
Erdős-Ginzburg-Ziv constants by avoiding

three-term arithmetic progressions

Jacob Fox∗ Lisa Sauermann†

Department of Mathematics
Stanford University

Stanford, CA 94305, U.S.A.

{jacobfox,lsauerma}@stanford.edu

Submitted: Aug 30, 2017; Accepted: Apri 10, 2018; Published: Apr 27, 2018

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

For a finite abelian group G, the Erdős-Ginzburg-Ziv constant s(G) is the small-
est s such that every sequence of s (not necessarily distinct) elements of G has a
zero-sum subsequence of length exp(G). For a prime p, let r(Fn

p ) denote the size
of the largest subset of Fn

p without a three-term arithmetic progression. Although
similar methods have been used to study s(G) and r(Fn

p ), no direct connection be-
tween these quantities has previously been established. We give an upper bound
for s(G) in terms of r(Fn

p ) for the prime divisors p of exp(G). For the special case
G = Fn

p , we prove s(Fn
p ) 6 2p ·r(Fn

p ). Using the upper bounds for r(Fn
p ) of Ellenberg

and Gijswijt, this result improves the previously best known upper bounds for s(Fn
p )

given by Naslund.

Mathematics Subject Classifications: 11B25, 11B30, 05D40, 05D10

1 Introduction

Let G be a non-trivial finite abelian group, additively written. We denote the exponent
of G by exp(G); this is the least common multiple of the orders of all elements of G.

The Erdős-Ginzburg-Ziv constant s(G) is the smallest integer s such that every se-
quence of s (not necessarily distinct) elements of G has a subsequence of length exp(G)
whose elements sum to zero in G. Furthermore, let g(G) denote the smallest integer a
such that every subset A ⊆ G of size |A| > a contains exp(G) distinct elements summing
to zero in G. It is easy to see that g(G) 6 s(G) and s(G) 6 (exp(G)− 1)(g(G)− 1) + 1.
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A three-term arithmetic progression is a subset of G consisting of three distinct ele-
ments such that the sum of two of these elements equals twice the third element, i.e. a
set of the form {x, y, z} ⊆ G with x, y, z distinct and x+ z = 2y. For y ∈ G, a three-term
arithmetic progression with middle term y is a set of the form {x, y, z} ⊆ G with x, y, z
distinct and x + z = 2y. For a finite abelian group G, let r(G) denote the largest size
of a subset of G without a three-term arithmetic progression. Note that r(Fn

2 ) = 2n,
since there are no three-term arithmetic progressions in Fn

2 . Also note that in the case of
G = Fn

3 , a three-term arithmetic progression is the same as a set of three distinct elements
summing to zero, hence r(Fn

3 ) = g(Fn
3 )− 1 (see also [2] and [10]).

In 1961, Erdős, Ginzburg and Ziv [13] proved for each positive integer k that any
sequence of 2k − 1 integers contains a subsequence of length k whose sum is divisible by
k. The same statement is clearly not true for sequences of length 2k−2. Thus, their result
can be reformulated as s(Z/kZ) = 2k− 1. The work of Erdős, Ginzburg and Ziv [13] was
the starting point for a whole field studying different zero-sum problems in various finite
abelian groups; see for example the survey article by Gao and Geroldinger [15].

Note that s((Z/kZ)n) has a simple geometric interpretation: it is the smallest number
s such that among any s points in the lattice Zn one can choose k points such that their
centroid is again a lattice point in Zn. Harborth [18] investigated s((Z/kZ)n) in this
context and was the first to study Erdős-Ginzburg-Ziv constants for non-cyclic groups.
He proved

(k − 1)2n + 1 6 s((Z/kZ)n) 6 (k − 1)kn + 1,

where the upper bound is easily obtained from the pigeonhole principle. Harborth [18]
also established s((Z/2mZ)n) = (2m − 1)2n + 1 and in particular s(Fn

2 ) = 2n + 1. For
n = 2, Reiher [20] determined that s((Z/kZ)2) = 4k − 3 for all positive integers k. Alon
and Dubiner [3] proved s((Z/kZ)n) 6 (cn log n)nk for some absolute constant c. Hence,
for any fixed n, the quantity s((Z/kZ)n) grows linearly with k. It remains an interesting
question to estimate s((Z/kZ)n) when k is fixed and n is large. Elsholtz [12] obtained
the lower bounds s((Z/kZ)n) > 1.125bn/3c(k − 1)2n + 1 for k > 3 odd and all n, and in
particular s((Z/kZ)n) > 2.08n if k > 3 is odd and n is sufficiently large.

For general finite abelian groups, Gao and Yang [16] proved the upper bound s(G) 6
|G|+exp(G)−1 (see also [17, Theorem 5.7.4]). Alon and Dubiner’s result [3] has been used
to obtain upper bounds on s(G) when G has small rank (the rank of G is max(n1, . . . , nm),
where n1, . . . , nm are defined as in Theorem 1 below), see [10, Theorem 1.4] and [8,
Theorem 1.5]. In this paper, we will focus on the opposite case where at least one of
n1, . . . , nm is large compared to exp(G).

The case G = Fn
p for a prime p > 3 has attracted particular interest. In this case,

Naslund [19] proved that g(Fn
p ) 6 (2p− p− 2) · (J(p)p)n and s(Fn

p ) 6 (p− 1)2p · (J(p)p)n,
where 0.8414 6 J(p) 6 0.9184. To prove these bounds, Naslund introduced a variant of
Tao’s slice rank method [22]. Tao developed this method as an alternative formulation of
the proof of r(Fn

p ) 6 (J(p)p)n by Ellenberg and Gijswijt [11], which in turn used the new
polynomial method introduced by Croot, Lev and Pach [9] to prove r((Z/4Z)n) 6 3.62n.
Note that the constant J(p)p in Naslund’s bounds for g(Fn

p ) and s(Fn
p ) is the same as in

the bound r(Fn
p ) 6 (J(p)p)n by Ellenberg and Gijswijt [11], see also [6].
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While similar methods have been applied to prove upper bounds for the Erdős-
Ginzburg-Ziv constant and upper bounds for sets without arithmetic progressions, no
direct connection between the two problems has previously been established (apart from
the case G = Fn

3 mentioned above). In this note, we derive upper bounds for s(G) for
all finite abelian groups G in terms of r(Fn

p ) for the prime divisors p of exp(G). It is
also possible to prove an upper bound of the form s(G) 6 O(exp(G)r(G)). However,
exp(G)r(G) is usually much larger than our upper bound in Theorem 1.

Theorem 1. Let G be a non-trivial finite abelian group. Let p1, . . . , pm be the distinct
prime factors of exp(G). When writing G as a product of cyclic groups of prime power
order, all the occurring prime powers are powers of p1, . . . , pm. For i = 1, . . . ,m, let ni

be the number of cyclic factors of G whose order is a power of pi. Then we have

s(G) < 3 exp(G) · (r(Fn1
p1

) + · · ·+ r(Fnm
pm )).

For the case G = (Z/kZ)n we obtain the following corollary (note that Z/kZ has
precisely one cyclic factor of prime power order for each distinct prime dividing k, hence
(Z/kZ)n has precisely n cyclic factors for each distinct prime dividing k).

Corollary 2. Let k > 2 be an integer and let p1, . . . , pm be its distinct prime factors.
Then we have

s((Z/kZ)n) < 3k(r(Fn
p1

) + · · ·+ r(Fn
pm))

for every positive integer n.

Recall that r(Fn
2 ) = 2n. For primes p > 3 it is known from [11] and [6] that r(Fn

p ) 6
(J(p)p)n, with 0.8414 6 J(p) 6 0.9184 and with J(p) being a decreasing function that
tends to 0.8414 . . . as p→∞ (see [6] for more details and for the precise definition of the
function J(p)). As a lower bound, we have r(Fp) > p1−o(1) by Behrend’s construction [5]
and r(Fn

p ) > p(1−o(1))n by taking a product with Behrend’s construction in each coordinate
(here o(1) → 0 as p → ∞ independently of n). Furthermore, Alon, Shpilka and Umans
[4], relying on a construction of Salem and Spencer [21], proved r(Fn

p ) > (p/2)(1−o(1))n,
where o(1) → 0 as n → ∞ with p fixed. A variant of Behrend’s construction due to
Alon gives an improvement of the o(1)-term (see [14, Lemma 17]). Note that in light of
r(Fn

p ) > (p/2)(1−o(1))n, for large n and odd k > 3 there is still a big gap between Elsholtz’
lower bound s((Z/kZ)n) > 2.08n and the upper bound for s((Z/kZ)n) in Corollary 2.

The bounds in Theorem 1 and Corollary 2 look clean and simple, but they are not the
optimal results that can be obtained from our arguments (see Remark 9 and the second
inequality in Lemma 10 where certain terms are just ignored). However, the improvements
when optimizing the estimates in our proof are not very significant as long as exp(G) is
small compared to at least one of n1, . . . , nm.

In Section 2, we will first prove the following upper bounds for g(Fn
p ) and s(Fn

p ) using
the probabilistic method. In Section 3 we will then deduce Theorem 1 from Theorem 4.

Theorem 3. Let p > 3 be a prime and n > 2 be an integer. Then g(Fn
p ) 6 2p · r(Fn−1

p ).
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Theorem 4. Let p > 3 be a prime and n > 1 be an integer. Then s(Fn
p ) 6 2p · r(Fn

p ).

For p > 3 prime, using r(Fn
p ) 6 (J(p)p)n, we obtain

g(Fn
p ) 6 2p · r(Fn−1

p ) 6 2p · (J(p)p)n−1 < 3(J(p)p)n

and
s(Fn

p ) 6 2p · r(Fn
p ) 6 2p · (J(p)p)n,

which slightly improves the previously best known bounds for g(Fn
p ) and s(Fn

p ) from [19].
To obtain an upper bound for g(Fn

p ) in terms of r(Fn
p ), note that a product construction

shows
r(Fn

p ) > r(Fn−1
p ) · r(Fp) > 2r(Fn−1

p )p1−o(1).

Hence, Theorem 3 implies g(Fn
p ) 6 po(1)r(Fn

p ), where o(1) → 0 as p → ∞ independently
of n.

2 Proof of Theorems 3 and 4

Lemma 5. Let p > 3 be a prime and n > 1. If A ⊆ Fn
p does not contain p distinct

elements summing to zero, then for every x ∈ A the set A contains at most p−3
2

different
three-term arithmetic progressions with middle term x.

Proof. Suppose that for some x ∈ A the set A contains p−1
2

different three-term arithmetic
progressions with middle term x. Each of them consists of x and two more elements of A
whose sum equals 2x. So we obtain p−1

2
pairs of elements of A, each pair with sum 2x. It

is not hard to see that the p− 1 elements of A involved in these p−1
2

pairs are all distinct
and distinct from x. So taking these p − 1 elements together with x itself, we obtain p
distinct elements of A with sum p−1

2
· 2x + x = p · x = 0. This is a contradiction to the

assumption on A.

Remark 6. By definition, r(Fn−1
p ) is the largest size of a subset of Fn−1

p without a three-
term arithmetic progression. Let V be an affine subspace of dimension n − 1 in Fn

p , i.e.
a hyperplane in Fn

p . We can consider a translation moving V to the origin (so that it
becomes a linear subspace of dimension n − 1) and then an isomorphism to Fn−1

p . This
gives a bijection between V and Fn−1

p which preserves three-term arithmetic progressions.
Hence the largest size of a subset of V without a three-term arithmetic progression is also
equal to r(Fn−1

p ).

We will now prove Theorem 3. Note that exp(Fn
p ) = p.

Proof of Theorem 3. Let A ⊆ Fn
p be a subset that does not contain p distinct elements

summing to zero. We need to show that |A| < 2p · r(Fn−1
p ).

By Lemma 5 we know that for every x ∈ A the set A contains at most p−3
2

different
three-term arithmetic progressions with middle term x. Hence the total number of three-
term arithmetic progressions contained in the set A is at most p−3

2
|A|.
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Pick an affine subspace V of dimension n − 1 in Fn
p uniformly at random. Let X1 =

|A∩V | and let X2 be the number of three-term arithmetic progressions that are contained
in A∩V . Since each point of A is contained in V with probability 1

p
, we have E[X1] = 1

p
|A|.

For any three-term arithmetic progression, the probability that its first element is
contained in V is equal to 1

p
. Conditioned on this, the probability that its second element

is also contained in V is pn−1−1
pn−1 < 1

p
(and note that then the third element will be con-

tained in V as well). Hence for any three-term arithmetic progression contained in A, the
probability that it is contained in A ∩ V is less than 1

p2
. Since A contains at most p−3

2
|A|

three-term arithmetic progressions, we obtain

E[X2] <
1

p2
· p− 3

2
|A| < 1

2p
|A|.

Thus, E[X1 − X2] >
1
2p
|A|. So we can choose an affine subspace V of dimension n − 1

in Fn
p such that X1 − X2 > 1

2p
|A|. Let B be a set obtained from A ∩ V after deleting

one element from each three-term arithmetic progression contained in A ∩ V . Then
|B| > X1 − X2 > 1

2p
|A|. By construction, B is a subset of V that does not contain any

three-term arithmetic progression. By Remark 6, we can conclude that |B| 6 r(Fn−1
p ).

Thus, 1
2p
|A| < |B| 6 r(Fn−1

p ) and therefore |A| < 2p · r(Fn−1
p ).

Our proof of Theorem 3 is somewhat similar to the first half of the proof of Proposition
2.5 in Alon’s paper [1]. There, he also considered points which are the middle term of
only few three-term arithmetic progressions and obtained a subset without any three-term
arithmetic progressions, yielding a contradiction. However, Alon’s work [1] is in a very
different context and does not use a subspace sampling argument.

Finally, we will deduce Theorem 4 from Theorem 3.

Proof of Theorem 4. Assume we are given a sequence of vectors in Fn
p without a zero-sum

subsequence of length p. Every vector occurs at most p−1 times in the sequence. Hence by
attaching one additional coordinate we can make all the vectors in the sequence distinct.
This way, we obtain a subset of Fn+1

p without p distinct elements summing to zero. Since
this subset has size at most g(Fn+1

p )− 1, we can conclude that the original sequence had
length at most g(Fn+1

p ) − 1. This shows s(Fn
p ) 6 g(Fn+1

p ) and together with Theorem 3
with n replaced by n + 1, we obtain s(Fn

p ) 6 g(Fn+1
p ) 6 2p · r(Fn

p ) as desired.

3 Proof of Theorem 1

In this section we will first bound s(G) for any finite abelian group G by terms of the
form s(Fn

p ). Then, applying Theorem 4, we will obtain Theorem 1.
The following lemma was proved by Chi, Ding, Gao, Geroldinger and Schmid [7,

Proposition 3.1] and is a generalization of [18, Hilfssatz 2]. For the reader’s convenience
we repeat the proof here.
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Lemma 7 (Proposition 3.1 in [7]). Let G be a non-trivial finite abelian group and H ⊆ G
be a subgroup such that exp(G) = exp(H) exp(G/H). Then

s(G) 6 exp(G/H)(s(H)− 1) + s(G/H).

Proof. Consider a sequence of length exp(G/H)(s(H) − 1) + s(G/H) with elements in
G. Then we can find a subsequence of length exp(G/H) summing to zero in G/H, i.e.
summing to an element of H. Delete this subsequence and repeat. We can do this s(H)
many times (since after s(H) − 1 many times we still have s(G/H) elements left). So
we find s(H) disjoint subsequences each of length exp(G/H) and the sum of each of the
subsequences is in H. Now writing down these s(H) sums, we get a sequence of length
s(H) with elements in H. So we can choose exp(H) of them summing to zero. Now
taking the union of the corresponding subsequences of the original sequence we obtain
exp(H) exp(G/H) = exp(G) elements summing to zero.

Lemma 8. For any finite abelian p-group G = (Z/pa1Z) × · · · × (Z/panZ), where a1 >
. . . > an are positive integers and p > 2 is prime, we have

s(G) = s((Z/pa1Z)× · · · × (Z/panZ)) 6
pa1 − 1

p− 1
s(Fn

p ) <
exp(G)

p− 1
s(Fn

p ).

Proof. Since exp(G) = pa1 , the second inequality is clearly true. Now, let us prove the
first inequality by induction on a1. If a1 = 1, then a1 = · · · = an = 1 and so

s((Z/pa1Z)× · · · × (Z/panZ)) = s(Fn
p ) =

pa1 − 1

p− 1
s(Fn

p ).

For a1 > 1 we can apply Lemma 7 to H = pG. Indeed, G/H ∼= Fn
p and H ∼= (Z/pa1−1Z)×

· · · × (Z/pan−1Z). In particular, exp(G) = pa1 = pa1−1 · p = exp(H) exp(G/H). So by
Lemma 7 we have

s(G) 6 exp(Fn
p )(s((Z/pa1−1Z)× · · · × (Z/pan−1Z))− 1) + s(Fn

p )

< ps((Z/pa1−1Z)× · · · × (Z/pan−1Z)) + s(Fn
p ).

Let n′ 6 n be such that a1 > . . . > an′ > 2 and an′+1 = · · · = an = 1. Then by the
induction assumption we have

s((Z/pa1−1Z)× · · · × (Z/pan−1Z)) = s((Z/pa1−1Z)× · · · × (Z/pan′−1Z))

6
pa1−1 − 1

p− 1
s(Fn′

p ) 6
pa1−1 − 1

p− 1
s(Fn

p ).

Thus,

s(G) = s((Z/pa1Z)× · · · × (Z/panZ)) 6 p · p
a1−1 − 1

p− 1
s(Fn

p ) + s(Fn
p ) =

pa1 − 1

p− 1
s(Fn

p ),

completing the induction.
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Remark 9. The proof of Lemma 8 also gives the stronger but more complicated bound

s((Z/pa1Z)× · · · × (Z/panZ)) 6
a1∑
j=1

pj−1s(Fbj
p ),

where bj = max {i | ai > j} for j = 1, . . . , a1. Note that b1 > . . . > ba1 is the conjugate of
a1 > . . . > an in the sense of Young diagrams.

Lemma 10. Let G be a non-trivial finite abelian group. Let p1, . . . , pm be the distinct
prime factors of exp(G). Let us write G ∼= G1 × · · · × Gm where each Gi is a pi-group.
Then

s(G) 6
m∑
i=1

exp(G1) · · · exp(Gi−1)s(Gi) 6 exp(G)

(
s(G1)

exp(G1)
+ · · ·+ s(Gm)

exp(Gm)

)
.

Proof. First, note that exp(G) = exp(G1) · · · exp(Gm). In particular

exp(G1) · · · exp(Gi−1) 6
exp(G)

exp(Gi)

for every i, which makes the second inequality true. We prove the first inequality by
induction on m. If m = 1, the statement is trivial. If m > 1, note that we can apply
Lemma 7 to H = Gm and obtain

s(G) 6 exp(G1 × · · · ×Gm−1)(s(Gm)− 1) + s(G1 × · · · ×Gm−1).

Plugging in exp(G1×· · ·×Gm−1) = exp(G1) · · · exp(Gm−1) as well as using the induction
assumption for G1 × · · · ×Gm−1 yields

s(G) 6 exp(G1) · · · exp(Gm−1)s(Gm) +
m−1∑
i=1

exp(G1) · · · exp(Gi−1)s(Gi)

=
m∑
i=1

exp(G1) · · · exp(Gi−1)s(Gi)

as desired.

Lemma 11. Under the assumptions of Theorem 1 we have

s(G) < exp(G)

(
s(Fn1

p1
)

p1 − 1
+ · · ·+

s(Fnm
pm )

pm − 1

)
.

Proof. As in Lemma 10, let us write G ∼= G1×· · ·×Gm where each Gi is a pi-group. Each
Gi can be written as a product of cyclic groups whose orders are powers of pi. Note that
the number of factors of each Gi is precisely ni, because together all these factorizations
form the unique representation of G as a product of cyclic groups of prime power order.
So, by Lemma 8, we have

s(Gi) <
exp(Gi)

pi − 1
s(Fni

pi
)

for i = 1, . . . ,m. Now the desired inequality follows directly from Lemma 10.
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Proof of Theorem 1. Note that by Theorem 4 we have

s(Fni
pi

)

pi − 1
6

2pi
pi − 1

r(Fni
pi

) 6 3r(Fni
pi

)

for all the odd pi. Since s(Fn
2 ) = 2n + 1 (see [18, Korollar 1]) and r(Fn

2 ) = 2n, we also have
s(Fni

pi
)

pi−1 6 3r(Fni
pi

) if pi = 2. Thus, Lemma 11 gives

s(G) < exp(G) ·
(
3r(Fn1

p1
) + · · ·+ 3r(Fnm

pm )
)

= 3 exp(G) · (r(Fn1
p1

) + · · ·+ r(Fnm
pm )),

as desired.
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