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Abstract

Let H = (V, E) be an r-uniform hypergraph on n vertices and fix a positive
integer k such that 1 6 k 6 r. A k-matching of H is a collection of edges M ⊂ E
such that every subset of V whose cardinality equals k is contained in at most one
element of M. The k-matching number of H is the maximum cardinality of a k-
matching. A well-known problem, posed by Erdős, asks for the maximum number
of edges in an r-uniform hypergraph under constraints on its 1-matching number.
In this article we investigate the more general problem of determining the maximum
number of edges in an r-uniform hypergraph on n vertices subject to the constraint
that its k-matching number is strictly less than a. The problem can also be seen as
a generalization of the well-known k-intersection problem. We propose candidate
hypergraphs for the solution of this problem, and show that the extremal hypergraph
is among this candidate set when n > 4r

(
r
k

)2 · a.

Mathematics Subject Classifications: 05D05, 05C65

1 Prologue, related work and main results

A hypergraph, H, is a pair (V, E) where V is a finite set, called the vertex set, and E
is a collection of subsets of V . The set E is called the edge set and its elements edges.
We denote by

(
V
k

)
the family consisting of all subsets of V whose cardinality equals k.

A hypergraph is called r-uniform if all of its edges have cardinality r. A hypergraph is
called k-intersecting if the intersection of any two of its edges has cardinality at least k.
Given a finite set, F , we denote by |F | its cardinality and, given a positive integer m, we
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denote by [m] the set {1, . . . ,m}. A finite set whose cardinality equals m is refer to as
an m-set, for short. As an abuse of notation, we sometimes denote by |H| the number
of edges in a hypergraph H. A matching in a hypergraph, H, is a family of pairwise
disjoint edges. The matching number of H, denoted ν(H), is the maximum cardinality of
a matching. The notion of matching is fundamental in combinatorics. Its significance is
supported by the fact that several combinatorial problems can be reduced to the problem
of determining the matching number of appropriate hypergraphs.

An important problem regarding matchings in uniform hypergraphs was posed by
Erdős in 1965, who asked for the determination of the maximum number of edges in an
r-uniform hypergraph under constraints on its matching number. More precisely, let H
be an r-uniform hypergraph on n vertices which satisfies ν(H) < a 6 n

r
. What is a sharp

upper bound on the number of edges in H?
Erdős conjectured that the maximum is attained by two extremal hypergraphs. The

first is the hypergraph H1 consisting of all r-sets on ra − 1 vertices, whose matching
number is clearly a − 1. The second one is the r-uniform hypergraph, H2, on n vertices
whose edge set consists of all r-sets that contain at least one element from a fixed set of
a− 1 vertices, and whose matching number is a− 1 as well.

Conjecture 1 (Erdős’ Matching Conjecture, 1965). The number of edges in an r-uniform
hypergraph, H, on n vertices whose matching number satisfies ν(H) < a 6 n

r
is at most

max {|H1|, |H2|} .

When n > (r + 1) · a is it not difficult to see that |H2| > |H1| and therefore, in this
case, H2 is the hypergraph which is conjectured to have the maximum number of edges
among all hypergraphs satisfying the assumptions of Conjecture 1. Erdős obtained the
following result.

Theorem 2 (Erdős [5]). There exists some constant cr, which depends only on r, such
that among all r-uniform hypergraphs on n > cr · a vertices that satisfy ν(H) < a, the
hypergraph H2 has the maximum number of edges.

The problem of determining the smallest value of cr has attracted considerable atten-
tion (see [3, 4, 8, 9, 10, 11, 12, 14, 16], among several others). The current best known
upper bound on this constant is cr 6 2r + 1, and is due to Frankl [8]. Let us also re-
mark that Erdős’ matching conjecture, if true, has implications in game theory (see [6]),
distributed storage allocation (see [3, Section 5]) as well as in probability theory (see
[3, 17]).

In this article we shall be interested in a generalization of Erdős’ conjecture. Our work
is motivated by the following notion of matchings in hypergraphs.

Definition 3 (k-matching). Let H = (V, E) be an r-uniform hypergraph on n vertices
and fix a positive integer k such that 1 6 k 6 r. A k-matching of H is a collection of edges
E1, . . . , Ej ∈ E such that every T ∈

(
V
k

)
is contained in at most one Ei, i ∈ {1, . . . , j}.

The maximum cardinality of a k-matching in a hypergraph, H, is its k-matching number
and is denoted by νk(H).
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Equivalently, a k-matching ofH = (V, E) is a subsetM⊂ E such that |Ei∩Ej| 6 k−1,
for all Ei 6= Ej fromM. Let us mention that the notion of k-matching arose in the study
of certain search games on hypergraphs (see [18, Appendix C]) as well as in the study of
certain generalisations of Tuza’s conjecture (see [1]).

Notice that a 1-matching of a hypergraph coincides with a matching. Notice also
that when νk(H) = 1, then any two edges, say E1, E2, in H satisfy |E1 ∩ E2| > k and
therefore the problem of maximizing the number of edges in a r-uniform hypergraph
whose k-maching number equals 1 is equivalent to the problem of maximizing the number
of edges in an r-uniform k-intersecting hypergraph, which we refer in this paper as the
k-intersection problem. This problem, having been open for several decades, was proven
to be of great importance in the development of extremal set theory (see [13, 15]) and
was finally resolved by Ahlswede and Khachatrian (see [2]). In particular, the following
holds true.

Theorem 4 (see [2, 19]). Let 1 6 k < r. For every positive integer i such that 0 6 i 6
n−k
2

, let Bi be the family consisting of all E ∈
(
[n]
r

)
such that |E ∩ [k + 2i]| > k + i. The

number of edges in an r-uniform k-intersecting hypergraph on n vertices is at most

max
06i6n−k

2

|Bi|.

Moreover, when n > (k+1)(r−k−1) the number of edges in an r-uniform k-intersecting
hypergraph on n vertices is at most

(
n−k
r−k

)
.

The families Bi, defined in Theorem 4, are referred to as Frankl families (see [13]). In
this work we address the problem of determining the number of edges in an r-uniform
hypergraph on n vertices under constraints on its k-matching number. More precisely, we
examine the following.

Problem 5. Let H = (V, E) be an r-uniform hypegraph on n vertices. Fix a positive
integer k such that 1 6 k 6 r and assume further that νk(H) < a. What is a sharp upper
bound on the number of edges in H?

Later, after constructing suitable candidates for the extremal graph of Problem 5, we
will formulate a generalization of Erdős’ conjecture which is the main target of this note.
Then we verify the conjecture for large values of n.

Note that Problem 5 is trivial when k = r: the maximum number of edges in H is
equal to νr(H). Hence, from now on, we assume that k < r. Notice also that in Erdős’
matching conjecture, the extremal hypergraph H2 is obtained by fixing a−1 vertices, say
v1, . . . , va−1, and then taking all r-sets of the vertex set, V , that contain at least one of
the vertices vi, i = 1, . . . , a− 1. In the same way, candidates for the extremal hypergraph
in Problem 5 can be obtained as follows.

Fix a set V consisting of n vertices. For every positive integer i such that 0 6 i 6
b n
a−1
c−k

2
and every family T = {T1, . . . , Ta−1} ⊂

(
V

k+2i

)
let H(T ) denote the r-uniform

hypergraph on the vertex set V whose edge set consists of all E ∈
(
V
r

)
such that |E∩Tj| >
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k + i, for some j ∈ [a− 1]. Notice that the (k + 2i)-sets Tj need not be disjoint. In fact,
there are several ways to choose the sets T1, . . . , Ta−1. When the sets T1, . . . , Ta−1 ∈

(
V

k+2i

)
are pairwise disjoint, we will refer to the hypergraph H(T ) as a (n, r, k, a, i)-Frankl family.
Notice that (n, r, 1, 2, i)-Frankl families are precisely the Frankl families from Theorem 4.
Observe also that a (n, r, 1, a, 0)-Frankl family is precisely the hypergraph H2 in Erdős’
matching conjecture. The following result implies that the number of edges in H(T ) is
maximized when the sets are disjoint.

Theorem 6. Let V = [n] be a set of vertices and fix positive integers r, k, a such that

n > ra and r > k > 1. For every positive integer i such that 0 6 i 6
b n
a−1
c−k

2
and every

T = {T1, . . . , Ta−1} ⊂
(

V
k+2i

)
let H(T ) be the r-uniform hypergraph on the vertex set V

whose edge set consists of all E ∈
(
V
r

)
such that |E ∩ Tj| > k + i, for some j ∈ [a − 1].

Then the number of edges in H(T ) is less than or equal to the number of edges in a
(n, r, k, a, i)-Frankl family.

In other words, Theorem 6 suggests that candidates for the hypergraph that maximizes
the number of edges in Problem 5 can be found among (n, r, k, a, i)-Frankl families.

We now proceed to find a hypergraph whose k-matching number equals a − 1 and
corresponds to the hypergraph H1 in Erdős’ conjecture. Notice that the hypergraph H1

is a complete r-uniform hypergraph on ra − 1 = r(a − 1) + (r − 1) vertices that has
the following property: one can find a − 1 edges E1, . . . , Ea−1 ∈ H1 such that for every
T ∈

(
[ra−1]

r

)
there exists i ∈ {1, . . . , a−1} such that |T ∩Ei| > 1. Similarly, we are looking

for an r-uniform hypergraph having the property that there exist a−1 edges E1, . . . , Ea−1
such that for every T ∈

(
[ra−1]

r

)
there exists i ∈ [a − 1] such that |T ∩ Ei| > k. Suppose

that r > (a− 1)(k − 1) + 1 and let n0 = r(a− 1) + r − (a− 1)(k − 1)− 1. Consider the
hypergraph, H0, on the vertex set [n0] whose edge set is

(
[n0]
r

)
. It is not difficult to see

that H0 has the required property. Notice that, when k = 1, the hypergraph H0 is the
same as the hypergraph H1. The discussion thus far leads us in the formulation of the
following.

Conjecture 7. Let H = (V, E) be an r-uniform hypergraph on n vertices. Fix a positive
integer k < r and assume further that νk(H) < a, for some a > 2, as well as that n > r ·a.
Set n0 = ra− (a− 1)(k − 1)− 1. Then the number of edges in H is at most

max

{(
n0

r

)
, |Fi|; 0 6 i 6

b n
a−1c − k

2

}
,

where Fi is a (n, r, k, a, i)-Frankl family.

Notice that when k = 1 the previous conjecture reduces to Conjecture 1. Notice
also that when νk(H) = 1 Conjecture 7 reduces to the k-intersection problem. Hence
Conjecture 7 can be seen is a generalization of both Erdős’ matching conjecture and the
k-intersection problem. In this note we verify the validity of this conjecture for large
values of n. The proof is by induction on νk(H), where the k-intersection problem is the
base case. In particular, we obtain the following result.
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Theorem 8. Let H = (V, E) be a r-uniform hypergraph on n vertices. Assume further

that νk(H) < a, where 1 6 k < r, and that n > 4r
(
r
k

)2 · a. Let F0 be a (n, r, k, a, 0)-Frankl
family. Then

|E| 6 |F0|.

The remaining part of this note is organized as follows. In Section 2 we prove Theorem
6. The proof is probabilistic and is based on a coupling argument. In Section 3 we prove
Theorem 8 by adapting Erdős’ proof of Theorem 2 to our setting. Section 4 includes some
concluding remarks.

2 Proof of Theorem 6

In this section we prove Theorem 6. The proof is divided into several lemmata and requires
some extra piece of notation and definitions.

Clearly, we may assume that k > 2 and a > 3; otherwise there is nothing to prove. Let
H = (V, E) be an r-uniform hypergraph. Let I be a subset of V whose cardinality equals
r which is chosen uniformly at random from the family

(
V
r

)
. Given a set T consisting of

a − 1 elements T1, . . . , Ta−1 ∈
(

V
k+2i

)
, we say that I captures T if there exists j ∈ [a − 1]

such that |I ∩ Tj| > k + i.
Now let T = {T1, . . . , Ta−1} ⊂

(
V

k+2i

)
and suppose that the sets Tj, j = 1, . . . , a − 1

are not disjoint. This means that we can find two (k + 2i)-sets, say T1 and T2, such
that T1 ∩ T2 6= ∅. Let S = T1 ∩ T2 and set s = |S|. Now choose s vertices v1, . . . , vs ∈
V \ ∪a−1i=1 Ti (recall that n > ra) and set R = {v1, . . . , vs}. Now define the family T ∗ =
{T ∗1 , T2, . . . , Ta−1}, where T ∗1 = (T1\S)∪R and note that T ∗1 ∈

(
V
k

)
. Finally, fix a bijection

φ : S → R, from S onto R.
We claim that the number of edges in H(T ) is less than or equal to the number of

edges in H(T ∗). To prove this claim, it is enough to show that the probability that I
captures T is less than or equal to the probability that I captures T ∗.

Now let A1 be the event ”I captures T and does not capture T ∗” and let A2 be the
event ”I captures T ∗ and does not capture T ”.

Lemma 9. We have P[A1] 6 P[A2].

Proof. Notice that the event A1 happens if and only if |I ∩ T1| > k + i, |I ∩ T ∗1 | < k + i
and |I ∩ Tj| < k + i, for all j ∈ {2, . . . , a − 1}. Similarly, the event A2 happens if and
only if |I ∩ T ∗1 | > k + i and |I ∩ Tj| < k + i, for all j ∈ {1, 2, . . . , a− 1}. Now let I be an
outcome for which the event A1 occurs. Set IR = I ∩R, IS = I ∩ S and define the set

JI = (I \ (IS ∪ IR)) ∪ (φ(IS) ∪ φ−1(IR)).

Since IR ∩ φ(IS) = φ−1(IR) ∩ IS, it follows that JI preserves the size of I. Notice also
that JI is an outcome for which the event A2 occurs and that I1 6= I2 implies JI1 6= JI2 .
This shows that for every outcome for which A1 occurs we can associate, in an injective
way, an outcome for which A2 occurs. Since the all r-sets have the same probability of
occurring, the result follows.
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The previous lemma yields the following.

Lemma 10. We have P[I captures T ] 6 P[I captures T ∗].

Proof. Notice that Lemma 9 yields

P[I captures T ] = P[I captures T and T ∗] + P[A1]

6 P[I captures T and T ∗] + P[A2]

= P[I captures T ∗].

Hence Theorem 6 follows upon iterating the previous two lemmata until we get a
family T whose elements are pairwise disjoint.

In the next section we prove that (n, r, k, a, 0)-Frankl families are the extremal hyper-
graphs of Problem 5 for large values of n. For the sake of completeness, let us also count
the maximum number of edges in such a family.

Lemma 11. Let the set V and parameters n, k, a be as in Theorem 6 and let T =
{T1, . . . , Ta−1} be a family consisting of a − 1 pairwise disjoint k-sets from V . Then
the number of E ∈

(
V
r

)
that contain at least one element from T is equal to

g(n, r, k, a) :=

min{a−1,br/kc}∑
j=1

(−1)j−1
(
a− 1

j

)(
n− jk
r − jk

)
.

Proof. For j = 1, . . . , a−1 let Dj be the family consisting of all E ∈
(
V
r

)
such that Tj ⊂ E.

The inclusion-exclusion principle yields that g(n, r, k, a) is equal to∣∣∣∣∣
a−1⋃
i=1

Di

∣∣∣∣∣ =
∑

∅6=J⊂[a−1]

(−1)|J |−1

∣∣∣∣∣⋂
j∈J

Dj

∣∣∣∣∣ .
Now notice that for ∅ 6= J ⊂ [a− 1] we have∣∣∣∣∣⋂

j∈J

Dj

∣∣∣∣∣ =

(
n− |J | · k
r − |J | · k

)

and the result follows upon observing that
∣∣∣⋂j∈J Dj

∣∣∣ = 0, when |J | > min{a− 1, br/kc}.

3 Proof of Theorem 8

We imitate Erdős’ proof of Theorem 2. Notice that it is enough to show that if H = (V, E)

is an r-uniform hypergraph on n > 4r
(
r
k

)2 · a vertices such that |E| > 1 + g(n, r, k, a),
where g(n, r, k, a) is as in Lemma 11, then we have νk(H) > a. We prove this statement
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by induction on a. When a = 2, then the result follows from the second statement of
Theorem 4. Assuming it holds true for a− 1 > 1, we prove it for a.

Let H = (V, E) be a hypergraph on n vertices which satisfies |E| > 1+g(n, r, k, a). For
every T ∈

(
V
k

)
denote by d(T ) the number of edges E ∈ E such that T ⊂ E and choose a

k-set, say T1, for which d(T1) is maximum. We distinguish two cases.

Assume first that d(T1) <
1+g(n,r,k,a)

(a−1)(r
k)

. Let E1, . . . , El be a maximal k-matching of H.

Notice that this implies that for any E ∈ E , there exists j ∈ [l] such that |E ∩ Ej| > k.
We claim that l > a. To see this, notice that if l < a then the edges E1, . . . , El would
contain at most (a − 1)

(
r
k

)
k-sets and therefore the total number of edges in H satisfies

|E| < 1 + g(n, r, k, a). Hence H contains an edge El+1 which satisfies |El+1 ∩Ej| 6 k− 1,
for all j ∈ [l] and contradicts the maximality of E1, . . . , El. Therefore the claim follows
and so does Theorem 8.

Assume now that d(T1) > 1+g(n,r,k,a)

(a−1)(r
k)

. Let H(T1) be the hypergraph whose vertex set

is V and whose edge set, E(T1), consists of all E ∈ E such that T1 * E. Clearly, we have

|E(T1)| > 1 + g(n, r, k, a)−
(
n−k
r−k

)
. Now notice that

g(n, r, k, a)−
(
n− k
r − k

)
= g(n, r, k, a− 1)

and therefore |E(T1)| > 1 + g(n, r, k, a− 1). The induction hypothesis implies that there
exist at least a − 1 edges E1, . . . , Ea−1 in H(T1) such that |Ei ∩ Ej| 6 k − 1, for all
i 6= j. Now notice that the proof will follow once we show that there exists E ∈ E such
that T1 ⊂ E which does not contain any of the (a − 1)

(
r
k

)
k-sets that are contained in

E1, . . . , Ea−1. Let T be a k-set which is contained in some Ei, i = 1, . . . , a−1. Notice that
the number of r-sets which contain T1 and T is at most

(
n−|T∪T1|
r−|T∪T1|

)
. Since |T ∪ T1| > k+ 1

it follows that the number of r-sets that contain T1 and any of the k-sets contained in
E1, . . . , Ea−1 is at most

(a− 1)

(
r

k

)(
n− k − 1

r − k − 1

)
.

We now claim that

d(T1) > (a− 1)

(
r

k

)(
n− k − 1

r − k − 1

)
, when n > 4r

(
r

k

)2

· a,

which in turn implies that there exists E ∈ E such that T1 ⊂ E and for which |E ∩Ei| 6
k − 1, for all i ∈ [a − 1]. Hence νk(H) > a and Theorem 8 follows. To prove the claim,
note that the estimate

g(n, r, k, a) > (a− 1)

(
n− (a− 1)k

r − k

)
,

combined with the assumption d(T1) >
1+g(n,r,k,a)

(a−1)(r
k)

, implies that it is enough to show(
n− (a− 1)k

r − k

)
> (a− 1)

(
r

k

)2(
n− k − 1

r − k − 1

)
, for n > 4r

(
r

k

)2

· a.
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The last inequality can be equivalently written as

(n− r)
(a−2)k−1∏

i=1

(
1− r − k

n− k − i

)
> (a− 1)(r − k)

(
r

k

)2

.

Now observe that, since r > k, we can estimate

(n− r)
(a−2)k−1∏

i=1

(
1− r − k

n− k − i

)
> (n− r)

(
1− r

n− ar

)ar

.

Note that the right hand side is an increasing function of n, for fixed r, k, which upon

substituting n = 4r
(
r
k

)2 · a becomes

(
4r

(
r

k

)2

a− r

)(
1− 1

4
(
r
k

)2
a− a

)ar

>

(
4r

(
r

k

)2

a− r

)
·

(
1− 1

4
(
r
k

)2
a− a

)4(r
k)

2
a−a

,

since 4
(
r
k

)2
a− a > ar. Since the sequence

(
1− 1

m

)m
is increasing and 4

(
r
k

)2
a− a > 2, we

conclude (
4r

(
r

k

)2

a− r

)
·

(
1− 1

4
(
r
k

)2
a− a

)4(r
k)

2
a−a

>

(
4r

(
r

k

)2

a− r

)
· 1

4
.

Now it is not difficult to verify that(
4r

(
r

k

)2

a− r

)
· 1

4
> (a− 1)(r − k)

(
r

k

)2

and the claim follows.

4 Concluding remarks

A well known technique that has been proven to be very fruitful in extremal set theory
involves the notion of shifting (see [7, 13]).

Let H = (V, E) be an r-uniform hypergraph whose vertex set is indexed by the positive
integers, i.e., V = [n] for some positive integer n, and fix 1 6 i < j 6 n. The (i, j)-shift
of H, denoted Si,j(H), is the hypergraph with vertex set [n] and with edges

Si,j(E) =

{
E \ {i} ∪ {j} , if i ∈ E, j /∈ E,E \ {i} ∪ {j} /∈ E
E, otherwise.

Clearly, for every 1 6 i < j 6 n, the hypergraph Si,j(H) is r-uniform and it contains the
same number of edges as H. Moreover, it can be shown that the k-matching number of H
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does not increase under an (i, j)-shift. It is known (see [7]) that if we keep on shifting a
hypergraph then after a finite number of steps we end up with a stable hypergraph, that
is, a hypergraph H for which Si,j(H) = H, for all 1 6 i < j 6 n.

The shifting technique is usually combined with induction on the number of vertices
in a stable hypergraph and allows to obtain sharp estimates on the cardinality of the
families H[n] = {E \ {n} : n ∈ E ∈ E} and H(n) = {E ∈ E : n /∈ E} (see [7]).
However, as can already be seen in the proof of Theorem 8, Problem 5 appears to depend
on estimates on the cardinality of the families H[T ] = {E \ T : T ⊂ E ∈ E} and
H(T ) = {E ∈ E : T * E}, where T ∈

(
V
k

)
, and we were not able to adapt standard

shifting arguments in this setting. We believe that suitable generalizations of the notion

of shifting may provide improvements upon the constant 4r
(
r
k

)2
in Theorem 8 and we

hope that we will be able to report on that matter in the future.
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