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Abstract

F. Bergeron recently asked the intriguing question whether
(
b+c
b

)
q
−
(
a+d
d

)
q

has nonnegative coefficients as a polynomial in q, whenever a, b, c, d are positive
integers, a is the smallest, and ad = bc. We conjecture that, in fact, this polynomial
is also always unimodal, and combinatorially show our conjecture for a 6 3 and
any b, c > 4. The main ingredient will be a novel (and rather technical) application
of Zeilberger’s KOH theorem.
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1 Introduction

An interesting problem recently posed by F. Bergeron [3], which naturally arose in his
studies of the q-Foulkes conjecture, is whether the coefficients of the symmetric polynomial(
b+c
b

)
q
−
(
a+d
d

)
q

always form a nonnegative sequence, for any choice of positive integers

a, b, c, d where a is the smallest and ad = bc. Here,
(
m+n
m

)
q

as usual denotes the q-binomial

coefficient
(1− q)(1− q2) · · · (1− qm+n)

(1− q)(1− q2) · · · (1− qm) · (1− q)(1− q2) · · · (1− qn)
.

It is easily seen that
(
m+n
m

)
q

is a symmetric polynomial in q of degree mn.

We remark here that a special case of Bergeron’s question already appeared in
Abdesselam-Chipalkatti [2], as a consequence of a more general conjecture. The same
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authors proved in [1] the case a = 2 of their conjecture. (We thank A. Abdesselam for
pointing this out to us.)

In this note, we conjecture that not only nonnegativity but also unimodality does hold
in this context, and provide a combinatorial proof of our conjecture for a 6 3 and any
b, c > 4. Recall that a sequence of numbers is unimodal if it does not increase strictly
after a strict decrease. We have:

Conjecture 1. Fix any positive integers a, b, c, d such that a is the smallest and ad = bc.
Then the coefficients of the symmetric polynomial(

b+ c

b

)
q

−
(
a+ d

d

)
q

are nonnegative and unimodal.

Notice that symmetry is clear, since both
(
b+c
b

)
q

and
(
a+d
d

)
q

are symmetric polynomials

of the same degree, bc = ad. Also note that the case a = 1 of the conjecture is trivial,
thanks to the unimodality of

(
b+c
b

)
q

(see e.g. [5, 7, 9, 12, 15]). In this note, first we apply

a recent result of Pak-Panova [6], that we reproved combinatorially in [14], to provide a
short proof of Conjecture 1 when a = 2, for any values of b and c. Then, we employ
Zeilberger’s KOH theorem [15] to settle the case a = 3.

Unimodality results for suitable differences of two q-binomial coefficients have also
appeared, for instance, in the work of Reiner and Stanton ([8], Theorems 1 and 5), who
employed interesting methods of representation theory in their proofs. See also their
Conjecture 9 (or [11], Conjecture 7), which provides a broad family of possible further
identities, and is still wide open to this day. It would be interesting to investigate whether
our combinatorial approach via the KOH theorem, which appears to be new in this con-
text, might also help with the Reiner-Stanton conjecture.

2 Proof of the conjecture for a 6 3

We begin with a proof of Conjecture 1 for a = 2. Notice that even this “simplest” case,
which we are now able to show rather easily, heavily relies on the strict unimodality of
a q-binomial coefficient

(
b+c
b

)
q

(i.e.,
(
b+c
b

)
q

is unimodal and its coefficients are strictly

increasing through degree bbc/2c, except from degree 0 to 1). This fact was established
only recently.

Lemma 2 ([6, 14]). Assume c > b > 2. Then
(
b+c
b

)
q

is strictly unimodal if and only if

b = c = 2 or b > 5, with the following nine exceptions:

(b, c) = (5, 6), (5, 10), (5, 14), (6, 6), (6, 7), (6, 9), (6, 11), (6, 13), (7, 10).

Proposition 3. Conjecture 1 is true when a = 2.
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Proof. Let (
d+ 2

2

)
q

=
∑

06i62d

aiq
i and

(
b+ c

b

)
q

=
∑

06i6bc

biq
i,

where we can assume that c > b > 3. Proving the result is tantamount to showing that
bi − bi−1 > ai − ai−1, for all i 6 d = bc/2.

It is easy to see directly that, for i 6 d, ai = d(i + 1)/2e. Hence, ai − ai−1 = 1 if
i is even, and ai − ai−1 = 0 if i is odd. Thus, it suffices to show that

(
b+c
b

)
q

is strictly

increasing in all even degrees up to bc/2.
If b > 5, the result follows from Lemma 2, since one can easily verify computationally

that all nine exceptional q-binomial coefficients of the lemma satisfy the inequality bi−1 <
bi when i 6 bc/2 is even.

If b 6 4, the conclusion can be obtained in a few different ways. For a combinatorial
proof, one can rely on the fact that in a symmetric chain decomposition of the poset L(b, c)
for b = 3, 4 (we can assume c even when b = 3), at least one new chain is introduced in
every even degree 6 bc/2 (see [4, 13]). When b = 4, notice that the result also immediately
follows from [10], Lemma 2.1 (b).

Before proving Conjecture 1 for a = 3, we recall Zeilberger’s KOH theorem [15].
This result rephrases, in algebraic terms, O’Hara’s celebrated combinatorial proof of the
unimodality of q-binomial coefficients [5], by decomposing these latter into suitable finite
sums of unimodal, symmetric polynomials with nonnegative coefficients.

Fix positive integers m and n, and for any partition λ = (λ1, λ2, . . . ) ` m, set Yi =∑
16j6i λj for i > 1, and Y0 = 0.

Lemma 4 ([15]). We have
(
m+n
m

)
q

=
∑

λ`m Fλ(q), where

Fλ(q) = q2
∑
i>1 (λi2 )

∏
j>1

(
j(n+ 2)− Yj−1 − Yj+1

λj − λj+1

)
q

.

Theorem 5. Conjecture 1 is true when a = 3.

Proof. Let (
d+ 3

3

)
q

=
∑

06i63d

aiq
i and

(
b+ c

b

)
q

=
∑

06i6bc

biq
i,

where b, c > 4. We can assume that b ≡ 0 (mod 3). With some abuse of notation,
define the first difference of a q-binomial coefficient as its truncation in the middle degree;
i.e., we denote by (1− q)

(
d+3
3

)
q

the polynomial 1 +
∑

16i63d/2(ai − ai−1)qi, and similarly,

(1− q)
(
b+c
b

)
q

= 1 +
∑

16i6bc/2(bi − bi−1)qi.
Thus, showing the result is equivalent to proving that

(1− q)
(
d+ 3

3

)
q

6 (1− q)
(
b+ c

b

)
q

,
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where inequalities between polynomials are defined degreewise (i.e., by
∑
αiq

i 6
∑
βiq

i

we mean αi 6 βi for all i).
By Lemma 4, we can decompose

(
d+3
d

)
q

as(
d+ 3

3

)
q

= q6
(
d− 1

3

)
q

+ q2
(
d− 1

1

)
q

(
2d− 1

1

)
q

+

(
3d+ 1

1

)
q

,

where the first term on the right side corresponds to the partition (3) of 3, the second to
(2, 1), and the third to (1, 1, 1).

By iterating Lemma 4 a total of b/3 times on the right side, standard computations
give us that

(
d+3
3

)
q

equals:

q2b
(
d− 4b/3 + 3

3

)
q

+
∑

06i6 b−3
3

q6i+2

(
d− 4i− 1

1

)
q

(
2d− 8i− 1

1

)
q

+ q6i
(

3d− 12i + 1

1

)
q

. (1)

If we now consider the partition (3, 3, . . . , 3) of b, we see that its contribution to the
KOH decomposition of

(
b+c
b

)
q
, by Lemma 4, is given by:

q
b
3
·2·(3

2)
(

(c+ 2)b/3− (b− 3)− b
3

)
q

= q2b
(
d− 4b/3 + 3

3

)
q

,

which is precisely the first summand in (1).
Thus, by (1), we want to show that

(1− q)

 ∑
06i6 b−3

3

q6i+2

(
d− 4i− 1

1

)
q

(
2d− 8i− 1

1

)
q

+ q6i
(

3d− 12i + 1

1

)
q

 6 (1− q)
∑

Fλ(q), (2)

where the sum on the right is as in the KOH decomposition of
(
b+c
b

)
q
, and is indexed

over all partitions λ ` b, λ 6= (3, 3, . . . , 3).
We have:

(1− q)

 ∑
06i6 b−3

3

q6i+2

(
d− 4i− 1

1

)
q

(
2d− 8i− 1

1

)
q

+ q6i
(

3d− 12i+ 1

1

)
q


=

∑
06i6 b−3

3

(1− q)q6i+2(1 + q + · · ·+ qd−4i−2) · 1− q2d−8i−1

1− q
+ (1− q)q6i · 1− q3d−12i+1

1− q

=
∑

06i6 b−3
3

(1 + q + · · ·+ qd−4i−2)(q6i+2 − q2d−2i+1) + (q6i − q3d−6i+1).

Note that both 2d − 2i + 1 and 3d − 6i + 1 are larger than bc/2 = 3d/2 for all of
our indices i, since c > 4. Thus, since the first difference is defined to be up to degree
bc/2 = 3d/2, the last displayed formula becomes:∑

06i6 b−3
3

(q6i + q6i+2 + q6i+3 + · · ·+ qd+2i). (3)
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It is the polynomial in (3) that we will bound with the first difference of suitable
families of terms appearing in the KOH decomposition of

(
b+c
b

)
q
. We begin by dominating∑

16i6 b−3
3

(q6i+2 + q6i+3 + · · ·+ qd+2i).

Hence, for now, we are not concerned with (q2 + q3 + · · ·+ qd) +
∑

06i6 b−3
3
q6i.

Consider the following partitions of b:

λi,j = (λi,j1 = 3, . . . , λi,ji = 3, λi,ji+1 = 2, . . . , λi,ji+j = 2, λi,ji+j+1 = 1, . . . , λi,jb−2i−j = 1),

for any indices

1 6 i 6 (b− 3)/3 and 1 6 j 6 bb/2− 2i(c− 1)/cc.

Since b > 6 (because b ≡ 0 (mod 3)) and

b/2− 2i(c− 1)/c 6 (b− 3i)/2

for c > 4, all partitions λi,j contain at least one part of each size 1, 2, and 3.
We want to show that∑

i,j

(1− q)Fλi,j(q) >
∑

16i6 b−3
3

(q6i+2 + q6i+3 + · · ·+ qd+2i).

Employing Lemma 4, the contribution of λi,j to the KOH decomposition of
(
b+c
b

)
q

is

Fλi,j (q) = q6i+2j

(
(c + 2)i− 6i + 1

1

)
q

(
(c + 2)(i + j)− 6i− 4j + 1

1

)
q

(
(c + 2)(b− 2i− j)− 2b + 1

1

)
q

= q6i+2j

(
ci− 4i + 1

1

)
q

(
ci− 4i + cj − 2j + 1

1

)
q

(
bc− 2ci− 4i− cj − 2j + 1

1

)
q

.

For all i and j as above, we have

(6i+ 2j) + (bc− 2ci− 4i− cj − 2j + 1) = bc− 2ci+ 2i− cj + 1 > bc/2.

Therefore,

(1− q)Fλi,j(q) = (1− q)
(
ci− 4i+ 1

1

)
q

(
ci− 4i+ cj − 2j + 1

1

)
q

· q
6i+2j − qbc−2ci+2i−cj+1

1− q

= q6i+2j

(
ci− 4i+ 1

1

)
q

(
ci− 4i+ cj − 2j + 1

1

)
q

= (1 + q + · · ·+ qci−4i)(q6i+2j + q6i+2j+1 + · · ·+ qci+2i+cj).
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Thus, our goal is to show that∑
i,j

(1 + q + · · ·+ qci−4i)(q6i+2j + · · ·+ qci+2i+cj) >
∑

16i6 b−3
3

(q6i+2 + · · ·+ qd+2i). (4)

We first consider the case c = 4. For any given index i = 1, . . . , (b − 3)/3, the
contribution of i to the left side of (4), which is given by∑

j

(q6i+2j + · · ·+ q6i+4j),

clearly dominates the contribution of i to the right side, since the largest degree that
appears on the left side is

6i+ 4bb/2− 3i/2c > d+ 2i = (4b/3) + 2i.

Also notice the following fact, which will be useful later on: When b > 6 is even, the
coefficient of degree 2b − 6 on the left side of (4), say l2b−6, is strictly greater than the
corresponding coefficient on the right side, say r2b−6. Indeed, a standard computation
shows that r2b−6 = 2. As for l2b−6, one can see that it is at least 4, by considering the
contribution, to the degree 2b − 6 coefficient on the left side of (4), of the following four
pairs of indices (i, j):

((b− 6)/3, 2), ((b− 6)/3, 3), ((b− 9)/3, 3), ((b− 9)/3, 4).

This completes the proof that
l2b−6 > r2b−6. (5)

Now let c > 4. We consider the two sets of indices

1 6 i 6 bb/6c and bb/6c+ 1 6 i 6 (b− 3)/3

separately. When i 6 bb/6c, we have that∑
j

1 · (q6i+2j + · · ·+ qci+2i+cj) > (q6i+2 + · · ·+ qd+2i),

since
ci+ 2i+ cbb/2− 2i(c− 1)/cc > d+ 2i

for any i 6 bb/6c.
Fix now an index i, bb/6c+ 1 6 i 6 (b−3)/3. We want to bound the sum contributed

by i to the right side of (4) with the sum contributed by i − bb/6c to the left side, of
course without employing terms already used for i 6 bb/6c.

A quick thought tells us that we are done whenever the following inequality is true:∑
j

(q+· · ·+q(c−4)(i−bb/6c))(q6(i−bb/6c)+2j+· · ·+q(c+2)(i−bb/6c)+cj) > (q6i+2+· · ·+qd+2i). (6)
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Clearly, (6) is verified if we show that for each i = bb/6c + 1, . . . , (b − 3)/3, the left
side begins in degree no larger, and ends in degree no smaller, than the right side. Since
j 6 bb/2 − 2i(c − 1)/cc, standard computations give us that this is indeed the case for
any c > 5, if we assume b > 18 when c = 5 (the theorem is immediate to check directly
for b < 18 when c = 5). This shows (4).

In order to complete the proof of the theorem, it remains to bound

(q2 + q3 + · · ·+ qd) +
∑

16i6 b−3
3

q6i,

using the KOH contribution to
(
b+c
b

)
q

provided by some new family of partitions of b.

We consider the following partitions:

µi = (µi1 = 2, . . . , µii = 2, µii+1 = 1, . . . , µib−i = 1),

where 1 6 i 6 db/2e − 1. By Lemma 4, the KOH contribution of µi to
(
b+c
b

)
q

is:

Fµi(q) = q2i
(

(c+ 2)i− 4i+ 1

1

)
q

(
(c+ 2)(b− i)− 2b+ 1

1

)
q

= q2i
(
ci− 2i+ 1

1

)
q

(
bc− ci− 2i+ 1

1

)
q

.

We have
2i+ (bc− ci− 2i+ 1) = bc− ci+ 1 > bc/2,

for all 1 6 i 6 db/2e − 1 and all c. Thus,

(1− q)Fµi(q) = (1− q)q2i(1 + q + · · ·+ qci−2i) · 1− qbc−ci−2i+1

1− q
= (1 + q + · · ·+ qci−2i)(q2i − qbc−ci+1) = q2i + q2i+1 + · · ·+ qci.

Since c(db/2e − 1) > d = bc/3 for any c > 4, it follows that∑
16i6db/2e−1

(1− q)Fµi(q) =
∑

16i6db/2e−1

q2i + q2i+1 + · · ·+ qci > q2 + q3 + · · ·+ qd.

We now want to check when∑
16i6db/2e−1

q2i + q2i+1 + · · ·+ qci (7)

also simultaneously dominates
∑

16i6 b−3
3
q6i; that is, when in (7) the coefficients in each

degree 6, 12, . . . , 2b− 6 are at least 2.
Notice that every even power of q that appears in (7) for a given index i < (b− 3)/3

also appears for i + 1, with the only exception of q2i. This, however, appears for i− 1 if
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i > 2, so the total number of times it is present in (7) is again at least 2. We conclude that
a coefficient equal to 1 in some degree n ≡ 0 (mod 6), if it exists, can only be contributed
by i = (b− 3)/3, and such a degree n must be in the range:

c(db/2e − 2) + 1 6 n 6 c(db/2e − 1).

It follows that the theorem is proven whenever c(db/2e − 2) + 1 > 2b − 6. This is
immediately verified to be the case for any c > 6. When c = 5, the only exception is
b = n = 6, but for b = 6 the theorem can easily be checked directly. Finally, when c = 4,
the only exceptions are b even and n = 2b − 6. If b = 6 the theorem is again verified
directly; if b > 6, we employ inequality (5). The proof of the theorem is complete.
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