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Abstract

An anagram is a word of the form WP where W is a non-empty word and P
is a permutation of W . We study anagram-free graph colouring and give bounds
on the chromatic number. Alon et al. [Random Structures & Algorithms 2002]
asked whether anagram-free chromatic number is bounded by a function of the
maximum degree. We answer this question in the negative by constructing graphs
with maximum degree 3 and unbounded anagram-free chromatic number. We also
prove upper and lower bounds on the anagram-free chromatic number of trees in
terms of their radius and pathwidth. Finally, we explore extensions to edge colouring
and k-anagram-free colouring.

Mathematics Subject Classifications: 05C15

1 Introduction

A square is a word of the form WW where W is a non-empty word. A word X is square-
free if no subword of X is a square. Much of the study of squares involves avoiding
squares or, equivalently, characterising the set of square-free words. An early result in
this area is the construction, by Thue [22], of arbitrarily long square-free words on three
symbols. More recently, Alon et al. [1] generalized the concept of square-free words to
graph colouring by requiring colourings to avoid square sequences along subpaths of a
graph. A vertex colouring of a graph G is a function f : V (G) → C where C is a set of
colours and V (G) is the vertex set of G. A vertex colouring of a graph G is square-free
if the sequence of colours on each subpath of G is not a square. The square-chromatic
number of a graph G is the minimum number of colours in a square-free colouring of
G. Square-free graph colouring has been extensively studied and is often referred to as

∗Research supported by the Australian Research Council.

the electronic journal of combinatorics 25(2) (2018), #P2.20 1



nonrepetitive colouring [3, 11, 13]. The square-free chromatic number of G is denoted
π(G) and is also known as the Thue number or nonrepetitive chromatic number. With
this notation, Thue’s result is π(P ) 6 3 for every path P .

In this paper we introduce anagram-free graph colouring, which is a topic suggested
for study by Alon et al. [1]. This definition follows naturally from the established notion
of anagrams in combinatorics on words [4]. An anagram is a word of the form W1W2

where W1 is a non-empty word and W2 is a permutation of W1. A word is anagram-free if
it contains no anagram as a subword. An anagram is also called an abelian square and an
anagram-free word is also called an abelian square-free word or a strongly non-repetitive
sequence. Our generalization to graph colouring follows the example set by square-free
colouring. A vertex colouring of a graph G is anagram-free if the sequence of colours on
each subpath of G is not an anagram. The anagram-free chromatic number of G is the
minimum number of colours in an anagram-free colouring of G, denoted by φ(G).

Results analogous to Thue’s exist for anagram-free words. Anagram-free words on
three symbols have length at most 7, for example abcbabc [5]. Kerän [16, 17] constructed
anagram-free words of arbitrary length on four symbols. In the context of anagram-free
graph colouring, Keränen’s result is φ(P ) 6 4 for every path P . Throughout this paper
we prove bounds on φ that demonstrate significant differences in the behaviour of φ and
π. This is somewhat surprising considering the similarity of Keränen’s and Thue’s results.

1.1 Bounding by maximum degree

An area of study central to square-free colouring is bounding π(G) by functions of the
maximum degree, ∆(G). Alon et al. [1] proved a result that implies π(G) 6 c∆(G)2 for
some constant c. Several subsequent works improved the value of c [9, 12, 14] with the
best known value being c = 1+o(1) [8]. Earlier proofs use the Lovász Local Lemma while
the proof in [8] uses entropy compression.

Alon et al. [1] states as an open problem whether φ is bounded by a function of
maximum degree. We answer this question, thus finding the first significant difference
between π and φ. We prove that, unlike π, no function of maximum degree is an upper
bound on φ.

Theorem 1. Graphs of maximum degree 3 have unbounded anagram-free chromatic num-
ber.

Theorem 1 complements the result of Richmond and Shallit [19] regarding enumeration
of anagrams. They counted anagrams with the aim of using the Lovász Local Lemma to
prove that φ is bounded on paths. They concluded that the probability that a random
word is an anagram is too large for this approach. A proof using the Lovász Local Lemma
that φ is bounded on paths would likely apply to graphs of maximum degree 3, which
Theorem 1 shows is impossible.

We also consider variations of square-free colouring and apply them to anagram-free
colouring. An edge colouring of a graph is an assignment of colours to the edges of
the graph. An edge colouring of G is square-free if every subpath of G has a square-
free colour sequence along its edges. Alon et al. [1] defined the square-chromatic index,
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denoted π′(G), as the minimum number of colours in a square-free edge colouring of
G. We define anagram-free edge colouring similarly. An edge colouring of a graph G is
anagram-free if every subpath of G has an anagram-free colour sequence along its edges.
The corresponding anagram-free chromatic index is denoted φ′(G).

The obvious bound, φ′(G) > ∆(G), follows from the observation that edges incident
to a common vertex receive distinct colours in an anagram-free edge colouring. We prove
a significant improvement on this bound with the following result.

Theorem 2. Trees of maximum degree 3 have unbounded anagram-free chromatic index.

Theorem 2 is for a more restricted class of graphs than Theorem 1, so Theorem 2 says
more about φ′ than Theorem 1 does about φ. The degree bound of 3 in Theorems 1 and
2 is best possible since φ(P ) 6 4 for all paths P , which implies φ(C) 6 5 for all cycles
C. Indeed, to anagram-free 5-colour a cycle assign one vertex a unique colour and then
anagram-free 4-colour the remaining vertices. The proof that φ′(C) 6 5 is analogous.
Whether this bound can be improved to 4 is an open problem. The analogous problem
for square-free colouring was solved by Currie [6], who showed that π(C) 6 3 for every
cycle with the exception of order 5, 7, 9, 10, 14 and 17.

1.2 Bounding φ with given radius or pathwidth

Our initial bounds for φ and φ′ motivate further study of φ for trees. First, note that
Brešar [2] proved that π(T ) 6 4 for every tree T . In contrast, we prove the following:

Theorem 3. Trees have unbounded anagram-free chromatic number.

We also study φ for trees as a function of radius. The radius of a tree T is the
minimum, taken over all vertices v in T , of the maximum distance of a vertex from v.
Such a vertex v is called a centre of T . We obtain the following tight bound on φ as a
function of radius.

Theorem 4. Every tree T of radius h has φ(T ) 6 h+ 1. Moreover, for every h > 0 there
is a tree T of radius h such that φ(T ) > h.

The bound in Theorem 4 is poor for paths since the radius of a path is roughly half
its length. To address this, we prove a bound on φ for trees that is bounded for paths. To
do so we use pathwidth, which is a well studied parameter in square-free colouring [10, 8]
as well as more generally. Let pw(T ) denote the pathwidth of a tree T .

Theorem 5. For every tree T , φ(T ) 6 4 pw(T ) + 1. Moreover, for every p > 0 there is
a tree T such that φ(T ) > p > pw(T ).

Note that since every tree T on n vertices has pathwidth O(log n), Theorem 5 implies
that φ(T ) 6 O(log n). It is open whether φ(G) 6 5 for graphs of pathwidth 1 because
not all trees of pathwidth 1 are paths.
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1.3 k-anagram-free colouring

We also consider the k-power generalisation of square-free colouring and apply it to
anagram-free colouring. A k-power is a word W k where W is a non-empty word, for
k > 2. In this setting a square is a 2-power. A k-power-free colouring is a colouring
avoiding paths with k-power colour sequences. This definition can be applied for vertex
or edge colouring. The corresponding k-power-free chromatic number is πk(G) and the
k-power-free chromatic index is π′k(G) [11].

In this paper, we introduce k-anagram-free colouring. k-anagrams, often called abelian
k-powers, are an established object of study in combinatorics on words [7]. An k-anagram
is a word W1W2 . . .Wk where each Wi is a permutation of a non-empty word W , for k > 2.
A colouring of a graph G is k-anagram-free if the sequence of colours on each subpath of
G is not a k-anagram. We apply this definition to both vertex and edge colourings. The
corresponding k-anagram-free chromatic number is denoted by φk(G) and the k-anagram-
free chromatic index is denoted by φ′k(G).

Every k-anagram contains an (k− 1)-anagram so a k-anagram-free colouring it is also
(k + 1)-anagram-free. Thus, for every graph G,

φ(G) = φ2(G) > φ3(G) > φ4(G) > · · · (1)

with an analogous expression for φ′k. Therefore we can immediately apply upper bounds
for φ and φ′ to φk and φ′k respectively. With this in mind we first study lower bounds of
φk and φ′k and start by studying bounds as a function of maximum degree. We prove the
following generalisation of Theorem 1.

Theorem 6. For k > 2, k-anagram-free chromatic number is unbounded on graphs of
maximum degree k + 1.

Theorem 1 is implied by Theorem 6 with k = 2. Note that the degree bound in
Theorem 6 depends on k and it is open whether such a result holds for a degree bound
independent of k. We also investigate upper bounds for k-anagram-free colouring and
prove the following contrasting result.

Theorem 7. If k > 4 then φk(T ) 6 4 and φ′k(T ) 6 4 for every tree T .

This result is somewhat surprising given Theorems 1 and 3 which say that φ2 and φ′2
are unbounded on trees. Theorem 7 leaves a gap at k = 3, which motivates the question
of whether φ3 and φ′3 are bounded on trees. We have upper bounds for φ3 on trees, in
terms of radius and pathwidth, due to Equation (1) and Theorems 4 and 5. We prove a
similar upper bound for φ′3 in the following theorem.

Theorem 8. For every tree T , φ′3(T ) 6 4 pw(T ).

These bounds for φ3 and φ′3 depend on pathwidth or radius. The question of whether
φ3 and φ′3 are bounded on trees is an open problem.

We also give tighter bounds than those in Theorem 7 for larger values of k. We
improve the bound to 3 for k > 6 and to 2 for k > 8 by using results on 3-anagram-free
and 4-anagram-free words [7].
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2 Lower Bounds

In this section we prove lower bounds for φ and φ′. Most of these bounds depend upon
counting the occurrence of colours in each half of a path, which motivates the following
definition. A colour multiset of size n on c colours is a multiset of size n with entries from
[c] where [c] := {1, 2, . . . , c}. LetMn,c be the set of colour multisets of size n on c colours.
Note that |Mn,c| equals the number of ways to place n unlabelled balls in c labelled boxes,
which is well known to equal

(
n+c−1
c−1

)
; see [20, Section 1.9]. We give a weaker bound by

noting that the number of occurrences of each colour is in {0, 1, . . . , n}, therefore

|Mn,c| 6 (n+ 1)c. (2)

This simple bound suffices for our needs because we only require that, once c is fixed,
|Mn,c| is bounded by a polynomial in n. For a coloured graph G, let M(G) be the multiset
of colours that occur in G and call M(G) the colour multiset of G. A c-colouring of a
graph G is a colouring of G, either for vertices or edges, where the colour set has size c.
Note that if G is vertex c-coloured then M(G) ∈ M|V (G)|,c, and if G is edge c-coloured
then M(G) ∈ M|E(G)|,c. We intentionally allow the definition to apply to edge or vertex
colouring and in each case the usage will be clear from the context.

The function M is useful for the analysis of anagram-free colouring. Note that a vertex
coloured path v1, . . . , v2i is an anagram if and only if

M(v1, . . . , vi) = M(vi+1, . . . , v2i).

Similarly, for i > 1, an edge coloured path v1, . . . , v2i+1 is an anagram if and only if

M(v1v2, . . . , vivi+1) = M(vi+1vi+2, . . . , v2iv2i+1).

The indices in these equations highlight a distinction between φ and φ′. In a vertex
colouring only the paths of even order can be anagrams. However, in an edge colouring
only the paths of even length can be anagrams.

2.1 Edge colouring

We start with the proof of Theorem 2, which says that φ′ is unbounded on trees of
maximum degree 3. The proof uses the fact that the number of leaves in a complete
binary tree grows exponentially with height while, for fixed c, |Mn,c| is bounded by a
polynomial in n. We then associate colour multisets to leaves and show that the tree
contains an anagram if two leaves share a colour multiset. A complete binary tree is a
rooted tree such that every non-leaf vertex has two children and the leaves have equal
distance to the root.

Theorem 2. Trees of maximum degree 3 have unbounded anagram-free chromatic index.

Proof. Fix c > 1 and choose h ∈ Z+ so that 2h > (h+ 1)c. Let T be the rooted complete
binary tree of height h with root vertex r. Fix an arbitrary edge c-colouring of T . By our
choice of h and Equation (2)

#leaves = 2h > (h+ 1)c > |Mh,c|.
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Since each root-to-leaf path in T has h edges, the number of leaves in T is greater than
the number of distinct colour multisets on root-to-leaf paths in T . Therefore there are two
leaves, p and q, such that M(P ) = M(Q) where P is the rp-path and Q is the rq-path.
As illustrated in Figure 1.

p q

Figure 1: The complete binary tree of height 4 with an edge 3-colouring. The leaves p
and q have the same associated colour multiset so the pq-path is an anagram.

Let v be the least common ancestor of p and q. Split these paths into three disjoint
parts by defining R as the rv-path, P ′ as the vp-path and Q′ as the vq-path. Note that
E(R) is exactly the set of edges shared by P and Q. Therefore

M(P ) = M(P ′) ∪M(R) and M(Q) = M(Q′) ∪M(R).

Thus M(P ′) = M(Q′). Finally, note that P ′∪Q′ is a path and so T contains an anagram.

2.2 Vertex colouring

Using the line graph construction, φ is unbounded on graphs of maximum degree 4 as a
corollary of Theorem 2. The line graph of a graph G, denoted L(G), is the graph with
V (L(G)) = E(G) and an edge between vertices of L(G) which are incident to a common
vertex in G. It is well known that for ordinary graph colouring χ′(G) = χ(L(G)). We have
a similar relation for anagram-free colouring, however, equality does necessarily not hold.
Line graphs satisfy φ′(G) 6 φ(L(G)) because every paths edge sequence G correspond
to a path L(G). Theorem 2 says φ′ is unbounded for trees of maximum degree 3 and,
for these trees, L(T ) has maximum degree at most 4. Also, as we have just shown,
φ′(T ) 6 φ(L(T )). Therefore φ is unbounded on graphs of maximum degree 4. Keränen’s
result [16] implies φ(G) 6 5 for graphs of maximum degree 2, thus there is a gap which
motivates study of φ on graphs of maximum degree 3.

We prove Theorem 1, that φ is unbounded on graphs of maximum degree 3, with a
method similar to the proof of Theorem 2. We construct a graph with an exponential
number of leaves, associate each leaf to a colour multiset and show that the graph contains
an anagram if two leaves share a colour multiset.
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Theorem 1. Graphs of maximum degree 3 have unbounded anagram-free chromatic num-
ber.

Proof. Let c > 1 and let h ∈ Z+ be odd such that 2(h+1)/2 > (h+2)c. Let T be the rooted
tree, with root r, such that:

• vertices of depth h are leaves,

• vertices of even depth have two children,

• non-leaf vertices of odd depth have one child,

where the depth of a vertex is its distance from the root. Let G be the graph obtained
from T by adding an edge between every pair of vertices in T that share a parent, as
illustrated in Figure 2.

p q

Figure 2: The graph G with h = 5, a vertex 3-colouring. Vertces p and q have the same
colour multiset so the pq-path is an anagram.

Fix an arbitrary c-colouring of G. We now show that G contains an anagram. By
Equation (2) and our choice of h,

#leaves of T = 2(h+1)/2 > (h+ 2)c > |Mh+1,c|.

So, because each root-to-leaf path in T has h + 1 vertices, the number of leaves in T is
greater than the number of distinct colour multisets on root-to-leaf paths in T . Therefore
there are two leaves, p and q in T , such that M(P ) = M(Q) where P and Q are the
rp-path in T and rq-path in T respectively. Split the two paths into three vertex-disjoint
paths R = P ∩Q, P ′ = P − V (R) and Q′ = Q− V (R). Note that

M(P ) = M(P ′) ∪M(R) and M(Q) = M(Q′) ∪M(R).

Thus M(P ′) = M(Q′). By construction, G [V (P ′) ∪ V (Q′)] is a path. Therefore G
contains an anagram.

Theorem 1 only proves that φ is unbounded on graphs of maximum degree 3 without
further reference to their structure. We prove below that φ is unbounded on trees. A
particularly interesting question is whether there is a result analogous to Theorem 2: is
φ bounded on trees of maximum degree 3? This motivates further investigation of φ on
trees.
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2.3 Vertex colouring trees

We now prove lower bounds for anagram-free vertex colourings of trees. These bounds
follow from the following theorem. The complete d-ary tree of height h is the rooted tree
such that every internal vertex has d children and all leaves are of distance h from the
root.

Theorem 9. The complete d-ary tree of height h does not have an anagram-free c-
colouring when dc 6 (d/c)h.

Proof. Let T be the complete d-ary tree of height h with root r. Let L be the leaves of T
and fix an arbitrary c-colouring of T .

For each v ∈ L let Sv be the sequence of colours on the rv-path. There are at most
ch such colour sequences since each has length h+ 1 and they share an initial colour (the
colour of the root). Since |L| = dh there is a set C ⊆ L of size at least dh/ch such that
Sv = Sw for all v, w ∈ C. Thus C is a large set of leaves that have equal colour sequence
on each root-to-leaf path. As illistrated in Figure 3.

Let R be the subtree of T induced by the set of all ancestors of leaves in C. The
remainder of the proof is concerned with finding an anagram in R. Observe that if two
vertices of R have the same depth, then they also have the same colour. Define a level as
a maximal set of vertices in R that all have equal depth. R is coloured by level. Denote
the levels l0, l1, . . . , lh where l0 = {r}.

h

r

C

Figure 3: The complete d-ary tree of height h with a large set C of leaves which have the
same root-to-leaf path colour sequence.

A level of R is bad if every vertex in the level has exactly one child in R. A level is
good if it is not bad. Note that only level lh contains vertices with no children. Let g be
the number of good levels and b be the number of bad levels. Then h + 1 = g + b. We
now prove that there are at least c + 1 good levels and so at least two good levels share
a colour.
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We bound the number of bad levels by considering the number of good levels required
to obtain at least (d/c)h leaves. If li is bad then |li| = |li+1| and if li is good then
|li| < |li+1| 6 d|li|.

|li| 6 d#preceding good levels

since lh is the final good level, it is preceded by g − 1 good levels. Thus

(d/c)h 6 |lh| 6 dg−1

By assumption, dc+1 6 dh+1c−h which is at most dg. Thus c+ 1 6 g, there are two good
levels with the same colour.

Let la and lb be two good levels that have the same colour and, without loss of gener-
ality, let a < b. Let v ∈ la be a vertex with at least two children. All vertices in the levels
between la and lb have at least one child so there are two vertices u,w ∈ B such that v is
their least common ancestor.

Let p0, p1, . . . , pn be the uv-path and q0, q1, . . . , qn be the wv-path. Since R is coloured
by level,

M(p0, p1, . . . , pn) = M(q0, q1, . . . , qn).

Vertices p0 and qn are in levels la and lb respectively so they have the same colour. Thus

M(p1, p2, . . . , pn) = M(q0, q1, . . . , qn−1).

Therefore p0, p1, . . . , pn−1, pn, qn−1, . . . , q1 is an anagram.

Theorem 9 implies Theorem 3, that φ is unbounded on trees, but it has uses beyond
this result because it gives us control over the radius and maximum degree of the resulting
trees. In particular, it implies the following two theorems each of which correspond to an
extreme of radius or maximum degree.

Theorem 10. For every integer h > 2 the complete (h − 1)h-ary tree of height h has
φ(T ) > h.

Proof. Let h := c+ 1 and d := cc+1. The conditions of Theorem 9 are satisfied because

dc = cc(c+1) =
(
cc(c+1)cc+1

)
c−(c+1) = dc+1c−(c+1) = (d/c)h.

Therefore the complete cc+1-ary tree of height c + 1 does not have an anagram-free c-
colouring.

Theorem 11. For every integer d′ > 1 there exists a tree T with maximum degree d′ such
that φ(T ) > d′ − 1.

Proof. Fix c and choose h so that

(c+ 1)c 6

(
1 +

1

c

)h

=

(
c+ 1

c

)h

.

Thus Theorem 9 is satisfied with d = c + 1. Therefore the complete (c + 1)-ary tree
of height h does not have an anagram-free c-colouring. This tree has maximum degree
d′ = c+ 2 and so φ(T ) > c+ 1 = d′ − 1.
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3 Upper bounds for φ on trees

In this section we complement the results of the previous section with some upper bounds
for φ on trees. Our first bound comes from centred colouring. A vertex colouring of a
graph G is centred if every subtree T of G contains a vertex whose colour appears exactly
once in T . Centred colourings are anagram-free since every anagram contains an even
number of occurrences of each colour and in a centred colouring every path contains a
colour that occurs exactly once. Therefore, for every graph G, the centred chromatic
number of G is an upper bound on φ(G). It is easily seen that every tree T of radius h
has centred chromatic number at most h + 1, see [18, Section 6.5], thus φ(T ) 6 h + 1.
This bound completes the first half of Theorem 4 and is attained by colouring each vertex
by its distance from a centre of T . The second half of Theorem 4 follows from Theorem
10 and an inspection of the trees of radius 0 or 1.

We now work towards proving Theorem 5, which bounds φ by a function of pathwidth.
While pathwidth is defined in terms of path decompositions, the only property we require
is the following lemma.

Lemma 12 ([21] Lemma 5). Every tree T with at least one edge contains a path P such
pw(T − V (P )) 6 pw(T )− 1.

We also require two trivial properties of pathwidth. The first is that edgeless graphs
have pathwidth 0 and the second is that the pathwidth of a disconnected graph is the
maximum pathwidth over each of its components.

Theorem 13. Every tree of pathwidth m has an anagram-free vertex (4m+ 1)-colouring.

Proof. The proof is an induction on m. The base case holds because every tree T of
pathwidth 0 is edgeless and thus anagram-free 1-colourable. Now assume that every tree
with pathwidth p 6 m is anagram-free vertex (4p+ 1)-colourable.

Let T be a tree of pathwidth m + 1. By Lemma 12, there exists a path P ⊆ T such
that pw(T − V (P )) 6 m. Each component of T − V (P ) has pathwidth at most m. By
induction we may anagram-free colour each component of T − V (P ) with a common set
of 4m+ 1 colours. Then use four additional colours to anagram-free colour P , by [17].

We now show that this colouring is anagram-free. Let Q be a path in T . If Q is
entirely contained within a component of T − V (P ), then by induction, Q is not an
anagram. Otherwise, Q intersects P . The intersection of Q and P is an anagram-free
subpath of P and the colours in Q ∩ P occur nowhere else in Q. Therefore Q is not an
anagram.

We now use Theorems 13 and 10 to prove Theorem 5.

Theorem 5. For every tree T , φ(T ) 6 4 pw(T ) + 1. Moreover, for every p > 0 there is
a tree T such that φ(T ) > p > pw(T ).

Proof. The first part follows directly from Theorem 13. For the second part it is well
known, and easily proved, that the pathwidth of a tree is at most its radius. Therefore,
by Theorem 10, there exists a tree T with φ(T ) > p > pw(T ) for all p > 2. For the
remaining cases use the path of order 2 for p = 1 and the empty graph for p = 0.
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The main open problem that arises from the above results is whether φ is bounded
for trees of maximum degree 3. The complete binary tree of height h is the key example.
Centred colourings provides a trivial upper bound of h + 1 (Theorem 4). We now give
a non-trivial colouring of the complete binary tree to demonstrate that the bound from
centred colouring is not best possible.

Theorem 14. If T is the complete binary tree of height h, then

φ(T ) 6
h

2
+

1

2
log2(h+ 1) + 1. (3)

Proof. We proceed by induction on h. The base case is satisfied as follows:

φ(singleton vertex) = 1 6
0

2
+

1

2
log2(0 + 1) + 1 = 1.

Now assume the result holds up to h− 1. Let T be the complete binary tree of height
h with root r. Let t := 2

⌊
h+2
4

⌋
and Tt ⊆ T be the complete binary tree of height t with

root r. Tt is the top half of T , which we colour directly. Let b := h − t − 1, this is the
height of each subtree which will be coloured by induction. Colour Tt as follows:

• All vertices with even depth receive the same colour. Call this colour c.

• Each odd level is allocated distinct set of two colours. Vertices of odd depth are
coloured with one of the two colours allocated to their level, so that each vertex
receives a colour different from their sibling.

Note that the leaves of Tt have even depth so have colour c. This colouring is shown for
h = 8 in Figure 4.

1

32

1111

54545454

1111111111111111

t = 4

b = 3

{3, 5, 6} {2, 4, 6}

Figure 4: Schematic of colouring the complete binary tree with h = 8. The set of colours
on shown subtrees of height b are shown below the trees.

Colour each remaining subtree of T by induction, avoiding colours that occur on their
ancestors in Tt.
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Claim 15. This colouring of T is anagram-free.

Proof. Let P be a path in T with even order at least 2. Let u be the shallowest vertex in
P . If u /∈ V (Tt) then, by induction, P is not an anagram. Now consider the case where
u ∈ V (Tt). If u has odd depth then its colour is unique in P . Indeed, in Tt the colour of u
only occurs in the level of u and in T −V (Tt) the ancestors of u avoid its colour. Similarly,
if u has even depth and u is an endpoint of P then the child of u in P is uniquely coloured
in P .

The remainder of the proof is concerned with the case where u ∈ V (Tt), u has even
depth and neither endpoint of P is u. Let x1, x2 ∈ V (P ) be the endpoints of P and let
v1, v2 ∈ V (P ) be the children of u such that vi is an ancestor of xi for i ∈ [2]. If both
x1, x2 /∈ V (Tt) then v1 (and indeed v2) is uniquely coloured in P . In the remaining cases
at least one of x1 and x2 are in V (Tt).

Without loss of generality let x1 ∈ V (Tt). If x2 /∈ V (Tt) then x1 is uniquely coloured
in P . If x2 ∈ V (Tt) then the colour c occurs an odd number of times in P . Indeed, u has
colour c and x1, x2 ∈ V (Tt) implies that both the v1x1-path and the v2x2-path contain
the same number of vertices with colour c.

To complete the proof we show that this colouring satisfies Equation (3). Our colouring
of Tt uses t+ 1 colours as the even levels share a colour and there are t

2
odd levels which

each use 2 colours.
Let v be a child of a leaf of Tt and Tb be the subtree of T rooted at v. Recall that

colours on the vr-path do not occur in Tb. The number of distinct colours on the vr-path
is t

2
+ 1 because the path contains t + 1 vertices and t

2
+ 1 of them have even depth so

share colour c. Therefore the colouring of Tb can reuse t
2

of the colours used to colour Tt.
So our colouring of T requires φ(Tb)− t

2
colours in addition to those used to colour Tt. So

φ(T ) 6 t+ 1 +

(
φ(Tb)−

t

2

)
=
t

2
+ 1 + φ (Th−t−1) .

By induction, since Tb is a complete binary tree of height h− t− 1,

φ(T ) 6
t

2
+ 1 +

(
h− t− 1

2
+

1

2
log2 (h− t) + 1

)
=
h

2
+

1

2
+

1

2
log2 (h− t) + 1

=
h

2
+

1

2
+

1

2
log2

(
h− 2

⌊
h+ 2

4

⌋)
+ 1

6
h

2
+

1

2
+

1

2
log2

(
h− h− 1

2

)
+ 1

=
h

2
+

1

2
+

1

2
log2

(
h+ 1

2

)
+ 1

=
h

2
+

1

2
log2 (h+ 1) + 1.
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4 k-anagram-free colourings

Recall that a k-anagram consists of k independently permuted copies of a word. In terms
of colour multisets, a word W1W2 . . .Wk is a k-anagram if for i, j ∈ [k],

M(Wi) = M(Wj).

We defined k-anagram-free colouring as a generalisation of anagram-free colouring.
Recall that φk(G) and φ′k(G) are the k-anagram-free chromatic number and index respec-
tively. In this section we show that φk is unbounded on graphs of maximum degree k+ 1
and that φ4 and φ′4 are bounded on trees. The first result is a generalisation of Theorem
1, that φ is unbounded on graphs of maximum degree 3. The second result contrasts with
Theorems 2 and 3 because it shows a shift in behaviour from unbounded to bounded as
k increases.

4.1 Lower bounds

We now prove Theorem 6, which says that φk is not bounded by a function of maximum
degree. The method is similar to that used in Theorem 1 to prove φ is not bounded by
maximum degree. For each k and c we recursively construct a graph G such that every
c-colouring of G contains a k-anagram. The proof generalises the k = 2 case in the sense
that Theorem 1 is implied by Theorem 6.

Theorem 6. For k > 2, the k-anagram-free chromatic number is unbounded on graphs
of maximum degree k + 1.

Proof. Let S(t) be the statement that there exists a graph G with ∆(G) 6 k + 1 and
special vertices u and v with deg(u) = deg(v) = 1 such that for every vertex colouring of
G at least one of the following holds:

• G contains a k-anagram, or

• |D| >
(

k
k−1

)t
, where D is the set of colour multisets on uv-paths with length 4t.

Claim 16. S(t) is true for all t > 1.

Proof. We proceed by induction on t. First we prove S(1). Let G be the graph obtained
from a path P of order k by adding vertices a and b, each adjacent to every vertex in
P . Add vertices u and v to G as well as edges ua and vb. Note that G satisfies the
degree requirements of S(1). Fix a colouring of G. If P is monochromatic then it is a k-
anagram. If P is not monochromatic, then there are two paths u, a, p1, b, v and u, a, p2, b, v
with distinct colour multisets. Therefore |D| > 2 > k

k−1 and so S(1) is true. This graph
is shown in Figure 5 for k = 4.

Assume S(t) is true for some t > 1. Let G1, . . . , Gk be copies of the graph guaranteed
to exist by S(t). Denote the two special vertices of Gi by ui and vi. Let G be the
graph with V (G) = {u, v, a, b} and E(G) = {ua, vb}. Add G1, . . . , Gk to G as disjoint
components. Finally, add the following edges to G:
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u a b v

Figure 5: A graph satisfying S(1) for
k = 4.

u a b v

u1

u2

u3

u4

v1

v2

v3

v4

G1

G2

G3

G4

Figure 6: A graph satisfying S(t) for
k = 4. G1, G2, G3 and G4 are graphs
satisfying S(t − 1). Vertices vi and ui
are the special vertices of degree 1 in Gi.

1. uia for all i ∈ [k].

2. vib for all i ∈ [k].

3. uiui+1 for all even i ∈ [k − 1].

4. vivi+1 for all odd i ∈ [k − 1].

This construction is shown in Figure 6 for k = 4.
First we show that G satisfies the degree requirements of S(t+ 1). Clearly, deg(u) =

deg(v) = 1 and deg(a) = deg(b) = k+1. Each ui has degree 1 in Gi so deg(ui) 6 3 6 k+1.
Similarly, deg(vi) 6 3 6 k+ 1. Every other vertex has the same degree as in Gi, which is
at most k + 1.

Now fix a colouring of G. If some Gi contains a k-anagram then S(t + 1) is satisfied
so assume that each Gi is k-anagram-free. Let Di be the set of colour multisets on paths
of length 4t in Gi with endpoints ui and vi. By S(t), we have |Di| > (k/(k − 1))t for all
i ∈ [k]. We now split the proof into two cases.

In the first case there exists a colour multiset M such that M ∈ Di for all i ∈ [k]. This
means that each Gi contains a uivi-path Pi with M(Pi) = M . Type (iii) and (iv) edges
between special vertices ofGi andGi+1 mean that the subgraph induced by P1∪P2∪. . .∪Pk

is a path. This path is a k-anagram and so the colouring satisfies S(t+ 1).
In the second case there is no colour multiset that occurs in every Di. Define the

union of colour multisets as U :=
⋃

i∈[k]Di. For a colour multiset M ∈ U let f(M) be the

number of sets from {D1, . . . , Dk} that contain M . No colour multiset occurs in every Di

so f(M) 6 k − 1 and therefore

|U|(k − 1) >
∑
M∈U

f(M) =
∑
i∈[k]

|Di| > k

(
k

k − 1

)t

Thus |U| >
(

k
k−1

)t+1
. There is a bijection from U to D because every uv-path of length

4t+ 4 shares vertices a, b, u and v. Therefore |D| = |U| and so S(t+ 1) is satisfied.
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Let c > 1 be a number of colours and let t be sufficiently large so that(
k

k − 1

)t

> (4t+ 2)c.

Let G be the graph guaranteed to exist by S(t) and fix an arbitrary c-colouring of G. Let
D be the set of colour multisets as defined previously. By (2) there are at most (4t+ 2)c

colour multisets of size 4t + 1. Therefore |D| 6 (4t + 2)c <
(

k
k−1

)t
. Thus G contains a

k-anagram by S(t).

The following natural question arises: Does there exist a d such that φk is unbounded
on graphs of maximum degree d for all k > 3? Also, the analogous problem for edge
colouring is open. We know of no family of graphs for which φ′k is unbounded, except in
the case of k = 2.

4.2 Upper bounds on trees

In this section we prove an upper bound on k-anagram-free colouring that contrasts with
the results for anagram-free colouring.

Theorem 7. If T is a tree and k > 4 then φk(T ) 6 4 and φ′k(T ) 6 4.

Proof. Root T at an arbitrary vertex r ∈ V (T ) and let h be the height of the resulting
rooted tree. Let C = co . . . ch be an anagram-free word on four symbols. Colour each
vertex u ∈ V (T ) by cx where x is the distance between u and r.

Let P = P1 . . . Pk be a path in T such that, for some n > 1, |V (Pi)| = n for all i ∈ [k].
Note that P is a k-anagram if and only if M(P1) = M(P2) = · · · = M(Pk). We now show
that P is not a k-anagram.

P contains a unique vertex v closest to r. If v ∈ V (Pi) with i > 3 then the colour
sequence along P1 ∪ P2 appears in C, so M(P1) 6= M(P2). In the other case, v ∈ V (Pi)
with i 6 2. Then the colour sequence along P3 ∪ P4 appears in C, so M(P3) 6= M(P4).
In each case, P is not a k-anagram. Hence φk(T ) 6 4.

The proof can be repeated for φ′k by modifying the definition of P . In this case P has
length nk and its subpaths P1, P2, . . . , Pk are edge-disjoint such that P is a k-anagram if
and only if M(P1) = M(P2) = · · · = M(Pk).

Theorem 7 demonstrates a qualitative change in behaviour as k increases. The case
of k = 3 is an open problem that sits between bounded and unbounded behaviour. For
φ3 on trees we have upper bounds due to Equation (1) and Theorems 4 and 5. We prove
similar upper bounds for φ′3 using Dekking’s [7] result φ3(P ) = 3.

Theorem 8. For every tree T , φ′3(T ) 6 4 pw(T ).

Proof. The proof is by induction on m. The base case is satisfied because trees of path-
width 0 are edgeless. Now assume that every tree T with pathwidth at most m has
φ′3(T ) 6 4m.
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Let T be a tree of pathwidth m + 1. By Lemma 12 there exists a path P ⊆ T such
that pw(T −V (P )) 6 m. Each component of T −V (P ) has pathwidth at most m, so can
be 3-anagram-free edge-coloured with the same set of 4m colours, by induction. We now
use four additional colours to colour the remaining edges. Dekking [7] proves φ3(P ) = 3
so we can 3-anagram-free edge-colour P with three colours. The fourth extra colour is
used to colour the edges between P and T − V (P ).

We now show that this colouring is 3-anagram-free. Let Q be a path in T . If Q
is entirely contained within a component of T − V (P ) then, by induction, Q is not a
3-anagram. Otherwise Q intersects P . The intersection of Q and P is a 3-anagram-free
subpath of P and the colours in Q ∩ P occur nowhere else in Q. Therefore Q is not a
3-anagram.

Note that no similar bound exists for φ′2 because stars have pathwidth 1 and φ′2 is
unbounded on stars. A bound on φ′3(T ) as a function of radius follows from the relation
between pathwidth and radius in trees. Note that since φ3(P ) 6 3 we are also able to
prove that φ3(T ) 6 3 pw(T ) + 1 with a proof similar to the proof of Theorem 13.

Dekking also proves φ4(P ) = 2 and we use both results to improve upon Theorem 7
for larger k.

Theorem 17. For all z > 1 and k > 2z, if φz(P ) 6 y for all paths P then φk(T ) 6 y for
all trees T .

Proof. Let T be a tree with root r and height h. Let C = co . . . ch be a z-anagram-free
word on y symbols. Colour each vertex u ∈ V (T ) by cx where x is the distance between
u and r.

Let P = P1 . . . Pk be a path in T such that |V (Pi)| = n for some n > 1. Note that P
is a k-anagram if and only if M(P1) = M(P2) = · · · = M(Pk). We now show that P is
not a k-anagram.

P contains a unique vertex v closest to r. If v ∈ V (Pi) with i > z then the colour
sequence along P1 ∪ P2 ∪ . . . ∪ Pz appears in C. In the other case, v ∈ V (Pi) with i 6 z,
which implies the colour sequence along Pz+1∪Pz+2∪ . . .∪P2z appears in C. In each case
there exist a, b such that M(Pa) 6= M(Pb) because C is z-anagram-free. Therefore P is
not a k-anagram.

Dekking [7] proves φ3(P ) = 3 and φ4(P ) = 2, so Theorem 17 implies φ6(T ) 6 3 and
φ8(T ) 6 2. The corresponding results for edge colouring, φ′6(T ) 6 3 and φ′8(T ) 6 2, are
achieved with modifications similar to those at the end of Theorem 7.

5 Open Problems

Throughout this paper we have posed many conjectures and open problems. In this
section we provide a summary as well as some further questions.

The results of Sections 2 and 3 motivate further study of φ on trees. Whether φ
is bounded on the complete binary tree is a particularly interesting question. We also
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conjecture the result analogous to [6], that φ(C) 6 4 for cycles with only finitely many
exceptions. The tight bounds given in Theorems 4 and 5 motivate further investigation of
pathwidth and radius. We ask whether pathwidth is tied to φ on trees, that is, whether
there exists a functionf such that pw(T ) 6 f(φ(T )) for every tree T . Pathwidth is
unbounded on complete binary trees so the two questions are related.

Section 4 contains two open problems. The first is whether φ′k is bounded by maximum
degree for some k > 3. The second is whether φ3 and φ′3 are bounded on trees.
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Note

At the same time as the present paper was completed, Kamčev,  Luczak, and Sudakov [15]
posted a paper on the arXiv that independently introduces anagram-free graph colouring.
Each paper independently proves some of the results in the other paper. Note that
Kamčev,  Luczak, and Sudakov proved that φ is unbounded on complete binary trees,
thus solving the above-mentioned open problem.
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