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Abstract

The set of all doubled patterns on n or fewer letters can be avoided on an
alphabet with k letters, where k is the least even integer strictly greater than n+ 1,
with the exception of n = 4. The set of all doubled patterns on 4 or fewer letters
can be avoided on the 8-letter alphabet. The set of all avoidable patterns on n or
fewer letters can be avoided on an alphabet with 2(n + 2) letters.

Mathematics Subject Classifications: 68R15

1 Introduction

By a word we understand here a finite sequence of elements, usually referred to as letters,
drawn from some set A, usually referred to as an alphabet. We are interested in the com-
binatorial properties of words. Accounts, fairly recent, of the state of the combinatorial
theory of words can be found in the monographs of Allouche and Shallit (2003) [1], of
Lothaire (2005) [16], of Lothaire (2002) [15], and of Lothaire (1997) [14].

In this paper we will only deal with words of positive length. For a given alphabet
A, we use A+ to denote the set of all words on A that have positive length. Words can
be concatenated to form other words. The operation of concatenation is associative, and
when A+ is endowed with this operation it becomes the semigroup freely generated by
A. This entails that every map that assigns to each letter in A a word from B+ can be
extended to a unique morphism from A+ to B+. Let u and w be words. We say that u
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is a subword of w provided either u is an initial segment of w or u is a final segment of w
or there are words x and y so that w = xuy.

Let w be a word on the alphabet B and v be a word on the alphabet A. We way that
v encounters w provided there is a morphism h : B+ → A+ so that h(w) is a subword of
v. We think of w as a pattern or template and h(w) has an instance of the pattern or
template. So for v to encounter w means that an instance of the pattern w can be found
among the subwords of v—that is within v itself. If v does not encounter w we say that v
avoids w. We say that w is avoidable on the k-letter alphabet provided there are infinitely
many words in A+ that avoid w, where A is an alphabet with k letters. Similarly, we
say that a set Σ of words is avoidable on the alphabet with k letters provided there are
infinitely many words on the k-letter alphabet, each of which avoids every word belonging
to Σ.

The notion of avoidable words was introduced independently by Bean, Ehrenfeucht,
and McNulty [3] in 1979 and by Zimin [26] in 1982, and in these papers the notion of
avoidability was given algorithmic characterizations. In §3 below, one of these characteri-
zations will be more fully examined. The notion of avoidable words was inspired by work
carried out by Axel Thue (see [24,25]) in the early years of the 20th century. Thue proved
that the pattern xx is avoidable on the 3-letter alphabet and that xxx is avoidable on the
2-letter alphabet.

The word xx is the simplest example of a doubled word. In general, we say a word w
is doubled provided every letter that occurs in w occurs at least twice. Suppose that w is
doubled. We say that w is the mesh of w provided k is the smallest natural number such
that whenever x is a letter and u is a word of length greater than k in which x does not
occur, then xux is not a subword of w. In Bean, Ehrenfeucht, and McNulty [3] it was
proved that

For any positive natural number k, the set of all doubled words of mesh k on
a countably infinite alphabet is avoidable on the alphabet with 8k+16 letters.

This was the earliest global avoidability theorem for doubled words. It is easy to see by
an inductive argument, that every word on an n-letter alphabet with length at least 2n

must have a subword that is doubled. Because the length of a word is an upper bound
on its mesh, we also have

The set of all doubled words on an alphabet with no more than n letters is
avoidable on an alphabet with 8 · 2n + 16 letters.

The method used by Zimin [26] is more efficient than that of Bean, Erhrenfeucht, and
McNulty. The following is implicit in Zimin’s work:

The set of all doubled words on an alphabet with no more than n letters is
avoidable on an alphabet with 6 · 2n + 14 letters.

As an immediate corollary of the 1989 work of Baker, McNulty, and Taylor [2] we have

The set of all doubled words on an alphabet with no more than n letters is
avoidable on an alphabet with 9 · n+ 20 letters,
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if only because this bound was proven to hold for avoidable words generally.
In 1985 Irina Mel’nichuk [17] outlined a proof of the following theorem, which gives

bounds sharper than any of those above.

Mel’nichuk’s Global Avoidabilitiy Theorem for Doubled Patterns on n Letters.
Let n be a positive natural number. The set of all doubled patterns on the n-letter alphabet
is avoidable on the alphabet with 3dn+1

2
e letters.

In 2015 Michael Lane [13] provides an exposition, in English, of Mel’nichuk’s proof
that fills in the all details not available in Mel’nichuk [17].

The first purpose of this paper is to establish a theorem that improves Mel’nichuk’s
theorem. Our second purpose is to offer a minor improvement to

Mel’nichuk’s Global Avoidability Theorem for Avoidable Words on n Letters.
Let n be a positive natural number. The set of all avoidable patterns on the n-letter
alphabet is avoidable on an alphabet with 4

⌈
n+2
2

⌉
letters.1

Before taking up these tasks, it is interesting to observe that in contrast to the global
or simultaneous avoidability results mentioned above, one can ask, more locally, of an
individual word w, for the smallest k so that w is avoidable on the alphabet with k letters.
Denote this smallest value by µ(w) and call it the avoidability index of w. In case the word
w is doubled, the situation has been substantially clarified. In 1984 A. G. Dalalyan [12]
proved that every doubled word is 4-avoidable and that any doubled word in which at
least 6 distinct letters appear is 3-avoidable. Dalalyan’s results were rediscovered by
Bell and Goh [4] and the results of Bell and Goh were enhanced by Blanchet-Sadri and
Woodhouse [5] in 2013. A substantial advance was obtained in 2015 by Michael Lane [13].
He proved

Every doubled word on n or fewer letters of length at least min(2n+ 1, 12) is
avoidable on the 3-letter alphabet.

All the doubled words on these small alphabets are seen to be 3-avoidable (and even 2-
avoidable in some cases). So Lane’s result left as unsettled only certain doubled words of
length 8 on 4 letters and certain doubled words on 5 letters that have length 10—this left a
list of roughly 100 doubled patterns to check. In 2016 Ochem [21], working independently
of Lane, but using largely similar methods, was finally able to prove that each doubled
word is 3-avoidable. It appears that many doubled words are actually 2-avoidable. The
problem of characterizing the doubled words that are 2-avoidable remains open.

For words w in general, not just doubled words, the situation is much less clear.
Indeed, among the most vexing problems, first raised the the mid-1970’s, are

Problem 0. Is the function µ on words over a countably infinite alphabet that returns
the avoidability index of w (or ∞ when w is unavoidable) a computable function?
If it is, what is its computational complexity?

1The bound stated by Lothaire is 4d(n + 1)/2e, but there appears to be a slight flaw in Lemma 3.2.7
there—the small adjustment of adding two letters to the alphabet remedies the matter.
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Problem 1. Does the function µ have a finite upper bound?

The only progress on these problems has been in the investigation of the avoidability
index on small alphabets. The avoidability of words on alphabets of size no more than 2
has been systematically investigated by Schmidt [23], Roth [22], and Cassaigne [8,9] and
is now completely understood. For alphabets of size 3 the task was begun by Cassaigne in
his 1994 dissertation [9]. Clark in his 2001 dissertation [11] proved that the avoidability
index of each avoidable word on a three letter alphabet is no more than 4, and, in 2006,
Ochem [20] completed the work started by Cassaigne by verifying the avoidability index
as 2 for the avoidable words not settled by Cassaigne. So the avoidability index of any
avoidable word on the three letter alphabets is either 2 or 3. Finally, Clark [10, 11] has
devised a word with avoidability index 5. No avoidable word of larger avoidability index
is known.

2 Global avoidability of doubled words

The Global Avoidablitiy Theorem for Doubled Patterns on n Letters. Let n be
a positive natural number. The set of all doubled words on n or fewer letters is avoidable
on

• the alphabet with 8 letters, if n = 4;

• the alphabet with n+ 2 letters, if n is even and n 6= 4;

• the alphabet with n+ 3 letters, if n is odd.

Proof. The case when n = 4 is exceptional. We handle it at the end of the proof.
So for now, we stipulate that n 6= 4.
First, consider the case n = 1. The set of all doubled words on this alphabet is

{x2, x3, x4, . . . }, where x is the sole letter. Axel Thue showed that this set is avoidable
on the alphabet with 3 letters. This settles the case since 3 6 4 = 1 + 3.

So we take up the case when n > 1. Let k be the least even natural number so that

k − 1 > n.

So k = n+ 2 if n is even and k = n+ 3 if n is odd.
The plan of our proof is to start with an alphabet A with k letters. We take

A = {a0, a1, . . . , ak−1}.

We will construct infinitely many words on A, each of them avoiding every doubled pattern
on the n-letter alphabet. We will do this by a method introduced by Axel Thue [25],
which has now become standard. Namely, we will define a map Ψ: A+ → A+ so that
the sequence Ψ(a0),Ψ

2(a0),Ψ
3(a0), . . . is an infinite list of words of increasing length such

that each word on this list avoids every doubled word on the n-letter alphabet. The map
Ψ will be easy to describe, but before doing this it helps to look ahead to see what this
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map needs to be like. So for the moment suppose that Ψ is in hand. Now consider a
doubled word w that, contrary to our hopes, is encountered by Ψ`+1(a0). This means that
there will be a morphism h such that h(w) is a subword of Ψ`+1(a0).

· · ·

· · ·· · · · · ·

· · ·

(|) (|) (|) (|) (|)(|)(|)(|)(|)

Ψ`(a0)

Ψ`+1(a0)

w

Ψ

h

Figure 1: A Visualization of the Proof

The situation at hand is illustrated in Figure 1. In this figure, points at the top are
(some of) the letters of Ψ`(a0) arranged as they are in Ψ`(a0). The points at the bottom
are the letters of w; they comprise a copy of w. Of course Ψ takes each letter at the top
to a word (indicated here as a line segment) in the middle of the diagram. Together they
constitute a subword of Ψ`(a0). Likewise, h takes each letter at the bottom to a word in
the middle. The diagram is drawn in a way to suggest that all the Ψ images of letters have
the same length—this will indeed be an attribute of Ψ when we finally define it. The (|)’s
that appear once in the Ψ-image of each letter from A indicate specially chosen subwords
of length 2 that we will call Mel’nichuk decisive representatives of the letter they come
from by way of Ψ. We will rig matters so that these decisive representative never straddle
a border between h-images of adjacent letters of w. As seen in the diagram, some letters
of w have images that may engulf at least one Mel’nichuk decisive representative, while
others do not. Now obtain w′ from w by deleting all the letters whose images under h
engulf no decisive representative. The diagram suggests how to construct a morphism h′

so that h′(w′) is a subword of Ψ`(a0). Then an appeal to induction will finish the proof.
Rather than an appeal to induction, it is convenient to prove the theorem indirectly.

So, in pursuit of a contradiction, we assume the theorem fails. We pick a doubled word
w, as short as possible, on no more the n letters, that is encountered by Ψt(a0) for some
natural number t. For this w, we pick ` as small as possible so that Ψ`+1 encounters w.
Finally, we pick a morphism h so that h(w) is a subword of Ψ`+1(a0).

The essential requirement placed on Ψ by the idea sketched above is that the image
of each letter x in A should have a large number of distinct subwords of length 2 that
will permit us to identity a decisive representative of x. Since at most n letters occur in
w, there will only be at most n possibilities for the first letter of h(ξ), as ξ runs through
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the letters occurring in w. So we must have at more than n suitable choices for the
decisive representatives. The main difficulty, is that the k decisive representatives must
be pairwise distinct.

We can regard words on the alphabet A as right-directed paths where the vertices have
been labeled with letters for A. What we require is a graceful labeling. In 1982 Bloom
and Hsu [6] introduced the notion of graceful labelings of directed graphs. In 1985 Bloom
and Hsu [7] observed that one-way directed paths of even length have a graceful labelings.
A single example suffices to see the general case. Consider the graceful numberings of the
directed path with 10 vertices displayed in Figure 2.

0 1 2 3 4

56789

9 2 7 4 5 6 3 8 1

7 8 9 0 1

23456

9 2 7 4 5 6 3 8 1

Figure 2: Two Graceful Labellings of Left-directed Path on 10 Vertices

Observe that the edge labels are constructed from the vertex labeling as follows: if
x → y, then the label of the edge from x to y is the natural number r < 10 so that
y − x ≡ r (mod 10). Another way to say this is that the label is y − x as computed
in cyclic group Z10. The numberings shown in Figure 2 are graceful in the sense that
all the edge labels are distinct. More is true. The labeling of the path at the bottom
can be obtained from the labeling of the path at the top. Actually, we give two ways to
see how these two labellings are related. In the first way, to obtain the bottom labeling
simple add 7 (in Z10) to the label of each vertex in the top labeling. It is evident that
the labels on the edges will not change when this is done. In this way, we can obtain 10
different graceful vertex labellings with the same edge labeling. The second way to see the
connection is to realize that the vertex labeling occurs around an oblong. Each of these
labellings amount to numbering the vertices counterclockwise around the oblong, starting
at some vertex with 0. In the numbering at the top, we started with the leftmost of the
lower vertices, while in the numbering at the bottom, we started at the fourth vertex from
the left among the lower vertices. With this second viewpoint in mind, it is easy to see
that if 0 is on the lower level, but not the leftmost vertex, then 9 will be somewhere on
the directed path preceding 0. On the other hand, if 0 is on the upper level, then 1 will
precede 0 on the directed path.

The remarks above hold in general. A graceful numbering of a directed path with k
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vertices, where k is even, can be made by labeling the leftmost vertex with 0 and running
counterclockwise around the oblong. The last vertex on the path will get the label k/2.
Using this graceful labeling, we can devise others as described above. There will be k
of them and they will all generate the same edge labels. Moreover, for any one of these
graceful labelings, if 0 is on the lower level (but not the left end of the path) then k − 1
precedes 0 on the path, whereas, if 0 is on the upper level, then 1 precedes 0 on the path.

In the above constructions, if we replace the label i by ai, for each i < k, we get k
graceful words from the k gracefully labeled left-directed paths. In case k = 10, here is
what they look like:

a0a9a1a8a2a7a3a6a4a5

a1a0a2a9a3a8a4a7a5a6

a2a1a3a0a4a9a5a8a6a7

a3a2a4a1a5a0a6a9a7a8

a4a3a5a2a6a1a7a0a8a9

a5a4a6a3a7a2a8a1a9a0

a6a5a7a3a8a3a9a2a0a1

a7a6a8a3a9a4a0a3a1a2

a8a7a9a4a0a5a1a4a2a3

a9a8a0a5a1a6a2a5a3a4

Observe that the word on each row begins with one of our k letters. We denote the word
on the ith-row by ~ai. It is important to observe that the word apaq, where p 6= q, is a
subword of exactly one ~ai. Indeed, q − p (calculated in Zk) is the edge-label associated
with two adjacent columns in our array of words. In the left of these adjacent columns
ap occurs exactly once. What this will mean is that each of the k − 1 the subwords of ~ai
that have length 2 are available as potential decisive representatives of ai.

We define our map Ψ so that

Ψ(ai) = ~aiai, for each i < k.

So Ψ(ai) is a word of length k + 1 that begins and ends with the letter ai and in which
every letter aj with j 6= i occurs exactly once. Also, there are k − 1 subwords of length
2 that are available to be chosen as decisive representatives of ai. Since k − 1 > n, chose
one of these available words of length 2 so that its right letter is not the leftmost letter
in h(ξ), for any letter ξ occurring in w.

At this point, our proof would be essentially complete, except for the possibility that
w′ is empty. To prevent this, we have show that there is some letter ξ of w so that some
decisive representative is a subword of h(ξ). But since decisive representative cannot
straddle the h-image of adjacent letters in w, it will be enough to prove the next lemma.

Lemma A.
Some decisive representative is a subword of h(w).
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Proof. It follows easily by induction on t that no two adjacent letters in Ψt(a0) are iden-
tical.

Since h(w) is a subword of Ψ`+1(a0) we have three alternatives to consider.

Alternative: Ψ(ai) is a subword of h(w), for some i < k.
In this case the decisive representative of ai will be a subword of h(w).

Alternative: h(w) is a subword of Ψ(ai), for some i < k.
We reject this alternative, since Ψ(ai) has no doubled subwords, but h(w) must be doubled
since w is doubled.

Alternative: h(w) is a subword of Ψ(aiaj), for some i, j < k with i 6= j.
In view of the second alternative, here we know that h(w) straddles the boundary between
Ψ(ai) and Ψ(aj). It is harmless to suppose that i = 0. So Ψ(a0aj) is

a0ak−1a1 · · · a k
2
a0ajaj−1aj+1 · · · a k

2
+jaj.

To keep out of the first Alternative, we need only consider that h(w) is a subword of the
following word:

ak−1a1 · · · a k
2
a0

~aj︷ ︸︸ ︷
ajaj−1aj+1 · · · a k

2
+j.

In this word every letter occurs exactly 2 times. Since w is doubled, h(w) is doubled. So
any letter that occurs in h(w) occurs at least twice. Since h(w) straddles the middle of
the displayed word, we know that both a0 and aj occur in h(w). The other occurrence of
a0 is in ~aj. If ak−1 precedes a0 in ~aj, then ak−1 must occur (twice) in h(w). But it follows
that every letter that occurs in w, must occur exactly twice in w. This will force all k of
the letters to occur in h(w). But then ~aj will be a subword of h(w). Hence the decisive
representative of aj will be a subword of h(w).

So it remains to consider the case when ak−1 does not occur in h(w). In this case, we
know that a1 must precede a0 in ~aj. This forces all the letters except ak−1 to occur in
h(w). So we must have the following situation:

ak−1a1 · · · a k
2
a0ajaj−1aj+1 · · ·︸ ︷︷ ︸

h(w)

a k
2
+j.

This forces k
2

+ j ≡ k− 1 (mod k). That is j = k
2
− 1. So we are reduced to the situation

when
h(w) = a1 · · · a k

2
a0a k

2
−1a k

2
−2a k

2
a k

2
−3 · · · ak−2.

We see that the length of h(w) is 2(k − 1).
Consider any letter ai with i different from each of 0, aj, and a k

2
. Pick a letter ξ of w

so that ai occurs in h(ξ). Now ai occurs once in ~a0 and once in ~aj. Because ~a0 and ~aj
have no subwords of length 2 in common, it must be that h(ξ) has length 1. The same
also applies when i = j. So consider a0. Pick the letter ξ of w so that a0 occurs in h(ξ).
Now the word a0aj can occur only once in h(w). However, there is one situation when the
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word a k
2
a0 can occur twice. This happens when k

2
≡ 3 (mod k). This means that k = 6.

In turn, this means that n is either 3 or 4. But recall that n 6= 4. So if n is 3, it might
be that h(ξ) has length 2, where ξ is the letter so that a0 occurs in h(ξ). In this event,
the length of h(ζ) is 1 for each letter ζ 6= ξ of w. It follows that the length of h(w) is no
greater than 2(3 + 1). So we have 2(k − 1) 6 2(3 + 1). This means that k 6 5. But in
this case, k = 3 + 3 = 6. So we must reject this case. It follows that h(ξ) has length 1 for
each letter ξ of w. But then the length of h(w) cannot be greater than 2n. So we would
have 2(k − 1) 6 2n. This is impossible since we have chosen k so that k − 1 > n.

In this way, the lemma is established.

With the Lemma A in hand, we see that not all the letters in w are deletable. So
w′ is not empty. By the minimality in the choice of w we see that the length of w and
the length of w′ must be the same. This means that no letters have been deleted. But
then w = w′ and we see that Ψ`(a0) encounters w (with the help of h′). This violates the
minimality in the choice of `. At last, this is the contradiction needed to complete our
indirect proof of the theorem, when n 6= 4.

For the exceptional case n = 4, observe that each doubled word on no more than 4
letters is also a word on no more than 5 letters. Now n = 5 is an unexceptional instance
of the theorem and 5 + 3 = 8. So the set of all doubled words on no more than 4 letters
is avoidable on an alphabet with 8 letters.

There is only one case where Mel’nichuk’s bound is sharper than the bound proved
here: n = 1. The bound given in the present theorem is 4, whereas Mel’nichuk’s bound
is 3, which is actually the bound established by Axel Thue [25]. Table 1 provides a
comparison of the bounds.

The present bound Mel’nichuk’s bound: 3
⌈
n+1
2

⌉
Parity of n

n+ 2 3
2
(n+ 2) n is even and n 6= 4

n+ 3 3
2
(n+ 1) n is odd

8† 9 n = 4

†The referee has sketched an argument that, when n = 4, the true value is 5.

As Mel’nichuk observed, the bound must be at least n + 1. When n = 1, the bound
must be at least n+ 2 = 3 and this bound can be achieved, as Axel Thue showed in 1906.
It is conceivable that n+ 2 is a sharp bound, but no proof is known that this bound can
be acheived when n is odd; when n = 4 the referee contends that the bound is 4 + 1 = 5.
Neither is it known that n+ 1 will not suffice in every case except n = 1.

3 Global Avoidability of Avoidable Words

After her 1985 work on avoiding doubled patterns, Irina Mel’nichuk turned to avoid-
ing patterns generally. It appears she has never put her methods in this direction into
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the literature. However, in 1991 Mikhail Volkov gave a presentation of her methods at
Marquette University and Pavel Goralčik brought her methods to Paris. An account of
Mel’nichuk’s methods can be found in Chapter 3 of Lothaire [15], where the following
theorem is credited to Irina Mel’nichuk.

Mel’nichuk’s Global Avoidability Theorem for Avoidable Words on n Letters.
Let n be a positive natural number. The set of all avoidable patterns on the n-letter
alphabet is avoidable on an alphabet with 4

⌈
n+2
2

⌉
letters.

The bound 4dn+2
2
e is equal to 2(n + 2) when n is even and to 2(n + 3) when n is

odd. Here we can only make a small improvement: Mel’nichuk’s bound in the even case
works for the odd case as well. She submitted an abstract to the Colloquium on Universal
Algebra held in Szeged in August 1989 in which she asserted that the bound n+ 6 would
serve, but included no proof.

The Global Avoidability Theorem for Avoidable Words on n Letters. Let n be
a positive natural number. The set of all avoidable patterns on the n-letter alphabet is
avoidable of an alphabet with 2(n+ 2) letters.

We need the notion of reducibility in the proof of this theorem. We associate with each
pattern w a bipartite graph, called the adjacency graph of w, as follows. The two parts of
this graph are called the left alphabet and the right alphabet. In the adjacency graph their
is an edge joining the letter x in the left alphabet with y is the right alphabet provided
the length 2 word xy is a subword of w. For example, for the word a0b0a1b1a2b2a3b3a4b4
has the adjacency graph displayed in Figure 3.

a0 a0

a1 a1

a2 a2

a3 a3

a4 a4

b0 b0

b1 b1

b2 b2

b3 b3

b4 b4

Figure 3: The Adjacency Graph of a0b0a1b1a2b2a3b3a4b4

This word has a simple adjacency graph, mostly due to the fact the each letter appears
in the order only once. A subset F of the alphabet is free for w provided whenever ξ and
ζ are letters occurring in w there is no path in the adjacency graph connecting ξ in the
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left alphabet with ζ in the right alphabet. The set {a0, a1, a2, a3, a4} is free for the word
used in Figure 3.

We say that a word w reduces in one step to a word u if and only if u can be obtained
from w be deleting all occurrence of the letters belonging to some set free from w. We
way that w reduces to u if and only if u can be reached from w by a series of finitely many
one-step reductions.

The following theorem was proved in 1979 by Bean, Ehrenfeucht, and McNulty [3] and
independently in 1982 by Zimin [26].

The Characterization Theorem for Unavoidable Patterns. A word w is unavoid-
able if and only if w is reducible to the empty pattern.

Zimin [26] provided an additional equivalent condition.
The proof of the Global Avoidability Theorem for Words on n Letters amounts to a

proof that unavoidable words are reducible—one direction of the proof of the Character-
ization Theorem.

Proof of the Global Avoidability Theorem for Words on n Letters. This proof follows the
plan used in the proof of the Global Avoidability Theorem for Doubled Patterns.

Let us take k = n + 2. Let A = {a0, . . . , ak−1} and let B = {b0, . . . , bk−1}. Our
alphabet will be A ∪B. This time, we give define the morphism Ψ as follows.

Case: k is odd.

Ψ(a0) = a0b0a1 . . . b(k−1)/2a(k+1)/2 Ψ(b0) = b(k+1)/2a(k+1)/2 . . . ak−1bk−1

Ψ(a1) = a1b0a2 . . . b(k−1)/2a(k+1)/2+1 Ψ(b1) = b(k+1)/2a(k+1)/2+1 . . . a0 bk−1

Ψ(a2) = a2b0a3 . . . b(k−1)/2a(k+1)/2+2 Ψ(b2) = b(k+1)/2a(k+1)/2+2 . . . a1 bk−1
...

...

Ψ(ak−1) = ak−1b0a0 . . . b(k−1)/2a(k+1)/2+k−1 Ψ(bk−1) = b(k+1)/2a(k+1)/2−1 . . . ak−2bk−1

Case: k is even.

Ψ(a0) = a0b0 . . . ak/2−1bk/2−1 Ψ(b0) = ak/2 bk/2 . . . ak−1bk−1

Ψ(a1) = a1b0 . . . ak/2 bk/2−1 Ψ(b1) = ak/2+1bk/2 . . . a0 bk−1

Ψ(a2) = a2b0 . . . ak/2+1bk/2−1 Ψ(b2) = ak/2+2bk/2 . . . a1 bk−1
...

...

Ψ(ak−1) = ak−1b0 . . . ak/2−2bk/2−1 Ψ(bk−1) = ak/2−1bk/2 . . . ak−2bk−1

In each display, the subscripts on the a’s on each successive row can be obtained by adding
1 modulo k to the a in preceding row. One the other hand, each bi occurs in only one
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column, in each case. Every Ψ-image of a letter has length k. In each case, any word of
length 2 can occur in at most one Ψ-image of a letter. It will be useful below to note here
that reading across the Ψ-image of any letter one observes that the a’s and b’s alternate.
This last property still holds when reading across Ψt(a0), for any natural number t.

In case k is odd, Ψ(ai) begins and ends with a’s with some indices and b0 is the second
letter of the image, whereas Ψ(bi) begins and ends with a b’s with some indices and the
beginning is b(k+1)/2. In case k is even, Ψ(ai) always begins with some a and ends with
some b and the second letter is always b0, whereas Ψ(bi) begins with an a and ends with
a b and its second letter is always bk/2.

It is convenient to let b∗ be b(k+1)/2 in the odd case and to let it be bk/2 is the even
case.

The even case differs in no important way from the method described in Lothaire [15].
We will prove that the set comprised of Ψt(a0) as t runs through the natural numbers

avoids every pattern on the alphabet with n letters that is avoidable. This is the same
as proving that every pattern on the alphabet with n letters that is encountered by some
Ψt(a0) is unavoidable—or, what is the same, is reducible to the empty word.

We prove the theorem indirectly. So, in pursuit of a contradiction, we assume the
theorem fails. We pick a word w on no more than n letters that cannot be reduced to the
empty word, with w as short as possible, that is encountered by Ψt(a0) for some natural
number t. For this w, we pick ` as small as possible so that Ψ`+1 encounters w. (Notice
that Ψ0(a0) = a0 and a0 reduces to the empty word.) Finally, we pick a morphism h so
that h(w) is a subword of Ψ`+1(a0).

With h in hand, we pick a system of decisive representatives of the letters in A ∪ B.
These decisive representative can be of only two kinds: aibj and biaj. Just has in the
earlier proof, we have a pattern w′ and a morphism h′ so that w′ is obtained by deleting
all occurrences of some letters from w, and so that h′(w′) is a subword of Ψ`(a0).

In the earlier proof the difficulty was that w′ might have been empty, but here the
difficulty is that the set of letters deleted from w to obtain w′ might not be free for w. So
we need the following lemma.

Lemma B. The pattern w reduces to w′.

Proof. Zimin [26] proved, as Lemma 8 in his paper, a statement that, in the context at
hand, reads

If there is a pattern v and a morphism f so that

• v reduces to w′;

• f(w) is a subword of v;

• ξ is a letter of w not in w′ if and only if no letters of w′ occur in f(ξ),

then w is reducible to w′.

Our task, then, is to provide an appropriate pattern v and an appropriate morphism f .
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Consider any letter ξ that occurs in w. To obtain f(ξ) we modify h(ξ). In h(ξ) we
might find any number of decisive representatives. If some decisive representative is a
subword of h(ξ), consider the leftmost one: xy. To get f(ξ) our first step is to replace xy
by xξy, if x is a bi, and by xyξ if y is a bj. Now say there are r decisive representatives
remaining in h(ξ). We introduce new letters ξi for each i < r and insert them from left
to right within or after each of remaining decisive representatives in h(ξ), just as we did
with ξ itself.

Of course, if ξ was a letter deleted from w, then no decisive representative is a subword
of h(ξ) and in this case f(ξ) = h(ξ). We take v = f(w). At this point, the last two
stipulations in Zimin’s Lemma 8 are fulfilled.

It remains to show that v reduces to w′. Observe that in v

• each occurrence on an ai is followed, if at all, by a bj,

• each occurrence of a bi is followed, if at all, by either an aj or by some ξ, perhaps
with a subscript.

• each occurrence of a ξ (even those with subscripts) is followed, if at all, by an aj.

It follows that in the adjacency graph of v, the only edges from vertices in the set A of
the left alphabet have their other vertices in the set B of the right alphabet. Also, the
only edges from vertices in the set B of the right alphabet have their other vertices in
the set A of the left alphabet. Therefore, the set A is free for v. So delete this free set to
obtain the word v′.

Now v′ is made up of b’s with certain subscripts and the various ξ’s that we inserted
as well as their subscripted versions. The unsubscripted ξ’s are exactly the letters of w′

and they occur in v′ exactly as they occur in w′. To obtain w′, as we desire, all we have
to do is delete the b’s and the subscripted versions of the ξ’s from v′. There are three
points that make this possible. First, the b’s occur in order, as their indices cycle modulo
k. Second, between any occurrence of a ξ (perhaps with subscripts) and the next one
(perhaps a different one) to the right, either b0 or b∗ must occur and if one of these occurs
then the other does not. Third, the subscripted ξ’s occur in the order of their subscripts.
This means that in the adjacency graph of v′ we have edges of the following kinds: edges
from bi in the left alphabet to bi+1 in the right alphabet, where the +1 in the subscripts is
computed modulo k; we also have some edges between b’s in the left alphabet and ξ’s in
the right, as well as edges from ξ’s in the be left alphabet to b’s in the right. This means
that each singleton {bi} is free for v′. Let us delete b1, resulting in v′′. The adjacency
graph of v′′ has the properties just mentioned (unless bi = b∗) so again all the singletons
of the remaining b’s are free. So deleting the singletons one after another we can reduce
v′ to v∗, where the only b’s remaining are b0 and b∗. In v∗ these now alternate with the
ξ’s. So in the adjacency graph of v∗ there are only edges from the b’s in the left alphabet
to certain ξ’s in the right alphabet and edges from certain ξ’s in the left alphabet to b’s
in the right alphabet. This means {b0, b∗} is free from v∗. Deleting this free set results in
v◦. It remains to delete from v◦ the subscripted versions of the ξ’s. But just as the with
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the bi’s above, each singleton is a free set and we can delete these one at a time, since the
freeness of the remaining singletons will persist from step to step. .

Putting the reductions together, we see that v reduces to w′. According to Zimin, w
must also reduce to w′, proving our lemma.

With the Lemma B in hand, we see that w reduces to w′. By the minimality in the
choice of w we see that the length of w and the length of w′ must be the same. This means
that no letters have been deleted. But then w = w′ and we see that Ψ`(a0) encounters w
(with the help of h′). This violates the minimality in the choice of `. At last, this is the
contradiction needed to complete our indirect proof of the theorem.

What was actually accomplished in this proof was that every word w of n or few letters
that is encountered by any ΨT (a0) is reducible to the empty word. Every unavoidable w
must be encountered in this way. So every unavoidable word reduces to the empty word.
So this is also a proof of one direction of the Characterization Theorem.

The bound 2(n + 2) given in this theorem might not be the best. That coefficient 2
at the front can be attributed to the way in which the reductions were constructed in the
proof of Lemma B. At least the most transparent attempts to use graceful words lead
to adjacency graphs that have large portions that are complete bipartite graphs. Such
graphs simply do not provide enough free sets to support the needed reductions. But it is
conceivable that some other part of graph theory will provide the means to improve this
bound.

4 Concluding Comment

Loosely speaking the first proof in this paper was obtained by combining Mel’nichuk’s
method with the graceful numbering of left-directed paths with an even number of vertices.
The second proof amounts to a very small alteration in her method. So the imprint of
Irina Mel’nichuk’s thinking is heavy in the paper before you.

Note Added in Proof

Since this article was accepted two things happened that deserve mention.
In connection with the Global Avoidability Theorem for Doubled Patterns on n Let-

ters, Pascal Ochem has kindly shared with me his method to handle the exceptional case
n = 4. The upshot of his method is the best possile bound in this case: n+1. His method
relies on an application of the Perron-Frobenius Theorem and Moulin Ollagnier’s 1992
article [19] that the set of words on the 5-letter alphabet that have repetition index 5

4
is

infinite. This is an adaptation of ideas in Ochem’s 2016 article [21].
In connection with the Global Avoidability Theorem for Avoidable Words on n Letters,

after several years I was finally able to make contact with Irina Mel’nichuk. She very kindly
shared with me a manuscript that she had prepared in 1996 but had never brought to final
publication. In that mansucript, Mel’nichuk gave exactly the same theorem. While our
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two proofs share something in common, they differ in important ways—indeed, Mel’nichuk
actually proves a smaller bound in the case n is even. Her article is now available on the
arXiv as [18].
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