslant a_{n}$ are positive integers and $p \geqslant 2$ is prime, we have

$$
\mathfrak{s}(G)=\mathfrak{s}\left(\left(\mathbb{Z} / p^{a_{1}} \mathbb{Z}\right) \times \cdots \times\left(\mathbb{Z} / p^{a_{n}} \mathbb{Z}\right)\right) \leqslant \frac{p^{a_{1}}-1}{p-1} \mathfrak{s}\left(\mathbb{F}_{p}^{n}\right)<\frac{\exp (G)}{p-1} \mathfrak{s}\left(\mathbb{F}_{p}^{n}\right)
$$

Proof. Since $\exp (G)=p^{a_{1}}$, the second inequality is clearly true. Now, let us prove the first inequality by induction on a_{1}. If $a_{1}=1$, then $a_{1}=\cdots=a_{n}=1$ and so

$$
\mathfrak{s}\left(\left(\mathbb{Z} / p^{a_{1}} \mathbb{Z}\right) \times \cdots \times\left(\mathbb{Z} / p^{a_{n}} \mathbb{Z}\right)\right)=\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right)=\frac{p^{a_{1}}-1}{p-1} \mathfrak{s}\left(\mathbb{F}_{p}^{n}\right)
$$

For $a_{1}>1$ we can apply Lemma 7 to $H=p G$. Indeed, $G / H \cong \mathbb{F}_{p}^{n}$ and $H \cong\left(\mathbb{Z} / p^{a_{1}-1} \mathbb{Z}\right) \times$ $\cdots \times\left(\mathbb{Z} / p^{a_{n}-1} \mathbb{Z}\right)$. In particular, $\exp (G)=p^{a_{1}}=p^{a_{1}-1} \cdot p=\exp (H) \exp (G / H)$. So by Lemma 7 we have

$$
\begin{aligned}
\mathfrak{s}(G) \leqslant \exp \left(\mathbb{F}_{p}^{n}\right)\left(\mathfrak { s } \left(\left(\mathbb{Z} / p^{a_{1}-1} \mathbb{Z}\right) \times \cdots \times\right.\right. & \left.\left.\left(\mathbb{Z} / p^{a_{n}-1} \mathbb{Z}\right)\right)-1\right)+\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right) \\
& <p \mathfrak{s}\left(\left(\mathbb{Z} / p^{a_{1}-1} \mathbb{Z}\right) \times \cdots \times\left(\mathbb{Z} / p^{a_{n}-1} \mathbb{Z}\right)\right)+\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right)
\end{aligned}
$$

Let $n^{\prime} \leqslant n$ be such that $a_{1} \geqslant \ldots \geqslant a_{n^{\prime}} \geqslant 2$ and $a_{n^{\prime}+1}=\cdots=a_{n}=1$. Then by the induction assumption we have

$$
\begin{aligned}
\mathfrak{s}\left(\left(\mathbb{Z} / p^{a_{1}-1} \mathbb{Z}\right) \times \cdots \times\left(\mathbb{Z} / p^{a_{n}-1} \mathbb{Z}\right)\right)=\mathfrak{s}\left(\left(\mathbb{Z} / p^{a_{1}-1} \mathbb{Z}\right)\right. & \left.\times \cdots \times\left(\mathbb{Z} / p^{a_{n^{\prime}}-1} \mathbb{Z}\right)\right) \\
& \leqslant \frac{p^{a_{1}-1}-1}{p-1} \mathfrak{s}\left(\mathbb{F}_{p}^{n^{\prime}}\right) \leqslant \frac{p^{a_{1}-1}-1}{p-1} \mathfrak{s}\left(\mathbb{F}_{p}^{n}\right) .
\end{aligned}
$$

Thus,

$$
\mathfrak{s}(G)=\mathfrak{s}\left(\left(\mathbb{Z} / p^{a_{1}} \mathbb{Z}\right) \times \cdots \times\left(\mathbb{Z} / p^{a_{n}} \mathbb{Z}\right)\right) \leqslant p \cdot \frac{p^{a_{1}-1}-1}{p-1} \mathfrak{s}\left(\mathbb{F}_{p}^{n}\right)+\mathfrak{s}\left(\mathbb{F}_{p}^{n}\right)=\frac{p^{a_{1}}-1}{p-1} \mathfrak{s}\left(\mathbb{F}_{p}^{n}\right),
$$

completing the induction.

Remark 9. The proof of Lemma 8 also gives the stronger but more complicated bound

$$
\mathfrak{s}\left(\left(\mathbb{Z} / p^{a_{1}} \mathbb{Z}\right) \times \cdots \times\left(\mathbb{Z} / p^{a_{n}} \mathbb{Z}\right)\right) \leqslant \sum_{j=1}^{a_{1}} p^{j-1} \mathfrak{s}\left(\mathbb{F}_{p}^{b_{j}}\right),
$$

where $b_{j}=\max \left\{i \mid a_{i} \geqslant j\right\}$ for $j=1, \ldots, a_{1}$. Note that $b_{1} \geqslant \ldots \geqslant b_{a_{1}}$ is the conjugate of $a_{1} \geqslant \ldots \geqslant a_{n}$ in the sense of Young diagrams.

Lemma 10. Let G be a non-trivial finite abelian group. Let p_{1}, \ldots, p_{m} be the distinct prime factors of $\exp (G)$. Let us write $G \cong G_{1} \times \cdots \times G_{m}$ where each G_{i} is a p_{i}-group. Then

$$
\mathfrak{s}(G) \leqslant \sum_{i=1}^{m} \exp \left(G_{1}\right) \cdots \exp \left(G_{i-1}\right) \mathfrak{s}\left(G_{i}\right) \leqslant \exp (G)\left(\frac{\mathfrak{s}\left(G_{1}\right)}{\exp \left(G_{1}\right)}+\cdots+\frac{\mathfrak{s}\left(G_{m}\right)}{\exp \left(G_{m}\right)}\right)
$$

Proof. First, note that $\exp (G)=\exp \left(G_{1}\right) \cdots \exp \left(G_{m}\right)$. In particular

$$
\exp \left(G_{1}\right) \cdots \exp \left(G_{i-1}\right) \leqslant \frac{\exp (G)}{\exp \left(G_{i}\right)}
$$

for every i, which makes the second inequality true. We prove the first inequality by induction on m. If $m=1$, the statement is trivial. If $m>1$, note that we can apply Lemma 7 to $H=G_{m}$ and obtain

$$
\mathfrak{s}(G) \leqslant \exp \left(G_{1} \times \cdots \times G_{m-1}\right)\left(\mathfrak{s}\left(G_{m}\right)-1\right)+\mathfrak{s}\left(G_{1} \times \cdots \times G_{m-1}\right)
$$

Plugging in $\exp \left(G_{1} \times \cdots \times G_{m-1}\right)=\exp \left(G_{1}\right) \cdots \exp \left(G_{m-1}\right)$ as well as using the induction assumption for $G_{1} \times \cdots \times G_{m-1}$ yields

$$
\begin{aligned}
& \mathfrak{s}(G) \leqslant \exp \left(G_{1}\right) \cdots \exp \left(G_{m-1}\right) \mathfrak{s}\left(G_{m}\right)+\sum_{i=1}^{m-1} \exp \left(G_{1}\right) \cdots \exp \left(G_{i-1}\right) \mathfrak{s}\left(G_{i}\right) \\
&=\sum_{i=1}^{m} \exp \left(G_{1}\right) \cdots \exp \left(G_{i-1}\right) \mathfrak{s}\left(G_{i}\right)
\end{aligned}
$$

as desired.
Lemma 11. Under the assumptions of Theorem 1 we have

$$
\mathfrak{s}(G)<\exp (G)\left(\frac{\mathfrak{s}\left(\mathbb{F}_{p_{1}}^{n_{1}}\right)}{p_{1}-1}+\cdots+\frac{\mathfrak{s}\left(\mathbb{F}_{p_{m}}^{n_{m}}\right)}{p_{m}-1}\right) .
$$

Proof. As in Lemma 10, let us write $G \cong G_{1} \times \cdots \times G_{m}$ where each G_{i} is a p_{i}-group. Each G_{i} can be written as a product of cyclic groups whose orders are powers of p_{i}. Note that the number of factors of each G_{i} is precisely n_{i}, because together all these factorizations form the unique representation of G as a product of cyclic groups of prime power order. So, by Lemma 8, we have

$$
\mathfrak{s}\left(G_{i}\right)<\frac{\exp \left(G_{i}\right)}{p_{i}-1} \mathfrak{s}\left(\mathbb{F}_{p_{i}}^{n_{i}}\right)
$$

for $i=1, \ldots, m$. Now the desired inequality follows directly from Lemma 10 .

Proof of Theorem 1. Note that by Theorem 4 we have

$$
\frac{\mathfrak{s}\left(\mathbb{F}_{p_{i}}^{n_{i}}\right.}{p_{i}-1} \leqslant \frac{2 p_{i}}{p_{i}-1} r\left(\mathbb{F}_{p_{i}}^{n_{i}}\right) \leqslant 3 r\left(\mathbb{F}_{p_{i}}^{n_{i}}\right)
$$

for all the odd p_{i}. Since $\mathfrak{s}\left(\mathbb{F}_{2}^{n}\right)=2^{n}+1$ (see [18, Korollar 1]) and $r\left(\mathbb{F}_{2}^{n}\right)=2^{n}$, we also have $\frac{\mathfrak{s}\left(\mathbb{F}_{p_{i}}^{n_{i}}\right)}{p_{i}-1} \leqslant 3 r\left(\mathbb{F}_{p_{i}}^{n_{i}}\right)$ if $p_{i}=2$. Thus, Lemma 11 gives

$$
\mathfrak{s}(G)<\exp (G) \cdot\left(3 r\left(\mathbb{F}_{p_{1}}^{n_{1}}\right)+\cdots+3 r\left(\mathbb{F}_{p_{m}}^{n_{m}}\right)\right)=3 \exp (G) \cdot\left(r\left(\mathbb{F}_{p_{1}}^{n_{1}}\right)+\cdots+r\left(\mathbb{F}_{p_{m}}^{n_{m}}\right)\right),
$$

as desired.

Acknowledgements.

We would like to thank the anonymous referees for helpful comments, including pointing out the reference [1].

References

[1] N. Alon, Subset sums, J. Number Theory 27 (1987), 196-205.
[2] N. Alon and M. Dubiner, Zero-sum sets of prescribed size, Combinatorics, Paul Erdős is eighty, Vol. 1, 33-50, János Bolyai Math. Soc., Budapest, 1993.
[3] N. Alon and M. Dubiner, A lattice point problem and additive number theory, Combinatorica 15 (1995), 301-309.
[4] N. Alon, A. Shpilka, and C. Umans, On sunflowers and matrix multiplication, Comput. Complexity 22 (2013), 219-243.
[5] F. A. Behrend, On sets of integers which contain no three terms in arithmetical progression, Proc. Nat. Acad. Sci. U.S.A. 32 (1946), 331-332.
[6] J. Blasiak, T. Church, H. Cohn, J. A. Grochow, E. Naslund, W. F. Sawin, and C. Umans, On cap sets and the group-theoretic approach to matrix multiplication, Discrete Anal. 2017, Paper No. 3, 27pp.
[7] R. Chi, S. Ding, W. Gao, A. Geroldinger, and W. A. Schmid, On zero-sum subsequences of restricted size. IV, Acta Math. Hungar. 107 (2005), 337-344.
[8] M. N. Chintamani, B. K. Moriya, W. D. Gao, P. Paul, and R. Thangadurai, New upper bounds for the Davenport and for the Erdős-Ginzburg-Ziv constants, Arch. Math. 98 (2012), 133-142.
[9] E. Croot, V. F. Lev, and P. P. Pach, Progression-free sets in \mathbb{Z}_{4}^{n} are exponentially small, Ann. of Math. 185 (2017), 331-337.
[10] Y. Edel. C. Elsholtz, A. Geroldinger, S. Kubertin, and L. Rackham, Zero-sum problems in finite abelian groups and affine caps, Q. J. Math. 58 (2007), 159-186.
[11] J. S. Ellenberg and D. Gijswijt, On large subsets of \mathbb{F}_{q}^{n} with no three-term arithmetic progression, Ann. of Math. 185 (2017), 339-343.
[12] C. Elsholtz, Lower bounds for multidimensional zero sums, Combinatorica 24 (2004), 351-358.
[13] P. Erdős, A. Ginzburg, and A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel 10F (1961), 41-43.
[14] J. Fox and H. T. Pham, Popular progression differences in vector spaces II, Discrete Analysis, to appear.
[15] W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo. Math. 24 (2006), 337-369.
[16] W. D. Gao and Y. X. Yang, Note on a combinatorial constant, J. Math. Res. Expo. 17 (1997), 139-140.
[17] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, vol. 278, Chapman \& Hall/CRC, Boca Raton, FL, 2006.
[18] H. Harborth, Ein Extremalproblem für Gitterpunkte, J. Reine Angew. Math., 262 (1973), 356-360.
[19] E. Naslund, Exponential Bounds for the Erdős-Ginzburg-Ziv Constant, preprint, 2018, arXiv:1701.04942v2
[20] C. Reiher, On Kemnitz' conjecture concerning lattice-points in the plane, Ramanujan J. 13 (2007), 333-337.
[21] R. Salem and D. C. Spencer, On sets of integers which contain no three terms in arithmetical progression, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 561-563.
[22] T. Tao, A symmetric formulation of the Croot-Lev-Pach-Ellenberg-Gijswijt capset bound, blog post, 2016, http://terrytao.wordpress.com/2016/05/18/a.

[^0]: *Research supported by a Packard Fellowship and by NSF Career Award DMS-1352121.
 ${ }^{\dagger}$ Research supported by Jacob Fox's Packard Fellowship.

