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Abstract

We consider the signless p-Laplacian Qp of a graph, a generalisation of the
quadratic form of the signless Laplacian matrix (the case p = 2). In analogy to
Rayleigh’s principle the minimum and maximum of Qp on the p-norm unit sphere
are called its smallest and largest eigenvalues, respectively. We show a Perron-
Frobenius property and basic inequalites for the largest eigenvalue and provide
upper and lower bounds for the smallest eigenvalue in terms of a graph parameter
related to the bipartiteness. The latter result generalises bounds by Desai and Rao
and, interestingly, at p = 1 upper and lower bounds coincide.

Mathematics Subject Classifications: 05C50, 05C40, 15A18

1 Introduction

We begin with some notation. All graphs are simple and undirected without loops or
multiple edges. For a graph G = (V,E) with vertex set V the edge set E consists of
two-element subsets of V and for each edge we write ij rather than {i, j}. For disjoint
subsets S, T ⊆ V define EG(S) as the edges ij ∈ E spanned by S, EG(S, T ) the edges
with one vertex in S and the other in T ; we also define n = |V |, eG(S) = |EG(S)|,
∗Supported by CAPES Grant PROBRAL 408/13 - Brazil.
†Supported by DAAD PROBRAL Grant 56267227 - Germany.
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eG(S, T ) = |EG(S, T )| and cutG(S) = |EG(S, V \ S)|. Furthermore di, i ∈ V is the degree
of vertex i and δ(G),∆(G) denote the minimum and maximum degree, respectively. We
shall drop the subscripts if G is clear from the context. We find it convenient to index
vectors and matrices associated with the graph by the vertex set V and write therefore
x = (xi, i ∈ V ) ∈ RV rather than x ∈ Rn. Accordingly, we denote by A ∈ RV×V the
adjacency matrix and by D ∈ RV×V the diagonal matrix of vertex degrees.

The eigenvalues and eigenvectors of the Laplacian L := D − A are well studied, in
particular the second smallest eigenvalue a(G), the algebraic connectivity of G. It is non-
zero if and only if G is connected and by a well-known inequality due to Mohar [10] it
can be upper and lower bounded in terms of the isoperimetric number of G

i(G) := min

{
cut(S)

|S|
, S ⊆ V, 0 < |S| 6 n

2

}
.

Eigenvectors for a(G) are used in spectral partitioning. Following Amghibech’s work [1]
Bühler and Hein [4] introduced for p > 1 a non-negative functional Lp(x) =

∑
ij∈E |xi−xj|p

on RV which for p = 2 yields the quadratic form of L. The p-Laplacian of G is defined as
the non-linear operator

1

p
∇xLp : RV → RV ,

1

p
∇xLp(x)i =

∑
j : ij∈E

sign (xi − xj) |xi − xj|p−1

where

sign (x) =


1 if x > 0,

−1 if x < 0,

0 if x = 0.

A vector x 6= 0 is called an eigenvector of Lp with corresponding eigenvalue µ ∈ R if the
eigenequations

1

p
∇xLp(x)i =

∑
j : ij∈E

sign (xi − xj) |xi − xj|p−1 = µsign (xi) |xi|p−1, i ∈ V,

are satisfied. Observe that in this case p−1x>∇xLp(x) = Lp(x) = µ ‖x‖pp and that the
eigenequations are necessary conditions for the optimisation problems

min (resp. max)Lp(x) s.t. ‖x‖pp = 1

which for p = 2 are the Rayleigh-Ritz characterisations of the smallest (resp. largest)
eigenvalue of L. The minimum is always zero, attained by a non-zero multiple of the all
ones vector 1 and these are the only solutions if and only if G is connected. Observing
that 1>∇xLp(x) = 0 for any x one is led to characterise the smallest non-zero eigenvalue
ap(G) as

ap(G) = minLp(x) s.t. ‖x‖pp = 1 and
∑
i∈V

sign (xi) |xi|p−1 = 0 (1)
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Bühler and Hein [4] give the following bounds(
2

∆

)p−1(
i(G)

p

)p
6 ap(G) 6 2p−1i(G), (2)

where ∆ is the maximum degree. Interestingly, in the limit p → 1 upper and lower
bounds coincide. Indeed, in [5] spectral properties of the 1-Laplacian are explored. The
eigenequations are then a nonlinear system involving set valued functions (gradients are
replaced by subdifferentials) and it is found that the smallest non-zero eigenvalue is in
fact i(G).

Only recently the signless Laplacian matrix Q = D + A has received greater interest
from spectral graph theorists, nevertheless an early remarkable result [6] dates back to
1994. The quadratic form of Q is x>Qx =

∑
ij∈E(xi + xj)

2 and hence Q is positive
semidefinite. The smallest eigenvalue q(G) is 0 if and only if G has a bipartite component,
see Lemma 3. Informally speaking, the results in [6] state that a small q(G) indicates the
existence of a nearly bipartite subgraph which is not very well connected to the rest of
the graph, and vice versa. More precisely, in [6] they define the graph parameter ψ(G) as

ψ(G) := min

{
2e(S) + 2e(T ) + cut(S ∪ T )

|S ∪ T |
: S, T ⊆ V, S ∩ T = ∅, S ∪ T 6= ∅

}
. (3)

and prove a lower and upper bound on q(G) reminiscent of (2) for p = 2, namely

ψ(G)2

2∆
6 q(G) 6 2ψ(G). (4)

Observe that ψ(G) = 0 if and only if G has a bipartite component and, moreover, that
for a minimising pair S, T in (3) the number e(S) + e(T ) is the smallest number of edges
to be removed from the induced subgraph on S∪T to make it bipartite. Thus the bounds
in (4) quite well capture the informal statement. We also remark that the definition of ψ
and also the bounds differ (superficially) from those in [6]. We followed the exposition of
[7] where bounds on q(G) in terms of edge and vertex bipartiteness and a stronger lower
bound in terms of ψ(G) are established. Finding (near) bipartite substructures in graphs
is of practical interest in the study of social networks and bioinformatics as pointed out in
[8], where the authors devise spectral techniques involving eigenvectors for q(G) to obtain
such structures.

In this article we consider for real p > 1 the non-negative convex functional

Qp : RV → R, Qp(x) =
∑
ij∈E

|xi + xj|p

(i.e. Q2(x) = x>Qx) and its extremal values on the p-norm unit sphere

SVp =

{
x ∈ RV :

∑
i∈V

|xi|p = 1

}
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or, equivalently, extremal values of Rp(x) := Qp(x)/ ‖x‖pp on RV \ {0}. For p = 2 this is
the Rayleigh-Ritz characterisation of the smallest and largest eigenvalues. Let

qp(G) = min

{
Qp(x) : ‖x‖pp =

∑
i∈V

|xi|p = 1

}
= min {Rp(x) : x 6= 0} (5)

and in an analogous fashion define by λp(G) the maximum. We call qp(G) and λp(G) the
smallest and largest eigenvalues of Qp, respectively and minimising (maximising) vectors
eigenvectors. Our study of qp(G) is strongly motivated by the inequalities (4) and (2) and
our main result is an upper and lower bound on qp(G) in terms of the graph parameter
ψ(G).

Theorem 1. For p > 1 the smallest signless p-Laplacian eigenvalue qp(G) satisfies(
2

∆

)p−1(
ψ(G)

p

)p
6 qp(G) 6 2p−1ψ(G).

In particular, we have that q1(G) = ψ(G).

The proof of Theorem 1 provides actually a stronger lower bound and a method to
obtain a ”good“ pair (S, T ) (in view of (3)) by thresholding a solution to the optimisation
problem (5):

Corollary 2. For x ∈ RV \ {0} and t > 0 define the vertex sets Stx = {i ∈ V : xi > t}
and T tx = {i ∈ V : xi < −t} and define

ψ(G, x) := min

{
2eG (Stx) + 2eG (T tx) + cutG (Stx ∪ T tx)

|Stx ∪ T tx|
: 0 6 t < max

i∈V
{|xi|}

}
. (6)

If p > 1 and x(p) is an eigenvector for qp(G) then the bounds in Theorem 1 also hold with
ψ(G) replaced by ψ(G, x(p)). In particular, ψ(G, x(p)) → ψ(G) as p → 1 and for p = 1,
ψ(G) = ψ(G, x(1)).

For practical matters as raised in [8] it would be interesting to know if the computation
or approximamtion of qp(G) and a corresponding eigenvector can be carried out efficiently.
We are currently investigating this.
Outline. In the next section we provide a proof of Theorem 1 and Corollary 2. In
the subsequent section we discuss the case p = ∞ and in the final section some basic
properties of the largest eigenvalue.

2 Proof of Theorem 1

In this section we assume throughout that p > 1. First we shall see that Theorem 1 is
trivially true for graphs with a bipartite connected component:
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Lemma 3. The smallest eigenvalue qp(G) is zero if and only if G has a bipartite compo-
nent.

Proof. If there is a bipartite component with partition S∪T put xi = 1, if i ∈ S, xi = −1,
if i ∈ T and xi = 0 elsewhere. Then Qp(x) = 0. Conversely, Qp(x) = 0 implies xi = −xj
for every ij ∈ E and thus a connected component containing a vertex i with xi 6= 0 is
bipartite.

The next lemma ([6, 7] for p = 2) yields the upper bound in Theorem 1.

Lemma 4. Let S, T ⊆ V, S ∩ T = ∅. Then we have

qp(G)|S ∪ T | 6 2pe(S) + 2pe(T ) + cut(S ∪ T )

and in particular qp(G) 6 2p−1ψ(G).

Proof. Let S ∪ T 6= ∅, otherwise the assertion is trivial. Define x by xi = 1, if i ∈ S,
xi = −1, if i ∈ T and xi = 0 elsewhere. Then a computation shows

qp(G) 6
Qp(x)

‖x‖pp
=

2pe(S) + 2pe(T ) + cut(S ∪ T )

|S ∪ T |
.

If S, T are chosen as optimal sets in the definition (3) of ψ(G) this last expression is
6 2p−1ψ(G) with equality only if cut(S ∪ T ) = 0 or p = 1.

For the proof of the lower bound we combine techniques from [6] and [4]. For a graph
G′ = (V ′, E ′) fix a subset U ⊆ V ′. For a vector g ∈ RV ′ with gi > 0 on U and gi = 0
elsewhere define Ct

g = {i ∈ U : gi > t} and

hg(U) := min

{
cutG′

(
Ct
g

)∣∣Ct
g

∣∣ : 0 6 t < max{gi, i ∈ U}

}
. (7)

We have the following lemma.

Lemma 5. With the above notation we have(
2

∆(G′)

)p−1(
hg(U)

p

)p
‖g‖pp 6

∑
ij∈E′
|gi − gj|p (8)

where ∆(G′) is the maximum degree of G′.

We postpone the proof of the lemma and first apply it to prove Theorem 1. The idea
is from [6], however, at some places we must be a bit more careful to get a lower bound
which, as p→ 1, coincides with the upper bound.
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Proof of Theorem 1, lower bound. Consider a connected graph G = (V,E) and its signless
p-Laplacian Qp. Let x be a normalised eigenvector (‖x‖p = 1) for the smallest eigenvalue
qp = qp(G) such that Qp(x) = qp. Define S = {i ∈ V : xi > 0} and T = {i ∈ V : xi < 0}
and a graph G′ = (V ′, E ′) as follows. Let V ′ = V ∪̇S ′∪̇T ′ where S ′ = {i′ : i ∈ S} and
T ′ = {i′ : i ∈ T} are disjoint copies of S and T, respectively, and define

E ′ = EG(S, T ) ∪ EG(S ∪ T, V \ (S ∪ T )) ∪ {i′j, ij′ : ij ∈ EG(S)} ∪ {i′j, ij′ : ij ∈ EG(T )}

i.e. E ′ is obtained from E by deleting every edge ij with both endpoints in S (resp. T )
and adding two edges ij′ and i′j. Define g ∈ RV ′ by gi = |xi| if i ∈ S ∪ T and gi = 0 if
i ∈ V ′ \ (S ∪ T ). Then we have ‖g‖p = ‖x‖p = 1 and∑

ij∈E′
|gi − gj|p 6

∑
ij∈E

|xi + xj|p = qp. (9)

To see this, first consider an edge ij ∈ EG(S) ∪ EG(T ) on the right hand side. We have
two corresponding edges in i′j, ij′ ∈ E ′ on the left side and

|gi′ − gj|p + |gi − gj′|p = |gj|p + |gi|p 6 ||xi|+ |xj||p = |xi + xj|p

because xi and xj have the same sign. The remaining summands on both sides correspond
to edges ij ∈ E∩E ′. A case by case inspection yields |gi−gj|p = |xi+xj|p and (9) follows.1

Now we show hg(S ∪ T ) > ψ(G). To that end consider an optimal t > 0 in the
definition (7) of hg(S ∪ T ) and a corresponding cut set Ct

g ⊆ S ∪ T. Define St = Ct
g ∩ S

and T t = Ct
g∩T. Recall the vertex sets Stx and T tx of G and the parameter ψ(G, x) defined

in Corollary 2 and observe that actually St = Stx and T t = T tx (viewed as vertex subsets
of G) by the definitions of g and Ct

g. Therefore, in G, we have a chain of inequalities

2eG(St) + 2eG(T t) + cutG(St ∪ T t)
|St ∪ T t|

> ψ(G, x) > ψ(G). (10)

On the other hand we observe that

2eG(St) + 2eG(T t) + cutG(St ∪ T t) = cutG′(S
t ∪ T t) (11)

because every edge ij ∈ EG(St)∪EG(T t) corresponds to two edges counted in cutG′(S
t ∪

T t), namely ij′ and i′j. Moreover, every edge in EG(St ∪ T t, V \ (St ∪ T t)) contributes
exactly one edge counted in cutG′(S

t ∪T t) : for example, an edge ij ∈ E in G with i ∈ St
and j ∈ S \ St is accounted for in cutG′(S

t ∪ T t) by the edge ij′ ∈ E ′ but not by the edge
i′j ∈ E ′(V ′ \ (St ∪ T t)).

Now (10), (11) and the optimality of Ct
g = St ∪ T t for (7) imply

hg(S ∪ T ) > ψ(G, x) > ψ(G). (12)

Combine Lemma 5 (applied to G′ with U = S ∪ T ) with (9) and (12) and observe that
∆(G′) = ∆(G) to complete the proof of Corollary 2 and Theorem 1.

1Inequality (9) is sharper than the original [6, inequality (23)] where there is a factor 2 on the right
hand side which can be omitted. This was also pointed out in [7].
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We now prove Lemma 5, where we follow [4] up to minor modifications.

Proof of Lemma 5. We first show

hg(U) ‖g‖pp 6
∑
ij∈E′
|gpi − g

p
j |. (13)

To that end write∑
ij∈E′,gi>gj

(gpi − g
p
j ) =

∑
ij∈E′,gi>gj

p

∫ gi

gj

tp−1dt = p

∫ ∞
0

tp−1
∑

ij∈E′ : gi>t>gj

1dt

and observe that
∑

ij∈E′ : gi>t>gj 1 = |{ij ∈ E ′ : i ∈ Ct
g, j /∈ Ct

g}| = cut(Ct
g). By the

definition of hg(U) we have

cut(Ct
g) > hg(U)|Ct

g| = hg(U)
∑

i∈V ′ : gi>t

1.

Hence we can give a lower bound∑
ij∈E′,gi>gj

(gpi − g
p
j ) = p

∫ ∞
0

tp−1
∑

ij∈E′ : gi>t>gj

1dt

> p

∫ ∞
0

tp−1hg(U)
∑

i∈V ′ : gi>t

1dt

= hg(U)
∑

i∈V ′ : gi>0

∫ gi

0

ptp−1dt

= hg(U)
∑

i∈V ′ : gi>0

gpi

= hg(U) ‖g‖pp

and obtain (13). Observe that this completes the proof of the lemma if p = 1.
For p > 1 we proceed with Hölder’s inequality

∑
|xiyi| 6 (

∑
|xpi |)1/p(

∑
|yqi |)1/q where

q = p/(p− 1). ∑
ij∈E′
|gpi − g

p
j | =

∑
ij∈E′
|gi − gj|

gpi − g
p
j

gi − gj

6

(∑
ij∈E′
|gi − gj|p

)1/p(∑
ij∈E′

(
gpi − g

p
j

gi − gj

)q)1/q (14)

In order to bound the last term from above we use an inequality from [1] (an alternative
proof is given at the end of this section) which states that(

gpi − g
p
j

gi − gj

)q
6 pq

(
gpi + gpj

2

)
. (15)
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The second factor in the last term of (14) can thus be bounded from above by (with d′i
the degree of vertex i in G′)(∑

ij∈E′

(
gpi − g

p
j

gi − gj

)q)1/q

6 p

(∑
ij∈E′

gpi + gpj
2

)1/q

=
p

21/q

(∑
i∈V ′

d′ig
p
i

)1/q

6
p

21/q

(
∆(G′) ‖g‖pp

)1/q
= p

(
∆(G′)

2

)(p−1)/p

‖g‖p−1p

Substitute this last term into (14) combine with (13) and regroup terms to obtain the
assertion of the Lemma.

For a self-contained exposition we show inequality (15). Recall the power mean in-

equality: for x1, . . . , xn > 0 and r < s we have
(
1
n

∑n
k=1 x

r
k

)1/r
6
(
1
n

∑n
k=1 x

s
k

)1/s
. Using

Riemann sum approximations we obtain for 0 6 a < b a continuous version(
1

b− a

∫ b

a

trdt

)1/r

= lim
n→∞

(
n∑
k=1

1

n

(
a+ k · b− a

n

)r)1/r

6 lim
n→∞

(
n∑
k=1

1

n

(
a+ k · b− a

n

)s)1/s

=

(
1

b− a

∫ b

a

tsdt

)1/s

An application of this to (15) yields (assuming gi > gj)(
gpi − g

p
j

gi − gj

)q
= pq

(
1

gi − gj

∫ gi

gj

tp−1dt

)p/(p−1)

6 pq
1

gi − gj

∫ gi

gj

tpdt 6 pq
(
gpi + gpj

2

)
where the last “6” follows from the convexity of tp for p > 1 : in the interval gj 6 t 6 gi

we have tp 6 s(t) := gpj +
gpi−g

p
j

gi−gj (t− gj) and the last inequality is obtained upon replacing

tp by s(t) in the integral.

3 The case p = ∞

If we equivalently minimise Qp(x)1/p in (5) the case p =∞ is also meaningful with

q∞(G) = min
‖x‖∞=1

max
ij∈E
|xi + xj|.

Lemma 3 holds accordingly, that is, q∞ is zero if and only if G has a bipartite component.

Theorem 6. For u ∈ V let l(u) be the smallest odd integer 2k + 1 (k ∈ N) such that
there exists a closed walk ui1, i1i2, . . . , i2k−1i2k, i2ku in G starting and ending in u and let
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l(u) =∞ if no such walk exists (i.e. u lies in a bipartite component of G). Then we have
(with the convention 1/∞ = 0)

q∞(G) =
2

maxu∈V l(u)
.

Proof. We assume that G does not have a bipartite component because otherwise the
assertion is true. Observe that

q∞ = min
u∈V

pu

where pu is the optimal value of the linear program

min
‖x‖∞=1
xu=1

max
ij∈E
|xi + xj| = minimise µ s.t.


−µ 6 xi + xj 6 µ (ij ∈ E),

−1 6 xi 6 1 (i ∈ V \ {u}),
xu = 1.

Since pu > 0 for an optimal solution we can assume µ > 0 and divide the constraints by
µ, introduce new variables yi = xi/µ and obtain an equivalent program whose optimum
is 1/pu.

maximise yu s.t.

{
−1 6 yi + yj 6 1 (ij ∈ E)

−yu 6 yi 6 yu (i ∈ V \ {u})
(16)

Consider a closed walk ui1, i1i2, . . . , i2k−1i2k, i2ku of odd length 2k + 1 in G and sum up
the corresponding inequalities in an alternating fashion to obtain

−2k − 1 6 yu + yi1 − yi1 − yi2 + yi2 + yi3 − . . .− yi2k−1
− yi2k + yi2k + yu 6 2k + 1,

in particular we have yu 6 l(u)/2. We show that this inequality can be attained with
equality. For v, w ∈ V let d(v, w) be the usual graph distance (length of shortest v-w
path) and let Si = {v ∈ V : d(u, v) = i}, i > 0, be the i-th level in a breadth first search
tree rooted at u. Recall that a vertex in Si+1 has a neighbour in Si and that any edge in
E has either both endpoints in the same level or connects two consecutive levels. Now
l(u) = 2k0 + 1 where k0 is the smallest integer such that Sk0 contains two vertices v 6= w
with vw ∈ E. We define a feasible vector y by

yv =

{
(−1)i

(
k0 − i+ 1

2

)
if v ∈ Si and i 6 k0,

0, otherwise,

in particular yu = l(u)/2. This y is feasible: for an edge vw we have |yv +yw| ∈ {0, 1/2, 1}
if v ∈ Si and w ∈ Si+1 for some i > 0, |yv + yw| = 1 if v, w ∈ Sk0 and |yv + yw| = 0 if
v, w ∈ Si, i > k0.

Remark. Following the formulation of problem (1) in [4] one also has p = ∞ version
which reads

a∞(G) = min max
ij∈E
|xi − xj| s.t. ‖x‖∞ = 1 and max

i∈V
xi + min

i∈V
xi = 0. (17)
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The optimum value is 2/diam(G) where diam(G) = max{d(s, t) : s, t ∈ V } is the diameter
of G. Similarly as for q∞, one has to solve for every pair of vertices s 6= t a linear program

minimise µ s.t.


−µ 6 xi − xj 6 µ (ij ∈ E),

−1 6 xi 6 1 (i ∈ V ),

xt = 1,

xs = −1,

}
⇔

{
xt + xs = 0,

xt − xs = 2,

which is equivalent to

maximise
1

2
(yt − ys) s.t.


−1 6 yi − yj 6 1 (ij ∈ E),

−yt 6 yi 6 yt (i ∈ V ),

ys + yt = 0,

and whose optimum can be shown to be half the length of a shortest s-t path.

4 Basic properties of the largest eigenvalue

For p > 1 a necessary condition for an x ∈ SVp to yield the minimum (resp. maximum) in
(5) is the existence of a Lagrange multiplier µ such that the eigenequations

1

p
∇xQp(x)i =

∑
j : ij∈E

sign (xi + xj) |xi + xj|p−1 = µ sign (xi) |xi|p−1, i ∈ V, (18)

are satisfied. If a pair (x, µ) ∈ (RV \ {0}) × R satisfies (18) we call x an eigenvector
and µ an eigenvalue of Qp. Then (18) implies p−1x>∇xQp(x) = Qp(x) = µ ‖x‖pp and
hence eigenvalues are non-negative and qp(G) and λp(G) are the smallest, resp. largest
eigenvalues.

We first observe that qp(G) and λp(G) do not increase when passing to subgraphs.

Lemma 7. Let H be a subgraph of G. Then qp(H) 6 qp(G) and λp(H) 6 λp(G).

Proof. Since adding isolated vertices does not affect λp(H) we assume that H = (V, F )
with F ⊆ E. Let x ∈ SVp be a normalised eigenvector for λp(H), then

λp(H) =
∑
ij∈F

|xi + xj|p 6
∑
ij∈E

|xi + xj|p 6 λp(G).

The proof for qp is similar, starting with an eigenvector for qp(G).

The standard basis of RV yields easy bounds for qp(G) and λp(G) in terms of the
maximum and minimum degrees.
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Lemma 8. We have for p > 1,

qp(G) 6 δ(G) and λp(G) > ∆(G)

(δ(G),∆(G) the minimum/maximum degree). If p > 1 equality holds in the former if and
only if G has an isolated vertex and equality in the latter if and only if G has no edges.

The standard basis vector ei (i ∈ V ) of RV is an eigenvector of Qp if and only if di = 0,
that is i is an isolated vertex.

Proof. By definition, qp(G) 6 Qp(ei) = di 6 λp(G). If equality holds in either of the two
then ei is an eigenvector for the eigenvalue di. If di > 0 then i has a neighbour j and the
j-th eigenequation (see (18)) reads 1 = di · 0, and so di = 0.

If G is a connected graph then the signless Laplacian matrix Q is a non-negative,
irreducible, aperiodic matrix. By the Perron-Frobenius Theorem its largest eigenvalue
is simple and a corresponding eigenvector has only strictly positive or only stricly nega-
tive components. The next theorem shows that this property is shared by eigenvectors
corresponding to λp(G).

Theorem 9. Let p > 1, G be connected and x ∈ SVp be an eigenvector for λp(G). Then x
has only stricly positive or only strictly negative components and is unique up to sign.

Proof. Denote by C+, C− and C0 the vertex sets on which xi is > 0, < 0 and = 0,
respectively, and assume without loss of generality that C+ 6= ∅, otherwise consider −x.
Define u = (|xi|, i ∈ V ) ∈ SVp and observe that |xi + xj| 6 ||xi| + |xj|| = |ui + uj|
with equality if and only if xi and xj have the same sign or at least one of them is 0.
Thus E(C+, C−) = ∅ and u is another eigenvector for λp because otherwise we had a
contradiction λp = Qp(x) < Qp(u) 6 λp. Since G is connected there is an edge ab with
a ∈ C+ and b ∈ C0. The b-th eigenequation (see (18)) for the eigenpair (u, λp) then yields
a contradiction

0 < |ua + ub|p−1 6
∑

j : bj∈E

|ub + uj|p−1 = λp sign (ub) |ub|p−1 = 0.

So C0 must be empty. Because G is connected and E(C+, C−) = ∅ it follows that also
C− is empty and C+ = V. As for the uniqueness assume that x, y ∈ SVp are both stricly
positive eigenvectors and define z ∈ SVp by

zi =

(
xpi + ypi

2

)1/p

, i ∈ V.

The triangle inequality for the p-norm (Minkowski’s inequality) yields
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(xi + xj)
p + (yi + yj)

p =

∥∥∥∥( xi
yi

)
+

(
xj
yj

)∥∥∥∥p
p

6

(∥∥∥∥( xi
yi

)∥∥∥∥
p

+

∥∥∥∥( xj
yj

)∥∥∥∥
p

)p

=
(

(xpi + ypi )
1/p +

(
xpj + ypj

)1/p)p
= 2(zi + zj)

p

(19)

and thus 2λp = Qp(x) + Qp(y) 6 2Qp(z) 6 2λp and equality must hold in (19) for every
edge ij ∈ E. Since the p-norm for p > 1 is strictly convex (xi, yi) must be a positive
multiple of (xj, yj) whenever ij ∈ E. Therefore, by connectedness of G, the rank of (x, y)
is one and hence x = y.

Remark: The theorem is false for p = 1. The unit ball is the convex hull of {±ei, i ∈ V }
and so by the convexity of Q1 we have that λ1 = maxi∈V Q1(ei) = ∆, the maximum
degree of G. The solution is neither strictly positive nor is it unique, unless the maximum
degree vertex is unique.

With the positive eigenvector at hand we can prove upper and lower bounds on λp(G)
in terms of vertex degrees.

Lemma 10. Let p > 1, G = (V,E) be connected with maximum vertex degree ∆ and
minimum degree δ. Then

2p−1δ 6 2p−1
2|E|
|V |

6 λp(G) 6 2p−1∆

with equality in either place if and only if G is regular. In particular, the all ones vector
is an eigenvector if and only if G is regular.

Proof. The first ”6“ is trivially true because the minimum degree is less than or equal
to the average degree with equality only for regular graphs. For the second inequality
observe that for the all ones vector 1 we have

λp(G) >
Qp(1)

‖1‖pp
=

2p|E|
n

with equality if and only if 1 is an eigenvector for λp(G). More generally, if 1 is an
eigenvector for some eigenvalue µ then the eigenequations read 2p−1di = µ, i ∈ V (see
(18)). Thus G is regular and µ = 2p−1∆ 6 λp.

For the last inequality let x be the positive eigenvector for λp and assume w.l.o.g.
x1 > x2 > . . . > xn > 0. The first eigenequation reads

λpx
p−1
1 =

∑
j : 1j∈E

|x1 + xj|p−1 6 2p−1xp−11 d1 6 2p−1∆xp−11 .
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If equality holds then d1 = ∆ and xa = x1 for every neighbour a of 1. Then the eigenequa-
tion for a yields 2p−1∆xp−1a 6 2p−1xp−1a da and so da = ∆ and xb = xa for any neighbour
b of a. Continuing in this “breadth first search” fashion shows that G is regular and
x1 = x2 = . . . = xn.

Remark: For p = 1 the upper bound is always attained and equality holds in the lower
bounds if and only if G is regular.

A better upper bound is the following (cf. [2]).

Lemma 11. Let p > 1, q = p/(p− 1) and G be connected. Then

λp(G) 6 2p−1 max
ij∈E

(
dqi + dqj

2

)1/q

with equality if and only if G is regular.

Proof. Let x be a positive eigenvector for λp and choose an edge ij such that xi + xj is
maximal. The i-th eigenequation yields the estimate

λpx
p−1
i =

∑
k : ik∈E

(xi + xk)
p−1 6 di(xi + xj)

p−1. (20)

Take the q-th power on both sides and use the convexity of t 7→ tp to obtain

λqpx
p
i 6 dqi (xi + xj)

p 6 2p−1dqi (x
p
i + xpj). (21)

The same computation for i replaced by j yields λqpx
p
j 6 2p−1dqj(x

p
i + xpj) and adding up

the two yields

λqp(x
p
i + xpj) 6 2p

dqi + dqj
2

(xpi + xpj)

and hence the bound. If the bound and thus (21) hold with equality then xi = xj by
the strict convexity of t 7→ tp and therefore di = dj. From (20) we get xk = xj = xi for
every k with ik ∈ E and we can argue similarly as in the proof of Lemma 10 that G is
regular.

Before we generalise some more known inequalities involving the chromatic number
we make some remarks on odd cycles and complete graphs.

Lemma 12. Let Cn = (V = {1, . . . , n}, E = {12, 23, . . . , (n − 1)n, n1}) be the cycle on
n vertices. The largest eigenvalue is λp(Cn) = 2p. For the smallest eigenvalue we have
qp(Cn) < 1 if n > 4, and qp(C3) 6 1 with equality if and only if p = 2.

Proof. By the regularity of Cn Lemma 10 implies λp(Cn) = 2p. The assertion on qp
is trivially true for even n because then Cn is bipartite and thus qp = 0 by Lemma 3.
Therefore assume that n is odd. Lemma 4 with S = {1, 3, . . . , n−2} and T = {2, 4, . . . , n−
1} yields qp(Cn) 6 2/(n − 1) which is < 1 if n > 5. For n = 3 consider the vector
x = (2,−1,−1). We have Qp(x)/ ‖x‖p = 1. If qp = 1 then the pair (x, 1) must satisfy the

eigenequations (18); the one for the vertex 2 reads (2− 1)p−1 − | − 1− 1|p−1 = −1. This
is satisfied if and only if p = 2.
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Lemma 13. Let n > 2 and Kn be the complete graph on the vertex set {1, . . . , n}.

1. λp(Kn) = 2p−1(n− 1).

2. With ψ(G) defined as in (3) we have ψ(Kn) =

{
n−2
2
, if n is even,

n−1
2
, if n is odd.

3. The number νp(n) :=

{
2p−2(n− 2), if n is even,

2p−2(n− 3) + 1, if n is odd
is an eigenvalue, in particular

we have qp(Kn) 6 νp(n).

4. For the smallest eigenvalue qp(Kn) we have the upper bound

qp(Kn) 6 µp(n) := (n− 2)
(n− 2)p−1 + 2p−1

(n− 1)p−1 + 1
. (22)

Equality holds for n = 2. If p = 2 equality holds for any n > 3. If p < 2 the
inequality is strict for every n > 3. If p > 2 the inequality is strict for n ∈ {3, 4}
and n > 7. If n ∈ {5, 6} there is at most one p = p(n) > 2 for which equality can
hold (p(5) ≈ 3.3618, p(6) ≈ 2.3490).

5. qp(Kn) 6 n− 2 with equality if and only if p = 2.

Proof. 1. This is Lemma 10 because Kn is regular.
2 and 3. Let the vertex set of Kn be denoted by {1, . . . , n} and let k = bn/2c. Observe
that if |S∪T | in (3) is fixed then 2e(S)+2e(T ) = |S|(|S|−1)+ |T |(|T |−1) is minimum for
pairs (S, T ) with ||S| − |T || 6 1. Checking all pairs (S, T ), S ∩ T = ∅, with |S| = m and
|T | ∈ {m,m + 1} and m 6 k it turns out that all pairs with |S| = k = |T | are optimal.
For assertion 3 consider such a pair (S, T ), and the vector x ∈ RV with xi = 1 if i ∈ S,
xi = −1 if i ∈ T, and xi = 0 otherwise and observe that the pair (x, νp(n)) satisfies the
eigenequations (18) for Kn.
4. First observe that ei − ej, i 6= j, is an eigenvector of Qp with eigenvalue µ = n − 2,
regardless of the value of p, and for p = 2 we see by a dimension argument that the only
eigenvalues are q2(Kn) = n− 2 and λ2(Kn) = 2n− 2, the latter afforded by 1.

By evaluating Qp(x)

‖x‖pp
at the vector x = (n−1,−1, . . . ,−1)> we find that µp(n) = Qp(x)

‖x‖pp
>

qp(Kn) and hence the bound (22). Equality holds for p = 2 because µ2(n) = n − 2, and
also for n = 2 because K2 is bipartite and therefore qp(Kn) = 0 = µp(2). For n = 3 we
have µp(3) = 1 > qp(C3) = qp(K3) unless p = 2 by Lemma 12. So from now on we can
assume that n > 4. For equality to hold in (22) it is necessary that the eigenequations
(18) are satisfied for x and λ = µp(n) = qp(Kn). They read in this case

(n− 1)(n− 2)p−1 = λ(n− 1)p−1,

(n− 2)p−1 − (n− 2)2p−1 = −λ.
(23)
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From the first equation it follows that

λ = (n− 2)

(
n− 2

n− 1

)p−2
. (24)

If p < 2 it follows on the one hand that qp(Kn) = λ > n − 2. On the other hand νp(n)
from item 3 is an eigenvalue with νp(n) < n − 2 if n > 4 which is a contradiction. So
µp(n) = qp(Kn) cannot hold for p < 2.

For p > 2 we substitute (24) into the second equation of (23) to obtain the equation

0 = 1 +

(
1

n− 1

)p−2
− 2

(
2

n− 2

)p−2
=: f(p).

If f(p) 6= 0 then the eigenequations cannot hold and consequently (22) is strict. Clearly,
f(2) = 0. For n = 4 we see directly that f(p) < 0 if p > 2. So let n > 5 and observe that
limp→∞ f(p) = 1. The derivative of f with respect to p is

f ′(p) = log

(
(n− 2)2

4

)(
2

n− 2

)p−2
− log(n− 1)

(
1

n− 1

)p−2
.

If n > 7 then 2/(n−2) > 1/(n−1) and (n−2)2/4 > n−1 and therefore we have f ′(p) > 0
on the intervall [2,∞) and f(p) > 0 on (2,∞). If n ∈ {5, 6} observe that f ′(2) < 0 and
that there is a unique r > 2 such that f ′(r) = 0. Consequently, f(r) < 0 and there is a
unique s = s(n) > r with f(s) = 0. In this case x is an eigenvector of Qs and the equality
qs(Kn) = µs(n) could possibly hold.
5. We have already seen that the assertion is true if n = 3 and that for n > 4 we have
νp(n) < n − 2 if p < 2. It remains to show that qp(Kn) < n − 2 if p > 2. We show that
µp(n) < n− 2 or, equivalently,

(n− 2)p−1 + 2p−1

(n− 1)p−1 + 1
< 1 (25)

To that end observe that the function t 7→ f(t) = |t|p−1 is strictly convex if p > 2 and that
we can write 2 = (1−λ)1 +λn

2
and n− 2 = (1−λ)(n− 1) +λn

2
with λ = 2/(n− 2). More

generally let f be strictly convex, a < b and c = (1− λ)a+ λa+b
2

and d = (1− λ)b+ λa+b
2

with 0 < λ 6 1. Then we have f(c) + f(d) 6 (1− λ)(f(a) + f(b)) + 2λf
(
a+b
2

)
and hence

f(c) + f(d)

f(a) + f(b)
6 (1− λ) + λ

2f
(
a+b
2

)
f(a) + f(b)

< (1− λ) + λ = 1.

This yields (25).

The following eigenvalue inequalities are simple generalisations of known ones in the
case p = 2. The proofs carry over almost verbatim and we refer to the original sources.
Wilf’s bound is originally for the adjacency matrix A and true for Q by the relation
λ2(G) > 2µ where µ denotes the largest eigenvalue of A. The proof is not long so we
decided to include it here.
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Proposition 14. Let G = (V,E) be connected, n = |V |, m = |E| and χ = χ(G) be the
chromatic number.

1. 2p−1(χ−1) 6 λp(G) with equality if and only if G is complete or an odd cycle (Wilf ’s
bound [11]).

2. qp(G) 6 2m
n
· χ−2
χ−1 ·

(χ−2)p−1+2p−1

(χ−1)p−1+1
. If p = 2 and G is complete then equality holds [9,

Theorem 2.11].

3. λp(G) − qp(G) > 2p−1(χ − 1) − (χ − 2) (χ−2)
p−1+2p−1

(χ−1)p−1+1
. If p = 2 and G = Kχ equality

holds. Conversely, if equality holds for some p > 1 then G = Kχ is a complete
graph. If p < 2 equality is impossible; likewise if p > 2 and χ /∈ {5, 6}. If χ ∈ {5, 6}
equality can hold for at most one p > 2. [9, Corollary 2.12].

4. Denote by ν(G) the vertex bipartiteness of G, i.e. the minimum cardinality of a set
W ⊆ V such that G[V \W ] is bipartite. Then qp(G) 6 ν(G). [7, Theorem 2.1]

Proof. 1. Remove vertices from G to obtain a χ−critical subgraph H = (V (H), E(H))
(i.e. χ(H) = χ and H − i is χ− 1-colourable for every i ∈ V (H)). Then H is connected
and the minimum degree δ(H) is at least χ − 1. So by Lemmas 10 and 7 we have the
desired bound:

2p−1(χ− 1) 6 2p−1δ(H) 6 λp(H) 6 λp(G).

If equality holds in item 1 then λp(H) = λp(G) and, again by Lemma 10, H is (χ − 1)-
regular and the all ones vector 1 ∈ RV (H) is an eigenvector for λp(H). We show that
V (H) = V. Define x ∈ RV by xi = 1 if i ∈ V (H) and xi = 0 otherwise. Then, in G we get

λp(G) >
Qp(x)

‖x‖pp
=

2p|E(H)|+ cutG(V (H))

|V (H)|
= λp(H) +

cutG(V (H))

|V (H)|
> λp(G)

and so cutG(V (H)) = 0. Connectedness of G implies V = V (H) and thus G is a χ-
chromatic, χ− 1-regular graph. So G is a complete graph or an odd cycle by the theorem
of Brooks [3] which states that χ(G) 6 ∆(G) unless G is complete or an odd cycle.
2. The second assertion is (22) with p = 2. The bound is shown as in [9, Theorem 2.11].
Let V1, . . . , Vχ be the colour classes. For each class Vk define a vector x(k) as

x
(k)
i =

{
χ− 1, if i ∈ Vk
−1 otherwise,

k = 1, . . . , χ.

Evaluate both sides of the inequality qp
∥∥x(k)∥∥p

p
6 Qp(x

(k)) to get

qp((χ− 1)p|Vk|+ n− |Vk|) 6 e(Vk, V \ Vk)(χ− 2)p + e(V \ Vk)2p

= e(Vk, V \ Vk)((χ− 2)p − 2p) + 2pm

where for the second equality we used that Vk is an independent set, i.e. e(Vk) = 0.
Summation of these inequalities over k = 1, . . . , χ gives

qp((χ− 1)pn+ χn− n) 6 2m((χ− 2)p − 2p) + 2pχm
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and thus item 2 after some rearrangements.
3. Here we slightly deviate from [9] but get the same result for p = 2. With item 2 we
have

λp − qp
item 2

> λp −
2m

n
· χ− 2

χ− 1
· (χ− 2)p−1 + 2p−1

(χ− 1)p−1 + 1
Lem. 10

> λp −
λp

2p−1
· χ− 2

χ− 1
· (χ− 2)p−1 + 2p−1

(χ− 1)p−1 + 1
item 1

> 2p−1(χ− 1)− (χ− 2)
(χ− 2)p−1 + 2p−1

(χ− 1)p−1 + 1
.

If equality holds in the last step then G is the complete graph Kn or an odd cycle Cn by
item 1. If G = Cn, n > 5, then the first inequality is strict because the bound in item 2 for
an odd cycle reads qp(Cn) 6 1 and actually qp(Cn) < 1 by Lemma 12. Therefore G = Kχ

and item 2 yields precisely the bound (22) in Lemma 13. This shows the remaining
statements.
4. Let W be a vertex set with |W | = ν(G) such that G[V \ W ] is bipartite and let
S ∪ T = V \ W be a corresponding bipartition. The assertion follows from Lemma 4
because e(S) = e(T ) = 0 and therefore

qp 6
cut(S ∪ T )

|S ∪ T |
=

cut(V \W )

|V \W ||W |
|W | 6 |W | = ν(G).

Remark: In the limit p→ 1 item 1 becomes Brooks’ Theorem. With ψ = ψ(G) defined
in (3) items 2–4 become ψ 6 2m

n
· χ−2
χ−1 , ψ 6 ∆− 1 and ψ 6 ν, respectively.
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