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Abstract

Let G be an r-uniform hypergraph on n vertices such that all but at most ε
(
n
`

)
`-subsets of vertices have degree at least p

(
n−`
r−`
)
. We show that G contains a large

subgraph with high minimum `-degree.

Keywords: r-uniform hypergraphs, `-degree, extremal hypergraph theory

Mathematics Subject Classifications: 05C65, 05D99

1 Introduction

Given r ∈ N and a set A, we write A(r) for the collection of all r-subsets of A and
[n] for the set {1, 2, . . . n}. An r-graph, or r-uniform hypergraph, is a pair G = (V,E),
where V = V (G) is a set of vertices and E = E(G) ⊆ V (r) is a collection of r-subsets,
which constitute the edges of G. We say G is nonempty if it contains at least one edge
and set v(G) = |V (G)| and e(G) = |E(G)|. A subgraph of G is an r-graph H with
V (H) ⊆ V (G) and E(H) ⊆ E(G). The subgraph of G induced by a set X ⊆ V (G) is
G[X] = (X,E(G) ∩X(r)).

Let F be a family of nonempty r-graphs. If G does not contain a copy of a member
of F as a subgraph, we say that G is F-free. The Turán number ex(n,F) of a family F is
the maximum number of edges in an F -free r-graph on n vertices, and its Turán density is
the limit π(F) = limn→∞ ex(n,F)/

(
n
r

)
(this is easily shown to exist). Let K

(r)
t = ([t], [t](r))

denote the complete r-graph on t vertices. Determining π(K
(r)
t ) for any t > r > 3 is a
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major problem in extremal combinatorics. Turán [19] famously conjectured in 1941 that

π(K
(3)
4 ) = 5/9, and despite much research effort this remains open [8]. In this paper we

shall be interested in some variants of Turán density.
The neighbourhood N(S) of an `-subset S ∈ V (G)(`) is the collection of (r− `)-subsets

T ∈ V (G)(r−`) such that S ∪ T is an edge of G. The degree of S is the number deg(S)
of edges of G containing S, that is, deg(S) = |N(S)|. The minimum `-degree of G,
δ`(G), is defined to be the minimum of deg(S) over all `-subsets S ∈ V (G)(`). The
Turán `-degree threshold ex`(n,F) of a family F of r-graphs is the maximum of δ`(G)
over all F -free r-graphs G on n vertices. It can be shown [11, 9] that the limit π`(F) =
limn→∞ ex`(n,F)/

(
n−`
r−`

)
exists; this quantity is known as the Turán `-degree density of F .

A simple averaging argument shows that

0 6 πr−1(F) 6 . . . 6 π2(F) 6 π1(F) = π(F) 6 1,

and it is known that π`(F) 6= π(F) in general (for ` /∈ {0, 1}). In the special case where
(r, `) = (r, r − 1), πr−1(F) is known as the codegree density of F .

There has been much research on Turán `-degree threshold for r-graphs when (r, `) =
(3, 2). In the late 1990s, Nagle [12] and Nagle and Czygrinow [2] conjectured that

π2(K
(3)−
4 ) = 1/4 and π2(K

(3)
4 ) = 1/2, respectively. Here K

(3)−
4 denotes the 3-graph ob-

tained by removing one edge from K
(3)
4 . Falgas-Ravry, Pikhurko, Vaughan and Volec [6, 7]

recently proved π2(K
(3)−
4 ) = 1/4, settling the conjecture of Nagle, and showed all near-

extremal constructions are close (in edit distance) to a set of quasirandom tournament

constructions of Erdős and Hajnal [3]. The lower bound π2(K
(3)
4 ) > 1/2 also comes from a

quasirandom construction, which is due to Rödl [17]. For t > r > 3, the codegree density

πr−1(K
(r)
t ) has been studied by Falgas-Ravry [4], Lo and Markström [9] and Sidorenko [18].

Recently, Lo and Zhao [10] showed that 1− πr−1(K(r)
t ) = Θ(ln t/tr−1) for r > 3.

One variant of `-degree Turán density is to study r-graphs in which almost all `-subsets
have large degree. To be precise, given ε > 0, let δε` (G) be the largest integer d such that
all but at most ε

(
v(G)
`

)
of the `-subsets S ∈ V (G)(`) satisfy deg(S) > d. Note that r-graphs

with large δε` (G) but with small δ`(G) arise naturally. For instance, the reduced graphs R
obtained from r-graphs with large minimum `-degree after an application of hypergraph
regularity lemma have large δε` (R).

Definition 1 ((r, `)-sequence). Let 1 6 ` < r. We say that a sequence G = (Gn)n∈N of
r-graphs is an (r, `)-sequence if

(i) v(Gn)→∞ as n→∞ and

(ii) there is a constant p ∈ [0, 1] and a sequence of nonnegative reals εn → 0 as n→∞
such that δεn` (Gn) > p

(
v(Gn)−`

r−`

)
for each n.

We refer to the supremum of all p > 0 for which (ii) is satisfied as the density of the
sequence G and denote it by ρ(G).

We can define the analogue of Turán density for (r, `)-sequences.
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Definition 2. Let 1 6 ` < r. Let F be a family of nonempty r-graphs. Define

π?
` (F) := sup

{
ρ(G) : G is an (r, `)-sequence of F -free r-graphs

}
.

Our main result show that every large r-graph G contains a ‘somewhat large’ sub-
graph H with minimum `-degree satisfying δ`(H)/

(
v(H)−`
r−`

)
≈ δε` (G)/

(
v(G)−`
r−`

)
. Here ‘some-

what large’ means v(H) = Ω(ε1/`).

Theorem 3. Let 1 6 ` < r. For any fixed δ > 0, there exists m0 > 0 such that any
r-graph G on n > m > m0 vertices with δε` (G) > p

(
n−`
r−`

)
for some ε 6 m−`/2 contains an

induced subgraph H on m vertices with

δ`(H) > (p− δ)
(
m− `
r − `

)
.

This immediate implies the π?
` (F) = π`(F) for all families F of r-graphs.

Corollary 4. For any 1 6 ` < r and any family F of nonempty r-graphs, π?
` (F) = π`(F).

We note that the (tight) upper bounds for codegree densities π2(F ) for 3-graphs F
obtained by flag algebraic methods in [5, 6, 7] actually relied on giving upper bounds
for π?

` (F ). Corollary 4 provides theoretical justification for why this strategy could give
optimal bounds.

1.1 Quasirandomness in 3-graphs

One of the main motivations for this note comes from recent work of Reiher, Rödl and
Schacht [13, 14, 15, 16] on extremal questions for quasirandom hypergraphs. These au-
thors studied the following notion of quasirandomness for 3-graphs.

Definition 5 ((1,2)-quasirandomness). A 3-graph G is (p, ε, (1, 2))-quasirandom if for
every set of vertices X ⊆ V and every set of pairs of vertices P ⊆ V (2), the number
e1,2(X,P ) of pairs (x, uv) ∈ X × P such that {x} ∪ {uv} ∈ E(G) satisfies:∣∣∣e1,2(X,P )− p|X| · |P |

∣∣∣ 6 εv(G)3.

We define a (1, 2)-quasirandom sequence and the corresponding extremal density, de-
noted by π(1,2)−qr(F), analogously to the way we defined (r, `)-sequences and π?

` (F) in
Definitions 1 and 2. It is not difficult to see that π(1,2)−qr(F) 6 π(F) for all families F of 3-

graphs. Moreover, a (p, ε, (1, 2))-quasirandom 3-graphG satisfies δ
√
ε

2 (G) > (p−4
√
ε)v(G).

Hence, Theorem 3 and Corollary 6 imply the following.

Corollary 6. For any family of nonempty 3-graphs F , π(1,2)−qr(F) 6 π2(F).
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Consider a (p, ε, (1, 2))-quasirandom 3-graph G for some p > 4
√
ε > 0. As noted

above, δ
√
ε

2 (G) > (p − 4
√
ε)v(G). Thus provided v(G) is sufficiently large, Theorem 3

tells us we can find a subgraph H of G on m = Ω(ε−1/4) vertices with strictly positive
minimum codegree (at least (p− 4

√
ε)m).

However, as we show below, we cannot guarantee the existence of any subgraph with
strictly positive codegree on more than 2/ε+ 1 vertices: our lower bound on m above in
terms of an inverse power of the error parameter ε is thus sharp up to the value of the
exponent.

Proposition 7. For every p ∈ (0, 1) and every ε > 0, there exists n0 such that for
all n > n0 there exist (p, 2ε, (1, 2))-quasirandom 3-graphs in which every subgraph on
m > bε−1c+ 1 vertices has minimum codegree equal to zero.

Proof. Let G = (V,E) be a (p, ε, (1, 2))-quasirandom 3-graph on n vertices. Such a 3-
graph can be obtained for example by taking a typical instance of an Erdős–Rényi random
3-graph with edge probability p. Consider a balanced partition of V into N = bε−1c sets
V =

⋃N
i=1 Vi with bn/Nc 6 |V1| 6 |V2| 6 . . . 6 |VN | 6 dn/Ne. Now let G′ be the 3-graph

obtained from G by deleting all triples that meet some Vi in at least two vertices for some
i: 1 6 i 6 N .

By construction, every set of N + 1 vertices in G′ must contain at least two vertices
from the same Vi, and thus must induce a subgraph of G′ with minimum codegree zero.
Note that e(G)− e(G′) 6 Nn

(dn/Ne
2

)
6 n3/N 6 εn3. Since G is (p, ε, (1, 2))-quasirandom,

it follows that G′ is (p, 2ε, (1, 2))-quasirandom.

2 Finding high minimum `-degree subgraphs in r-graphs with
large δε`

In this section we show how we can extract arbitrarily large subgraphs with high minimum
`-degree from sufficiently large r-graphs with sufficiently small error ε. To do so, we will
need Azuma’s inequality (see e.g. [1]).

Lemma 8 (Azuma’s inequality). Let {Xi : i = 0, 1, . . . } be a martingale with |Xi−Xi−1| 6
ci for all i. Then for all positive integers N and λ > 0,

P(XN 6 X0 − λ) 6 exp

(
−λ2

2
∑N

i=1 c
2
i

)
.

Proof of Theorem 3. We may assume without loss of generality that δ > 0 is small enough
to ensure δ−1 > 26`(r − `)2 log(1/δ) and ` log(1/δ) > log 2 as this only makes our task
harder. Set m0 = d26`(r − `)2δ−2 log(1/δ)e. Note that this implies that

2` logm0 6 4` log
(
26`(r − `)2δ−2 log(1/δ)

)
6 12` log(1/δ). (1)

Fix m > m0. Let n > m > m0 and ε = m−`/2.
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Suppose G = (V,E) is an r-graph on n vertices with δε` (G) > p
(
n−`
r−`

)
. We claim that it

contains an induced subgraph on m vertices with minimum `-degree at least (p− δ)
(
m−`
r−`

)
.

For p 6 δ, we have nothing to prove, so we may assume that 1 > p > δ.
Call an `-subset S ∈ V (`) poor if deg(S) < p

(
n−`
r−`

)
, and rich otherwise. Let P be the

collection of all poor `-subsets. By our assumption on δε` (G), |P| 6 ε
(
n
`

)
. As each poor

`-subset is contained in
(
n−`
m−`

)
m-subsets, it follows that there are at least(

n

m

)
− |P|

(
n− `
m− `

)
>
(
1− εm`

)(n
m

)
=

1

2

(
n

m

)
(2)

m-subsets of vertices which do not contain any poor `-subsets.
Given an `-subset S ∈ V (`) \ P , we call an m-subset T of V bad for S if S ⊆ T and∣∣N(S) ∩ T (r−`)

∣∣ 6 (p− δ)
(
m−`
r−`

)
. Let φS be the number of bad m-subsets for S. We claim

that

φS 6

(
n− `
m− `

)
exp

(
− δ2m

2(r − `)2

)
. (3)

Observe that

φS =

∣∣∣∣{T ∈ (V \ S)(m−`) :
∣∣N(S) ∩ T (r−`)∣∣ 6 (p− δ)

(
m− `
r − `

)}∣∣∣∣ .
Let X be the random variable

∣∣N(S) ∩ T (r−`)
∣∣, where T is an (m−`)-subset of V \S picked

uniformly at random. We consider the vertex exposure martingale on T . Let Zi be the ith
exposed vertex in T . Define Xi = E(X|Z1, . . . , Zi). Note that {Xi : i = 0, 1, . . . ,m − `}
is a martingale and X0 > p

(
m−`
r−`

)
. Moreover, |Xi −Xi−1| 6

(
m−`−1
r−`−1

)
<
(

m−1
r−`−1

)
. Thus, by

Lemma 8 applied with λ = δ
(

m
r−`

)
and ci =

(
m−1
r−`−1

)
, we have

P
(
Xm 6 (p− δ)

(
m− `
r − `

))
6 P(Xm 6 X0 − λ) 6 exp

(
−δ2

(
m
r−`

)2
2m
(

m−1
r−`−1

)2
)

=

(
−δ2

(
m
r−`

)
2(r − `)

)

6 exp

(
− δ2m

2(r − `)2

)
.

Hence (3) holds.
An m-subset T of V is called bad if it is bad for some S ∈ V (`) \ P . The number of

bad m-subsets is at most∑
S∈V (`)\P

φS 6

(
n

`

)(
n− `
m− `

)
exp

(
− δ2m

2(r − `)2

)
=

(
n

m

)(
m

`

)
exp

(
− δ2m

2(r − `)2

)

6

(
n

m

)
m`

0 exp

(
− δ2m0

2(r − `)2

)
6

(
n

m

)
exp (2` logm0 − 13` log(1/δ))

6

(
n

m

)
exp (−` log(1/δ)) 6

1

2

(
n

m

)
,
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where the last three inequalities hold by our choice of m0, by inequality (1), and by our
assumption on δ, respectively. Together with (2), this shows there exists an m-subset
inside which there is no poor `-subsets and in which every rich `-subset has degree at
least (p − δ)

(
m−`
r−`

)
. Such a set clearly gives us an induced subgraph of G on m vertices

with minimum `-degree at least (p− δ)
(
m−`
r−`

)
.

3 Concluding remarks

A 3-graph G is (p, ε, (1, 1, 1))-quasirandom if for every triple of sets of vertices X, Y and
Z ⊆ V , the number e1,1,1(X, Y, Z) of triples (x, y, z) ∈ X × Y × Z such that xyz ∈ E(G)

satisfies
∣∣∣e1,1,1(X, Y, Z) − p|X| · |Y | · |Z|

∣∣∣ 6 εv(G)3. Define π(1,1,1)−qr(F) analogously to

π(1,2)−qr(F). Note that π(1,2)−qr(F) 6 π(1,1,1)−qr(F) 6 π(F) for all 3-graph families F . An
obvious open question is whether we have

π(1,1,1)−qr(F) 6 π2(F).

Even more: can one always extract subgraphs with large minimum codegree from (1, 1, 1)-
quasirandom graphs? Even obtaining large subgraphs with non-zero minimum codegree
remains an open problem for this weaker notion of quasirandomness.
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[3] P. Erdős and A. Hajnal. On Ramsey-like theorems: problems and results. In Com-
binatorics: being the proceedings of the Conference on Combinatorial Mathematics
held at the Mathematical Institute, Oxford 1972, pages 123–140. Southend-on-Sea:
Institute of Mathematics and its Applications, 1972.

[4] V. Falgas-Ravry. On the codegree density of complete 3-graphs and related problems.
Electron. J. Combin., 20(4):#P28, 2013.

the electronic journal of combinatorics 25(2) (2018), #P2.18 6



[5] V. Falgas-Ravry, E. Marchant, O. Pikhurko and E.R. Vaughan. The codegree
threshold for 3-graphs with independent neighborhoods. SIAM J. Discrete Math.,
29(3):1504–1539, 2015.

[6] V. Falgas-Ravry, O. Pikhurko, E.R. Vaughan, and J. Volec. The codegree threshold
of K−4 . Electron. Notes Discrete Math, 61:407–413, 2017.

[7] V. Falgas-Ravry, O. Pikhurko, E.R. Vaughan, and J. Volec. The codegree threshold
of K−4 . preprint, 2018.

[8] P. Keevash. Hypergraph Turán problems. In Surveys in combinatorics 2011, volume
392 of London Math. Soc. Lecture Note Ser., pages 83–139. Cambridge Univ. Press,
Cambridge, 2011.

[9] A. Lo and K. Markström. `-Degree Turán Density. SIAM J. Discrete Math.,
28(3):1214–1225, 2014.

[10] A. Lo and Y. Zhao. Codegree Turán density of complete r-uniform hypergraphs.
SIAM J. Discrete Math., to appear.

[11] D. Mubayi and Y. Zhao. Co-degree density of hypergraphs. J. Combin. Theory Ser.
A, 114(6):1118–1132, 2007.

[12] B. Nagle. Turán-Related Problems for Hypergraphs. Congressus numerantium, pages
119–128, 1999.
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