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Abstract

A graph H = (W,EH) is said to have bandwidth at most b if there exists a
labeling of W as w1, w2, . . . , wn such that |i − j| 6 b for every edge wiwj ∈ EH ,
and a bipartite balanced (β,∆)-graph H is a bipartite graph with bandwidth at
most β|W | and maximum degree at most ∆, and furthermore it has a proper 2-
coloring χ : W → [2] such that ||χ−1(1)| − |χ−1(2)|| 6 β|χ−1(2)|. We prove that
for any fixed 0 < γ < 1 and integer ∆ > 1, there exist a constant β = β(γ,∆) > 0
and a natural number n0 such that for every balanced (β,∆)-graph H on n > n0

vertices the bipartite Ramsey number br(H,H) is at most (1 + γ)n. In particular,
br(C2n, C2n) = (2 + o(1))n.

Mathematics Subject Classifications: 05D10

1 Introduction

For graphs G, H1 and H2, denote G → (H1, H2) by that any red/blue edge coloring
of G containing either a red copy of H1 or a blue copy of H2. In Ramsey Theory, a well-
known problem is to determine the Ramsey number r(H1, H2), i.e. the minimum integer
N such that KN → (H1, H2). We refer the readers to the book by Graham, Rothschild
and Spencer [9] for an overview and a survey by Conlon, Fox and Sudakov [7] for many
recent developments.

A natural generalization of the above problem is to determine the bipartite Ramsey
number br(H1, H2), the minimum integer N such that KN,N → (H1, H2), where H1 and
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H2 are bipartite graphs. Since an edge coloring of K2N induces an edge coloring of KN,N ,
we have

r(H1, H2) 6 2br(H1, H2).

The bipartite Ramsey numbers involving complete bipartite graphs have attracted
most attention. Beineke and Schwenk [1] conjectured that br(Kt,n, Kt,n) = 2t(n− 1) + 1
for any n > t > 1, which is trivially true if t = 1. In particular, the authors in [1]
proved that br(K2,n, K2,n) 6 4n − 3, and br(K2,n, K2,n) = 4n − 3 if there is a Hadamard
matrix of order 2(n − 1) for odd n, and br(K3,n, K3,n) > 8n − 7 if there is a Hadamard
matrix of order 4(n − 1). Irving [12] proved br(K3,n, K3,n) 6 8n − 7, which together
with the lower bound obtained in [1] gave br(K3,n, K3,n) = 8n − 7 for infinitely many
values of n. However, for the diagonal case, Irving disproved the general conjecture
by showing that br(Kn,n, Kn,n) < 2n−1(n − 1) for n > 21. Thomason [23] proved that
br(Kt,n, Kt,n) 6 2t(n− 1) + 1 for any n > t > 1. For fixed t > 2, Li, Tang and Zang [14]
proved that br(Kt,n, Kt,n) = (1 + o(1))2tn as n→∞. It was shown that

(1 + o(1))

√
2

e
n2n/2 6 br(Kn,n, Kn,n) 6 (1 + o(1))2n+1 log n,

where the upper bound by Conlon [6] improved that by Irving [12], while the lower bound
by Hattingh and Henning [11] is similar to Spencer’s lower bound [20] for ordinary Ramsey
numbers by using Lovász Local Lemma, and here and henceforth logarithmic function has
natural base 2. For fixed t > 2, Caro and Rousseau [5] proved that

c1

( n

log n

)(t+1)/2

< br(Kt,t, Kn,n) < c2

( n

log n

)t
,

where ci = ci(t) > 0 are constants. Recently, Lin and Li [16] proved that the order of
magnitude of br(Kt,n, Kn,n) is nt+1/(log n)t, but the orders of magnitude of br(Kn,n, Kn,n)
and br(Kt,t, Kn,n), that are more interesting, seems to be very hard to obtain. For more
bipartite Ramsey numbers involving small complete bipartite graphs, see e.g. [1, 4, 12, 11].

For the bipartite Ramsey numbers involving non-complete bipartite graphs, there are
not too many references. Let Pn be the path of order n, and let Cn be the cycle of order n.
A celebrated result by Faudree and Schelp [8] determined the “Ramsey bipartite number
pair” B(Pn, Pm) for all m,n > 1, which implied the corresponding bipartite Ramsey
number br(Pn, Pm). However, there are not too many references on the bipartite Ramsey
numbers br(C2n, C2m). In [24, 25], Zhang, Sun and Wu obtained that br(C2n, C4) = n+1,
and br(C2n, C6) = n+ 2 for n > 4.

In this paper, we mainly consider the bipartite balanced (β,∆)-graphs.

Theorem 1. For each fixed 0 < γ < 1 and every natural number ∆ > 1, there exist a
constant β = β(γ,∆) > 0 and a natural number n0 such that for every bipartite balanced
(β,∆)-graph H on n > n0 vertices we have

br(H,H) 6 (1 + γ)n.
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From Theorem 1, the following corollary follows easily and the lower bound construc-
tion will be presented below.

Corollary 2. Let C2n be the cycle of length 2n. Then

br(C2n, C2n) = (2 + o(1))n.

Proof. Indeed, note that C2n defined on [2n] = {1, 2, . . . , 2n} is a balanced (1/n, 2)-graph
if we label the vertices and denote the cycle as

1, 3, 5, . . . , 2n− 1, 2n, 2n− 2, . . . , 4, 2, 1,

so Theorem 1 implies that br(C2n, C2n) 6 (2+o(1))n for sufficiently large n. On the other
hand, consider the bipartite graph F with bipartition U = {u1, u2, . . . , u2n−2} and V =
{v1, v2, . . . , v2n−2}, in which uivj is an edge in F if and only if ui ∈ U and 1 6 j 6 n− 1.
Clearly, F does not contain C2n as a subgraph, and its complement F (which is restricted
in K2n−2,2n−2) also contains no copy of C2n. This gives that br(C2n, C2n) > 2n − 1.
Therefore, we have the above corollary as desired. �

2 Preliminary results

Let A be a set of positive integers and An = A ∩ [n]. In the 1930s, Erdős and Turán

conjectured that if lim
n→∞

|An|
n
> 0, then A contains arbitrarily long arithmetic progressions.

The conjecture for the arithmetic progression of length 3 was proved by Roth [18, 19].
The full conjecture was proved by Szemerédi [21] with a deep and complicated combina-
torial argument. In the proof, Szemerédi used a result, which is now called the bipartite
regularity lemma, and then he proved the general Regularity Lemma, see [22]. The lemma
has become a powerful tool in extremal graph theory. For many applications, we refer the
readers to the survey of Komlós and Simonovits [13] and related references.

2.1 The regularity method

Let G = (V,E) be a graph on n vertices. The density of G is given by dG = |E|/
(
n
2

)
.

For disjoint vertex sets A,B ⊆ V , let EG(A,B) denote the number of edges of G with
one endpoint in A and the other in B, and the density of (A,B) is

dG(A,B) =
EG(A,B)

|A||B|
.

For ε > 0, d 6 1, a pair (A,B) is ε-regular if for all X ⊆ A, Y ⊆ B with |X| > ε|A|
and |Y | > ε|B| we have |dG(X, Y ) − dG(A,B)| < ε. Then, (A,B) is called (ε, d)-regular
if it is ε-regular and dG(A,B) > d. Moreover, (A,B) is called (ε, d)-super-regular if it
is ε-regular and degG(u) > d|B| for all u ∈ A and degG(v) > d|A| for all v ∈ B, where
degG(u) is the degree of a vertex u in G.

The following property says that subgraphs of a regular pair are regular.
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Claim 3. If (A,B) is (ε, d)-regular, and let X ⊆ A and Y ⊆ B with |X| > α|A| and
|Y | > α|B| for some α > ε. Then (X, Y ) is ε′-regular such that |d(A,B)− d(X, Y )| < ε,
where ε′ = max{ ε

α
, 2ε}.

Let us have another property that any regular pair has a large subgraph which is
super-regular, and we include a proof for completeness.

Claim 4. For 0 < ε < 1/2 and d 6 1, if (A,B) is (ε, d)-regular with |A| = |B| = m
then there exist A1 ⊆ A and B1 ⊆ B with |A1| = |B1| = (1 − ε)m such that (A1, B1) is
(2ε, d− 2ε)-super-regular.

Proof. Let X ⊆ A consists of vertices with at most (d − ε)|B| neighbors in B. Since
e(X,B) 6 |X|(d − ε)|B| we have |d(X,B) − d| > ε. According to the definition of ε-
regular, we know that |X| < εm. Similarly, let Y ⊆ B consists of vertices with at most
(d− ε)|A| neighbors in A, we know that |Y | < εm.

Take A1 ⊆ A \X and B1 ⊆ B \ Y with |A1| = |B1| = (1− ε)m. Clearly, each vertex
of A1 has at least (d− ε)m− εm = (d− 2ε)m neighbors in B1, and similarly each vertex
of B1 has at least (d− 2ε)m neighbors in A1. On the other hand, for any subset S ⊆ A1

and T ⊆ B1. If |S| > 2ε|A1| and |T | > 2ε|B1|, then clearly |S| > εm and |T | > εm. From
the fact that (A,B) is (ε, d)-regular, we have

|d(S, T )− d(A1, B1)| 6 |d(S, T )− d(A,B)|+ |d(A1, B1)− d(A,B)| < 2ε.

This completes the proof. �
In this paper, we shall use the following bipartite form of the regularity lemma. In

[3], Böttcher, Heinig and Taraz give a proof (sketch), one can also find a detailed proof
in Lin and Li [15, Lemma 5]. For a bipartite graph G with bipartition (V (1), V (2)), a

partition
{
V

(s)
0 , V

(s)
1 , . . . , V

(s)
k

}
for each V (s) (s = 1, 2) is said to be (ε, d)-regular on

R = R([k], [k];ER) if ij ∈ ER implies that (V
(1)
i , V

(2)
j ) is (ε, d)-regular in G for i, j ∈ [k].

If such a partition exists, we also say that R is an (ε, d)-reduced graph of G.

Lemma 5. For any ε > 0 and integer k0 > 1, there exists K0 = K0(ε, k0) such that
every bipartite graph G with bipartition (V (1), V (2)) satisfying |V (1)| = |V (2)| > K0 has a

partition
{
V

(s)
0 , V

(s)
1 , . . . , V

(s)
k

}
for each V (s) for s = 1, 2, where k is the same for each

part V (s) with k0 6 k 6 K0, such that

1.
∣∣V (s)

1

∣∣ = · · · =
∣∣V (s)
k

∣∣ and
∣∣V (s)

0

∣∣ 6 ε
∣∣V (s)

∣∣ for s = 1, 2;

2. All but at most εk2 pairs
(
V

(1)
i , V

(2)
j

)
, 1 6 i, j 6 k, are ε-regular.

It is known that the Blow-up Lemma guarantees that bipartite spanning graphs of
bounded degree can be embedded into sufficiently large super-regular pairs. In order
to prove Theorem 1.1, we need to find a copy of H in a monochromatic graph G of any
red/blue edge coloring of KN,N . Similar to the Blow-up Lemma, the following Embedding
Lemma allows us to embed H into G if H and G have “compatible” partitions.

Let H = (W,EH) be a graph, for a vertex w ∈ W , denote NH(w) by the neighborhood
of w in H. For S ⊆ W , denote NH(S) = [∪v∈SNH(v)] \ S.
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Definition 6. Let H = (W,EH) and R = ([k], ER) be graphs and let R′ = ([k], ER′) be
a subgraph of R. We say that a vertex partition W = (Wi)i∈[k] of H is ε-compatible with
a vertex partition V = (Vi)i∈[k] of a graph G = (V,EG) if the following holds.

For i, j ∈ [k] with i 6= j, let Si ⊆ Wi that has some neighbours in Wj for ij ∈ ER \ER′ .
Set S = ∪Si and Ti = NH(S) ∩ (Wi \ S). Then

(1) |Wi| 6 |Vi| for i ∈ [k].

(2) xy ∈ EH for x ∈ Wi, y ∈ Wj implies ij ∈ ER.

(3) |Si| 6 ε|Vi| for i ∈ [k].

(4) |Ti| 6 εmin{|Vj| : ij ∈ ER′}.

That is to say, from this definition, we particularly require that the edges of H run
only between classes that correspond to a dense regular pair in G (condition (2)). The
vertices that have neighbors not belong to the super-regular pairs are assumed to be few
(condition (3)), and the neighbours of these vertices are assumed to be few too (condition
(4)).

The following Embedding Lemma by Böttcher, Heinig and Taraz [2, 3] is crucial for
us to prove our main result.

Lemma 7 (Embedding Lemma). For all d > 0 and integers ∆, r > 1, there is a
constant ε = ε(d,∆, r) > 0 such that the following holds. Let G = (V,E) be an N-vertex
graph that has a partition (Vi)i∈[k] with (ε, d)-reduced graph R on [k], and R′ ⊆ R is
(ε, d)-super-regular with connected components having at most r vertices each. Suppose
H = (W,EH) is a graph of order n 6 N with maximum degree ∆(H) 6 ∆ that has a
partition (Wi)i∈[k] which is ε-compatible with (Vi)i∈[k]. Then H ⊆ G.

In the above lemma, if R′ = M is a matching of R, then r = 2, and so ε = ε(d,∆)
depends only on d and ∆.

2.2 Long path in bipartite reduced graph

In our proof, for any red/blue edge coloring of KN,N , we will embed the bipartite graph
H into one of the monochromatic subgraph G of KN,N . From the regularity lemma, the
reduced graph R corresponding to G has enough ε-regular pairs, and we need to find a
long path of this bipartite graph R such that we can embed H into the subgraph induced
by all edges corresponding to the regular pairs of this path. This can be achieved from
the result by Gyárfás, Rousseau and Schelp[10, Theorem 1].

Lemma 8. Let H be a bipartite graph with bipartition (U, V ), where |U | = k1 and |V | = k2

(k1 6 k2). If c 6 k1/2 and H contains no path P2t for t > c, then e(H) 6 (k1 + k2− 2c)c.

From the above lemma, we have the following result immediately.

Corollary 9. Let 0 < ε < 1/4 and let H be a bipartite graph with bipartition (U, V ), where
|U | = k = |V |. If e(H) > (1

2
− ε)k2, then H contains a path P2t with t > b(1

2
−
√
ε/2)kc.
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Proof. Take c = b(1
2
−
√
ε/2)kc = (1

2
−
√
ε/2)k− η for some η > 0. From Lemma 8, if H

contains no path P2t with t > c, then

e(H) 6 (k + k − 2c)c =

(
2k − 2

[(
1

2
−
√
ε

2

)
k − η

])[(
1

2
−
√
ε

2

)
k − η

]
=

1

2

[
k2 −

(
2

√
ε

2
· k + 2η

)2
]
6

(
1

2
− ε
)
k2,

a contradiction. This completes the proof. �
In the following, for a red-blue edge coloring of KN,N , let us denote Gr and Gb by the

graphs induced by all red edges and blue edges, respectively.

Lemma 10. For any 0 < ε < 1/4 and any integer k0 > 1, there exists K0 such that any
red-blue edge coloring of KN,N with bipartition (V (1), V (2)) and N > K0 has an ε-regular

partition
{
V

(s)
0 , V

(s)
1 , . . . , V

(s)
k

}
for each V (s) (s = 1, 2) with k0 6 k 6 K0 satisfying

the following property. The reduced graph contains a monochromatic path P2t with t >
(1

2
−
√
ε/2)k such that all regular pairs corresponding to the edges of P2t are (ε, 1/2)-regular

on Gr or all of these corresponding regular pairs are (ε, 1/2)-regular on Gb.

Proof. From Lemma 5, there is a partition
{
V

(s)
0 , V

(s)
1 , . . . , V

(s)
k

}
for each V (s) for s = 1, 2,

where k is the same for each part V (s) and k0 6 k 6 K0, such that (1)
∣∣V (s)

1

∣∣ = · · · =
∣∣V (s)
k

∣∣
and

∣∣V (s)
0

∣∣ 6 ε
∣∣V (s)

∣∣ for s = 1, 2; (2) All but at most εk2 pairs
(
V

(1)
i , V

(2)
j

)
, 1 6 i, j 6 k,

are ε-regular.
Let R be the reduced subgraph of Kk,k with bipartition ([k], [k]), in which a pair ij

for i, j ∈ [k] is adjacent in R if and only if (V
(1)
i , V

(2)
j ) is ε-regular. Thus e(R) > (1− ε)k2.

Color an edge ij of R green if dGr(V
(1)
i , V

(2)
j ) > 1/2, or white if dGr(V

(1)
i , V

(2)
j ) < 1/2.

Denote by Rg and Rw the subgraphs spanned by green edges and white edges, respectively.
Without loss of generality, we may assume that

e(Rg) >
(1− ε)k2

2
=

(
1

2
− ε

2

)
k2.

From Corollary 9, there exists a path P2t in Rg with t > b(1
2
−
√
ε/2)kc, and all regular

pairs corresponding to the edge of P2t are (ε, 1/2)-regular on Gr as desired. This completes
the proof. �

2.3 Locally balanced intervals

Given β > 0 and integer ∆ > 1, we have known that a balanced (β,∆)-graph H has a
proper 2-coloring χ : V (H)→ [2] such that the sizes of the color classes are almost equal.
This definition focuses on vertices of different colors as a whole. In fact, we can see that
the two colors also have approximately the same number of vertices locally.

For a graph H = (W,E) with W = {w1, w2, . . . , wn}, where wi is a labeling of the
vertices, let χ : W → [2] be a 2-coloring. For W ′ ⊆ W , denote Ci(W

′) = |χ−1(i)∩W ′| for
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i = 1, 2. We know that χ is a β-balanced coloring of W if 1− β 6 C1(W )
C2(W )

6 1 + β. A set

I ⊆ W is called interval if there exists p < q such that I = {wp, wp+1, . . . , wq}. Finally,
let σ : [`] → [`] be a permutation, and for a partition Γ = {I1, I2, . . . , I`} of W , where
each Ii is an interval, let Cτ (Γ, σ, a, b) =

∑b
j=aCτ (Iσ(j)) for τ = 1, 2, and we always write

Cτ (σ, a, b) = Cτ (Γ, σ, a, b) for simplicity. The following result by Mota, Sárközy, Schacht
and Taraz [17, Lemma 2.11] means that every balanced bipartite graph is also balanced
in local.

Lemma 11. For every ξ > 0 and integer ` > 1 there exists n0 such that if H = (W,E) is
a graph on W = {w1, w2, . . . , wn} with n > n0, then for every β-balanced 2-coloring χ of
W with β 6 2/`, and every partition of W into intervals I1, I2, . . . , I` with |I1| 6 |I2| 6
. . . 6 |I`| 6 |I1| + 1 there exists a permutation σ : [`] → [`] such that for every pair of
integers 1 6 a < b 6 ` with b− a > 7/ξ,

|C1(σ, a, b)− C2(σ, a, b)| 6 ξC2(σ, a, b).

3 Proof of Theorem 1.1

For every 0 < γ < 1 and integer ∆ > 1, we want to prove that there exists a constant
β = β(γ,∆) > 0 and a natural number n0 such that if H is a balanced (β,∆)-graph on n
vertices for n > n0 then any red-blue edge coloring of KN,N for N = (1 + γ/3)n contains
a monochromatic copy of H.

The main idea is as follows. First, we shall apply Lemma 10 to find a monochromatic
subgraph, say red graph Gr, of any red/blue edge coloring of KN,N with sufficiently long
path P of the reduced graph, and then use Claim 4 to get a subgraph GP by deleting
some vertices from Gr such that GP contains sufficiently many dense super-regular pairs
covering (1 + o(1))n vertices. Second, we partition the vertices of H, and apply Lemma
11 to show that the partition is 2ε-compatible with the partition of GP . Finally, we shall
find a copy of H in GP by using the Embedding Lemma (Lemma 7). The details are as
follows.

For 0 < γ < 1, ∆ > 1 be given and d = 1/3, we have ε0 = ε0(d,∆) by Lemma 7. Set

ε = min

{
ε0

2
,
γ2

25

}
.

For such ε > 0 defined above and integer k0 > 1, K0 is determined by k0 and ε from
Lemma 10. Fix

ξ =
γ

60
,

and let n0 be obtained from Lemma 11 dependent on ξ and K0. Set

β =
εξ(1 + 2ξ)

36∆2K2
0

.

For sufficiently small γ > 0, we have

β � ε� ξ < γ.
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Let
c = c(γ) = 1 +

γ

3
,

and let H = (W,EH) be a balanced (β,∆)-graph on n vertices with n 6 N , where
N = cn > max{n0, K0}.

3.1 Preparing the host graph GP

From Lemma 10, any red-blue edge coloring of KN,N with bipartition (V (1), V (2))

and N > K0 has an ε-regular partition
{
V

(s)
0 , V

(s)
1 , . . . , V

(s)
k

}
for each V (s) (s = 1, 2)

with k0 6 k 6 K0 satisfying the following property. The reduced graph contains a
monochromatic path P2t with t > (1

2
−
√
ε

2
)k, and all regular pairs corresponding to the

edges of P2t are (ε, 1/2)-regular on Gr or Gb, say Gr.

Without loss of generality, we may relabel those V
(s)
i
′s for s = 1, 2 such that P2t defined

on ([t], [t]) that corresponding to V
(1)
i and V

(2)
i for i ∈ [t], where ii (corresponds to the

regular pair V
(1)
i V

(2)
i ) for 1 6 i 6 t and (i+ 1)i (corresponds to the regular pair V

(1)
i+1V

(2)
i )

for 1 6 i 6 t − 1 are those edges of P2t, and suppose that all edges of type ii consist of
the edges of the matching M of P2t.

Applying Claim 4 to the regular pair (V
(1)
i , V

(2)
i ) for 1 6 i 6 t, we have Ai ⊆ V

(1)
i and

Bi ⊆ V
(2)
i with |Ai| = |Bi| > (1− ε)m such that

(Ai, Bi) is (2ε, 1/2− 2ε)-super regular.

Note that γ > 0, ε 6 γ2/25, c = 1 + γ/3 and t > (1/2−
√
ε/2)k, so we have

|Ai| = |Bi| > (1− ε)m > (1− ε)(1− ε)N
k

>
(

1 +
γ

30

) n
2t
. (1)

Slightly abusing the notations, we also denote P2t by the path defined on ([t], [t])
corresponding to the pairs (Ai, Bi) for 1 6 i 6 t and (Ai+1, Bi) for 1 6 i 6 t − 1,
and denote M by the matching corresponding to the pairs (Ai, Bi) for 1 6 i 6 t that
are (2ε, 1/2 − 2ε)-super regular. Note that all the other pairs (Ai+1, Bi) corresponding

to edges of P2t \ M are (2ε, 1/2 − 2ε)-regular since the pairs (V
(1)
i+1, V

(2)
i ) are (ε, 1/2)-

regular for 1 6 i 6 t − 1. Let GP be the subgraph induced by all of the red edges from
(∪ti=1Ai) ∪ (∪ti=1Bi) of Gr.

3.2 Preparing H

SinceH = (W,EH) is a balanced (β,∆)-graph, there is a proper 2-coloring χ : V (H)→
[2] such that ||χ−1(1)| − |χ−1(2)|| 6 β|χ−1(2)|. Label the vertices of W as w1, w2, . . . , wn
such that |g − h| 6 βn for every edge wgwh ∈ EH , and let ` be the smallest integer
divisible by t with ` > 7(K0/ξ) + t > t(7/ξ + 1). Moreover, we may choose n suitably
such that n is divisible by `, and let Γ = {I1, I2, . . . , I`} be the partition of W with
|I1| = |I2| = · · · = |I`| = n

`
in order, i.e., for 1 6 i 6 `,

Ii =
{
w(i−1)n

`
+1, w(i−1)n

`
+2, . . . , win

`

}
.

the electronic journal of combinatorics 25(2) (2018), #P2.16 8



Let ai = (i− 1) `
t

+ 1 and bi = i `
t
. Then bi − ai = `

t
− 1 > 7/ξ. Since β = εξ(1+2ξ)

36∆2K2
0
< 1/`,

Lemma 11 implies that there exists a permutation σ : [`]→ [`] such that

|C1(σ, ai, bi)− C2(σ, ai, bi)| 6 ξC2(σ, ai, bi),

where Cτ (σ, ai, bi) =
∑bi

j=ai
Cτ (Iσ(j)) for τ = 1, 2. Denote

Ji = Iσ(ai) ∪ Iσ(ai+1) ∪ · · · ∪ Iσ(bi), Cτ (Ji) = Cτ (σ, ai, bi)

for τ = 1, 2. Clearly |Ji| = (bi − ai + 1)n
`

= n
t
, and

(1− ξ) n
2t
6 C1(Ji), C2(Ji) 6 (1 + ξ)

n

2t
.

Note that

W =
⋃̀
i=1

Ii =
⋃̀
i=1

Iσ(i) =
t⋃
i=1

Ji,

and we will partition W into disjoint subsets X1, Y1, X2, Y2, . . . , Xt, Yt as follows.
Noticing that the edges of H can only belong to two successive intervals Ii and Ii+1

since H is a graph with bandwidth at most β|W | < |W |/` from the definition of `.
For i = `, if I` ∈ Jj for some 1 6 j 6 t, then put I`∩χ−1(1) into Xj and put I`∩χ−1(2)

into Yj. For 1 6 i 6 `− 1,

(i) if Ii and Ii+1 belong to the same Jj for some 1 6 j 6 t, then put Ii ∩χ−1(1) into Xj

and put Ii ∩ χ−1(2) into Yj.

(ii) if Ii and Ii+1 belong to different Jj and Jj′ for j < j′, then we divide Ii into two
disjoint subsets Li (we call it a link) and Ki, where Li ⊆ Ii consists all of the last
[2(j′ − j) + 1]βn vertices of Ii, and Ki = Ii \ Li. For Ki, put Ki ∩ χ−1(1) into Xj

and put Ki ∩ χ−1(2) into Yj.

For Li, let p = 2(j′ − j), and denote

Li =

p+1⋃
q=1

Li(q),

where
Li(q) =

{
w[i−(p+2−q)β`]n

`
+1, w[i−(p+2−q)β`]n

`
+2, . . . , w[i−(p+1−q)β`]n

`

}
with |Li(q)| = βn for 1 6 q 6 p+ 1.

For q = 1, put Li(1)∩χ−1(2) into Yj. For odd q, put
(
Li(q)∪Li(q+ 1)

)
∩χ−1(1) into

Xj+ q+1
2

. For even q, put
(
Li(q) ∪ Li(q + 1)

)
∩ χ−1(2) into Yj+ q

2
. And for q = p + 1, put

Li(p+ 1) ∩ χ−1(1) into Xj′+1. See the figure below.
Now, we have put the vertices of Ii for 1 6 i 6 ` into subsets X1, Y1, X2, Y2, . . . , Xt, Yt

that form a vertex partition of W . From the above construction, we can see that each
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Xi induces an independent set that consists of most vertices from C1(Ji) together with
at most two pieces of a fixed link, and each Yi induces an independent set that consists
of most vertices from C2(Ji) together with at most two pieces of a fixed link. Hence, by
noting that ξ = γ/60, β = εξ(1 + 2ξ)/(36∆2K2

0), t 6 K0 and ` 6 (7K0 + 2K0ξ)/ξ. We
have

|Xi| 6 C1(Ji) + 2` · βn 6 (1 + ξ)
n

2t
+ 2`βn = (1 + ξ + 4t`β)

n

2t
< |Ai|,

and similarly |Yi| < |Bi|.

3.3 Embedding H into GP

Now, let GP be the graph with the vertex partition {A1, B1, . . . , At, Bt}, and H be the
balanced (β,∆)-vertex of order n 6 |V (GP )| with the vertex partition {X1, Y1, . . . , Xt, Yt}
as above. Note that the matching M whose edges corresponds to (Ai, Bi) for 1 6 i 6 t
are (2ε, 1/2 − 2ε)-super regular, and (Ai+1, Bi) are (2ε, 1/2 − 2ε)-regular. We will apply
the Embedding Lemma, i.e. Lemma 7, to the host graph GP with reduced graph P2t.
It suffices to prove that the partition {X1, Y1, . . . , Xt, Yt} of H is 2ε-compatible with the
partition {A1, B1, . . . , At, Bt} of GP . To this end, we shall check all of the four conditions
of Definition 6 as follows.

Note that from the partition of V (H), we have

(1) |Xi| 6 |Ai| and |Yi| 6 |Bi| for all 1 6 i 6 t.

(2) xy ∈ EH for x ∈ Xi, y ∈ Yj (j = i or j = i− 1) implies that (i, j) ∈ EP2t .

(3) Note that all edges of EP2t \ EM if of type (i, i − 1) for 2 6 i 6 t. From the vertex
partition of W , the vertices of Xi can be adjacent to at most two pieces of each link.
Moreover, Yi−1 contains at most ` links. Denote Si ⊆ Xi by the vertex set that has
some neighbours in Yi−1, i.e. Si = NH(Yi−1) ∩ Xi. Therefore, by noting that each
piece of a link is of size at most βn, we have

|Si| 6 ∆ · (2`βn) 6
ε

∆
(1 + γ/30)

n

2t
6

ε

∆
|Ai|.

Similarly, denote S ′i−1 ⊆ Yi−1 by the vertex set that has some neighbours in Xi, we
have |S ′i−1| 6 ε

∆
|Bi−1|.
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(4) Set S = ∪ti=1(Si ∪ Si′). Let Ti = NH(S) ∩ (Xi \ S) and Ti
′ = NH(S) ∩ (Yi \ S). For

Ti = NH(S)∩ (Xi \S), noticing that the neighbors of vertices of Xi can only locate in
Yi−1 and Yi, hence NH(S)∩ (Xi \ S) consists of vertices of NH(S ∩ Yi)∩ (Xi \ S) and
NH(S∩Yi−1)∩ (Xi \S). Since NH(Yi−1)∩Xi = Si, we have NH(S∩Yi−1)∩ (Xi \S) =
Si ∩ (Xi \ S) = ∅, and hence

|Ti| = |NH(S ∩ Yi) ∩ (Xi \ S)| < ∆|S ∩ Yi| = ∆|S ′i| 6 ε|Bi|.

Similarly, for Ti
′ = NH(S) ∩ (Yi \ S), we have |Ti′| < ε|Ai|.

Therefore, the partition {X1, Y1, . . . , Xt, Yt} of H is indeed 2ε-compatible with the
partition {A1, B1, . . . , At, Bt} of GP . This completes the proof of Theorem 1. �
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