
Deferred on-line bipartite matching

Jakub Kozik∗ Grzegorz Matecki†

Theoretical Computer Science
Faculty of Mathematics and Computer Science

Jagiellonian University in Kraków, Poland

Jakub.Kozik@tcs.uj.edu.pl Grzegorz.Matecki@tcs.uj.edu.pl

Submitted: Dec 3, 2015; Accepted: Apr 24, 2018; Published: May 11, 2018

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We present a new model for the problem of on-line matching on bipartite graphs.
Suppose that one part of a graph is given, but the vertices of the other part are
presented in an on-line fashion. In the classical version, each incoming vertex is
either irrevocably matched to a vertex from the other part or stays unmatched
forever. In our version, an algorithm is allowed to match the new vertex to a group
of elements (possibly empty). Later on, the algorithm can decide to remove some
vertices from the group and assign them to another (just presented) vertex, with
the restriction that each element belongs to at most one group. We present an
optimal (deterministic) algorithm for this problem and prove that its competitive

ratio equals 1− π/ cosh(
√
3
2 π) ≈ 0.588.

Mathematics Subject Classifications: 68W27, 05C70, 05C85

1 Introduction

A number of task-server assignment problems can be modelled as finding a match in a
bipartite graph G = (U,D,E). The vertices of one part (set D) correspond to servers,
and the vertices of the other part (set U) correspond to tasks. An edge between a task
and a server indicates that the server is capable of performing the task. In a simple
setting where a single server can perform at most one task, the problem of maximising
the number of performed tasks is reduced to finding a maximum matching. However, in
real-life applications, it is very common that not all tasks are known a priori, and some
decisions about the assignments have to be made with no knowledge about the future
tasks. A simple model for this situation is on-line bipartite matching. In this setting,

∗Partially supported by the Polish National Science Centre UMO-2011/03/D/ST6/01370.
†Partially supported by the Polish National Science Centre 2011/03/B/ST6/01367.

the electronic journal of combinatorics 25(2) (2018), #P2.24 1

the servers are known from the beginning, and the tasks are revealed one by one. The
decision about the assignment of each task has to be made just after its arrival and cannot
be changed in the future. Suppose that there are k servers, and that k tasks are going to
be revealed. It is easy to show that it is possible to present the tasks in such a way that
the constructed assignment matches at most dk/2e tasks, whereas it would be possible
to match all the tasks if they were revealed all at once. On the other hand, any greedy
strategy guarantees that at least half of the tasks will be assigned. These observations
imply that the competitive ratio of the on-line bipartite matching problem equals 1/2.

In their classical contribution, Karp, Vazirani and Vazirani [18] took an approach in
which the graph to be presented is fixed before the first task is revealed. In particular, the
graph does not depend on the decisions of the assigning algorithm. While the approach
does not make any difference for the worst-case analysis of the algorithm, it provides a
framework for analysing randomised algorithms. The authors presented a randomised
algorithm, which constructs a matching with the expected competitive ratio of at least
1−1/e (the original paper [18] contained a mistake, which was corrected in [14]; see also a
simplified exposition [5]). The result is the best possible among all randomised algorithms.
The approach of [18] has been applied to many variants of the original problem, with nu-
merous practical applications (the switch routing problem [1, 3], on-line auctions [19], the
Adwords problem [9, 14, 21], etc.) Recently, the problem of on-line stochastic match-
ing [4, 12, 17, 19, 20], where the competitive ratio can be greater than 1− 1

e
, has attracted

a deep interest. A different approach (called b-matching) is presented in [16], where the
authors allowed a server to perform up to b tasks at the same time. They showed an
optimal deterministic algorithm with a competitive ratio of 1 − 1

(1+ 1
b
)b

(which tends to

1− 1
e

with b→∞).
It is not uncommon for the cost of a running server to be roughly the same as the

cost of an idle one. Consequently, it may be profitable to perform some task on many
servers simultaneously. In order to capture this situation, we allow an algorithm to as-
sign more than one server to an incoming task, and later in the future, to forgot some
calculations and switch the freed servers over to new tasks. One server is assumed to
be enough to complete a task. In this model, called deferred (on-line) matching, an al-
gorithm can improve performance by delaying some decisions concerning which server
should accomplish which task. We present an algorithm that always matches at least
(1− π/ cosh(

√
3
2
π))n+ o(n) ≈ 0.588n+ o(n) vertices, when n is the size of the maximum

matching in the presented graph.
This type of approach was first introduced by Felsner in [13] as an adaptive general-

isation of the on-line chain partitioning problem. In this problem, an algorithm has to
partition into chains a partial order whose vertices are presented in an on-line manner.
Felsner proposed a variant in which each incoming vertex can be initially assigned to sev-
eral chains and later withdrawn from some of these chains, unless only one chain remains.
This modification gives more freedom to a partitioning algorithm but, the classical be-
haviour whereby just one chain is used for each new vertex is still allowed. Interestingly,
as reported in [6], no adaptive algorithm has been proved to essentially outperform the
best non-adaptive algorithm and, in both cases, the best lower bounds for the number

the electronic journal of combinatorics 25(2) (2018), #P2.24 2

of used chains are roughly twice the width of the presented partial order. It seems chal-
lenging to verify whenever the adaptive (deferred) approach to chain partitioning enables
more efficient on-line algorithms.

1.1 Further related work

The problem of b-matching [16] seems similar to deferred matching in which the roles of
servers and tasks are switched. However, in the deferred matching, an algorithm always
ends up with each server performing at most one task, while b-matching allows a server
to perform many tasks.

Another similar approach is proposed by Feldman et al. [11] as free disposal. They
consider the weighted matching problem, in which each incoming vertex (server) u ∈ U
can be assigned to one of its neighbours (in D) or left alone. All vertices of D (tasks)
are given in advance (the roles of servers and tasks are switched). Tasks are allowed
to be assigned to servers multiple times. In the end, each task d ∈ D chooses at most
n(d) servers from all the vertices of U assigned to it – the ones with the highest-weighted
edge. The numbers n(d) (for d ∈ D) are given in advance and can be interpreted as the
maximum number of times the realization of the task brings a profit. The main difference
from the deferred matching is that once a connection between a server and a task is
established, it cannot be changed until the very end. In deferred matching, a server may
drop its task and take on a new one during the on-line process.

The idea of dropping an edge from already-constructed matching is investigated in the
pre-emptive model. Here, edges with weights are incoming on-line, and an algorithm is
allowed to remove previously accepted edges in order to add a new one. A collection of
results from pre-emptive matching can be found in [8, 10].

An approach where a task (with a given weight) can be assigned to multiple servers
and, therefore, each server can run many tasks was already studied in [2]. The goal here
is to minimise the maximum load (the sum of the weights of all tasks assigned to a server)
of all servers. Furthermore, assignment decisions may not be changed in the future. The
authors prove that the best competitive ratio is O(log n), where n is the number of servers.
In deferred matching, we are not interested in the load of each server that may change (it
can only decrease) during the process (assuming that weights are equal to 1). However,
we explicitly forbid the load of a server to be greater than α, and our results depend on α.

In most papers about on-line bipartite matching, decisions made by an algorithm are
irrevocable. Some authors allow a limited number of reassignments (see [7, 15]), and
analyse the strategies that minimise the reassignments.

1.2 Problem definition

For a positive integer α, the deferred α-matching game is played in rounds between the
Scheduler and the Builder. They play on a bipartite graph, say G = (U,D,E). The set
of vertices D is known in advance, and set U (with its neighbouring edges) is revealed
step-by-step by the Builder within a finite number of rounds. Each round consists of three
steps:

the electronic journal of combinatorics 25(2) (2018), #P2.24 3

(R1) Builder presents a vertex u ∈ U and reveals all its neighbours N(u) = {d ∈ D :
(u, d) ∈ E} ⊆ D.

(R2) Scheduler assigns to u a set m(u) ⊆ N(u) with a maximum size of α.

(R3) Scheduler updates m(x) := m(x) \m(u) for every vertex x presented before.

The size of the game, denoted by n, is the maximum size of a matching in G. The
final function m is called the multi-match constructed by the Scheduler. We allow α
to amount to infinity, in which case the game is called deferred ∞-matching or simply
deferred matching.

The goal of the Scheduler is to maximise the number k of non-empty sets m(u) over
all vertices u ∈ U . Intuitively, every such vertex u can be successfully matched with an
arbitrarily chosen d ∈ m(u). The number k denotes the size of the multi-match constructed
by the Scheduler. The goal of the Builder is to make k as small as possible.

The interpretation of the deferred α-matching game in terms of servers-tasks assign-
ment is clear: D is the set of servers, U is the set of incoming tasks. An algorithm assigns
the servers m(u) to an incoming u (possibly cancelling the previous computations of the
servers in m(u)). The performance of the Scheduler is measured through the number (or
the fraction) of the tasks are performed at the end of the game. Note that for α = 1, the
game is reduced to the classical on-line bipartite matching.

Let A be the assigning algorithm. We denote by valA(n) the worst-case value of the
size of the multi-match constructed by A in all possible games of size n. The value of
the deferred α-matching problem valα(n) is the maximum value of valA(n) among all
α-assigning algorithms A. Since no algorithm produces a multi-match larger than n,
we additionally use the competitive ratio defined as lim infn→∞ valα(n)/n. Similarly, the
competitive ratio of the algorithm A is lim infn→∞ valA(n)/n.

1.3 Main results

To solve the problem of on-line deferred α-matching we consider a deterministic algorithm
called α-BALANCED. In one round, for the presented vertex u, the algorithm successively
enlarges the new matching set m(u), possibly diminishing previously mapped sets, as long
as |m(u)| does not exceed the size of any diminished sets. It is greedy in the sense that no
task is rejected as long as it is possible to perform. The main idea of the algorithm is to
locally balance the sizes of the assigned sets. The details of the algorithm are described
in Section 3. The main result of our work is the proof that α-BALANCED is the best
possible algorithm.

Theorem 1. α-BALANCED is an optimal strategy for the Scheduler in the deferred
α-matching game.

The proof is split into two parts, described in the two subsequent sections. The

the electronic journal of combinatorics 25(2) (2018), #P2.24 4

following schema of a system of inequalities is crucial for both arguments:
(1 + α)x0 6 n,
(x0 + · · ·+ xi)(1 + xi) 6 n− i, i = 1, . . . , k,
x1 > x2 > · · · > xk > 0,
x0 + · · ·+ xk > 0.

(1)

We will operate on fixed n and α. Thus, the schema is parametrised by a positive
integer k. We say that a pair (k, x) satisfies system (1) if x = (x0, x1, . . . , xk) is an integer
vector satisfying the instance of the schema for this particular k.

In Section 2, we prove (Proposition 4) that for every solution (k, x) of (1), every
deferred α-matching algorithm A can be limited by the Builder’s strategy in a game of
the size n, so that A matches at most n− (x0 + · · ·+ xk) vertices. On the other hand, in
Section 3, we show (Proposition 5) that when α-BALANCED constructs a multi-match
of size k in a game of size n, then k = n − (x0 + · · · + xk) for some (k, x) satisfying (1).
These two facts ensure that α-BALANCED is an optimal strategy for Scheduler.

In order to determine the competitive ratio of α-BALANCED, we need to maximise
the sum x0 + · · ·+ xk over all feasible solutions (k, x) of (1). In Section 4 we present and
solve a linear programming formulation of (1). Finally, we prove

Theorem 2. The competitive ratio of the deferred on-line α-matching problem on bipartite
graphs equals 1− α

1+α

∏α−1
i=1

i+i2

1+i+i2
. For α→∞, it converges to 1− π/cosh

√
3π
2
≈ 0.588.

The ratio converges fast, we obtain 5/9 ≈ 0.556 and 4/7 ≈ 0.571 for α = 2 and α = 3,
respectively.

2 Worst case scenario

Inequalities (1) allow x0 to be negative. We start with an observation that in order to
maximise the sum x0+ · · ·+xk, it suffices to consider the solutions of (1) with x0 =

⌊
n

1+α

⌋
.

Proposition 3. For any pair (k, x) satisfying (1), there exists a pair (k, x′) satisfying (1),
such that x′0 =

⌊
n

1+α

⌋
and x′0 + · · ·+ x′k > x0 + · · ·+ xk.

Proof. For the case in which x1 = 0, take x′0 =
⌊

n
1+α

⌋
, x′1 = · · · = x′k = 0 to observe that

x0 + · · ·+ xk = x0 6
⌊

n
1+α

⌋
= x′0 + · · ·+ x′k.

From now on, we shall assume that x1 > 0. The proposition is proved by induction on
the number m =

⌊
n

1+α

⌋
− x0. The base case of m = 0 (where x0 =

⌊
n

1+α

⌋
) is immediate,

as we can simply take x′ = x. For the induction step, let m > 0. It is equivalent to
x0 <

⌊
n

1+α

⌋
. Let j be the highest index for which xj = x1. Then, consider the following

sequence (x̄0, . . . , x̄k): x̄0 = x0 + 1, x̄j = xj − 1 and x̄i = xi for all i /∈ {0, j}. First, we
need to test whether the pair (k, x̄) satisfies (1). The condition m > 0 implies that

x̄0 = x0 + 1 6

⌊
n

1 + α

⌋
. (2)

the electronic journal of combinatorics 25(2) (2018), #P2.24 5

The definition of j guarantees that xj > xj+1 as long as j < k. Therefore, x̄j > x̄j+1, and
indeed,

x̄1 > . . . > x̄k. (3)

For all i > j, we have x̄0 + · · ·+ x̄i = x0 + · · ·+ xi, and thus

(x̄0 + · · ·+ x̄i)(1 + x̄i) 6 (x0 + · · ·+ xi)(1 + xi) 6 n− i, (4)

and
x̄0 + · · ·+ x̄k = x0 + · · ·+ xk > 0. (5)

For 0 < i < j, we arrive at

(x̄0 + · · ·+ x̄i)(1 + x̄i) = (x0 + · · ·+ xi + 1)(1 + xj) 6

6 (x0 + · · ·+ xj−1 + xj)(1 + xj) 6 (6)

6 n− j < n− i.

Inequalities (2)-(6) imply that (k, x̄) does, indeed, satisfy (1). Next, observe that for (k, x̄)
there is a pair (k, x′) satisfying (1) such that x′0 =

⌊
n

1+α

⌋
and x′0 + · · ·+x′k > x̄0 + · · ·+ x̄k.

It has already been proved for x̄1 = 0, and the case x̄1 > 0 is given through the induction
hypothesis, since 0 6

⌊
n

1+α

⌋
− x̄0 < m. Finally, with (5), we obtain x′0 + · · · + x′k >

x0 + · · ·+ xk, and through the induction hypothesis, we end the proof.

Proposition 4. For any pair (k, x) satisfying (1), there exists a strategy for the Builder in
the deferred α-matching game of size n such that any Scheduler constructs a multi-match
with a size of at most n− (x0 + · · ·+ xk).

Proof. Assume for a moment that the proposition is true whenever x0 > 0. For the case
x0 < 0, by Proposition 3, there is a pair (k, x′), such that x′0 > 0 and

n− (x′0 + · · ·+ x′k) 6 n− (x0 + · · ·+ xk). (7)

Thus, for (k, x′), we obtain a Builder’s strategy S that force the Scheduler to use at most
n− (x′0 + · · ·+ x′k) vertices for its match mapping. By (7), we can use the strategy S for
the pair (x, k) with x0 < 0.

The above argument shows that it is enough to consider pairs with x0 > 0. Without a
loss of generality, we assume that xk > 0 and describe a strategy for the Builder that does
not allow the Scheduler to construct a multi-match larger than n− (x0 + · · ·+xk). During
the game, the Builder presents a bipartite graph G = (U,D,E) with |U | = |D| = n and
maintains an auxiliary structure: a partition of U = U0∪U1∪ . . .∪Uk ∪R and a partition
of D = D0 ∪D1 ∪ . . . ∪Dk ∪ S, such that

|U0| = |D0| = x0,

|Ui| = |Di| = 1 + xi, for i = 1, . . . , k,

N(ui) = D − (D0 ∪ . . . ∪Di−1), for each ui ∈ Ui, (8)

N(r) = S, for each r ∈ R. (9)

the electronic journal of combinatorics 25(2) (2018), #P2.24 6

Note that (1) guarantees that x0 + · · · + xk 6 n − k and thus
∑k

i=0 |Ui| =
∑k

i=0 |Di| 6
x0 +

∑k
i=1(1 + xi) 6 n. Therefore, |R| = |S| > 0. It is clear that any bipartite graph that

can be partitioned in such manner contains a perfect matching.
The strategy of the Builder is divided into k + 2 phases enumerated from 0 to k + 1.

Figure 1 depicts the evolution of the strategy described below for α = 2, n = 18 and
k = 2. In the beginning of the i-th phase (0 6 i 6 k), the sets Uj and Dj, for j < i
are already fixed. Next, during the i-th phase, the Builder presents 1 + xi vertices (or
x0 vertices when i = 0), which form the set Ui with their neighbourhoods defined by (8).
Then, the Builder chooses in a special manner the set Di ⊆ D − (D0 ∪ . . . Di−1) with a
size of 1 + xi (or a size of x0 if i = 0). This concludes phase i. In the last phase of the
game (i.e. phase k+ 1), the Builder presents a set R with a size of n− k− (x0 + · · ·+ xk)
with vertices adjacent to all vertices in S = D −

⋃k
i=0Di.

We now only need to define the Builder’s choice of Di. For that, after each phase i
(0 6 i 6 k), the Builder maintains the following:

(?) there are i distinct vertices y1, . . . , yi ∈ U0 ∪ . . . ∪ Ui such that m(u) ∩
⋃i
j=0Dj = ∅

for all u ∈ (U0 ∪ . . . ∪ Ui) \ {y1, . . . , yi}.
Observe that, for a fixed X ⊆ D and a fixed u ∈ U , once the condition X ∩m(u) = ∅
is satisfied, it will stay so to the end of the game, as m(u) may only shrink later on in
the game. We prove by induction that choosing such Di is possible in every phase by
successively finding the correct yi’s.

For i = 0, the Builder chooses1 any D0 ⊆ D−m(U0) with a size of x0, which is possible
since |D −m(U0)| > n− αx0 > x0 (because |m(u)| 6 α for all u ∈ U0, and through (1)).
Thus, D0 ∩m(u) = ∅ for all u ∈ U0, as required.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

7
8

9
10

11
12

13
14

15
16

17
18 17 15 13 11

U0

D0

U1

D1

U2

D2

R

S

y1 y2

Figure 1: Sample construction of the solution x = (6, 1, 1) of (1) with n = 18 and α = 2.
Note that N(U0) = D, N(U1) = D −D0, N(U2) = D2 ∪ S and N(R) = S. The numbers
under the vertices of the bottom part represent their names. The numbers in the upper
part correspond to sets m(u) (e.g. m(y1) = {7, 8}).

For 1 6 i 6 k, we assume that (?) holds for the vertices Y = {y1, . . . , yi−1} after the
(i − 1)-th phase. Let U ′ = U0 ∪ . . . ∪ Ui and D′ = D − (D0 ∪ . . . ∪ Di−1). First, note

1Let m(X) =
⋃

x∈X m(x) for a set X.

the electronic journal of combinatorics 25(2) (2018), #P2.24 7

that m(U ′ − Y) ⊆ D′ through the (?)-property after the (i − 1)-th phase. We split the
vertices in D′ into two (disjointed) blocks: D′ = m(U ′ − Y) ∪X, where X is simply the
set of all unmatched vertices in D′. Next, with |U ′| = x0 + · · · + xi + i, |Y | = i − 1 and
|D′| = n− (x0 + · · ·+ xi−1 + i− 1), we set a lower bound on the average size of m(u) for
u ∈ U ′ − Y :

|m(U ′ − Y)|
|U ′ − Y |

=
|D′| − |X|
|U ′| − |Y |

=
n− i− |X| − (x0 + · · ·+ xi−1 − 1)

x0 + · · ·+ xi + 1
(1)

>
(x0 + · · ·+ xi)(1 + xi)− |X| − (x0 + · · ·+ xi−1 − 1)

x0 + · · ·+ xi + 1

= xi +
1− |X|

x0 + · · ·+ xi + 1
> xi − |X| .

Clearly, there must exist a vertex yi ∈ U ′ − Y with |m(yi)| > |m(U ′−Y)|
|U ′−Y | > xi − |X|. Since

all of the values are integers, we have |X| + |m(yi)| > 1 + xi. The Builder picks for Di

any subset of X ∪m(yi) with a size of 1 + xi, and hence keeps the property (?) satisfied
after the i-th phase.

Based on the condition (?), after the k-th phase, there is Y = {y1, . . . , yk} such that
D−S and m(u) are disjoint for all u ∈ U −Y . Therefore, whenever m(u) 6= ∅, for u ∈ U ,
then either u ∈ Y or m(u) ⊆ S. This means that the number of such u’s is at most
|Y |+ |S| = k+n− (|D0|+ · · ·+ |Dk|) = n− (x0 + · · ·+ xk). Consequently, the size of the
multi-match produced by the Scheduler is at most n− (x0 + · · ·+ xk).

3 The best matching algorithm

To describe the main algorithm, we shall introduce certain useful definitions. Consider a
deferred α-matching algorithm. Its (partial) multi-match produced at the end of round t
is denoted by mt : U → P(D). In particular, for the u ∈ U that is presented in round t0,
we have mt(u) = ∅ for t < t0, and subsequently (mt0(u),mt0+1(u), . . . ,mT (u)) is a weakly
decreasing (see rule ((R3))) sequence of sets, i.e. mt0(u) ⊇ mt0+1(u) ⊇ . . . ⊇ mT (u).
After the last round (i.e. round T) the function mT is equal to the function m.

At a round t in which a vertex u ∈ U is presented, we say that d ∈ D is available for
u if d ∈ N(u) and mt−1(x) 6= {d} for any x presented earlier. Furthermore, d is strongly
available for u if it is available for u and d does not belong to any mt−1(x). Vertex e ∈ U
is ready for u if mt−1(e) contains an element that is available for u. See Figure 2 for an
example.

We present an algorithm for the Scheduler called α-BALANCED. Suppose that a
vertex u is presented in round t, and let Ut be the set of vertices presented so far (including
u). The function mt−1 defined on Ut−1 is already known, and the algorithm has to
construct the function mt defined on Ut. The algorithm initially assigns mt(x) := mt−1(x)
for all x ∈ Ut−1 and sets mt(u) := ∅. Then, the set mt(u) is increased, one element at a
time, until a certain condition is satisfied. During the process some other sets mt(x) may
be decreased. The precise description is listed in Algorithm 1.

the electronic journal of combinatorics 25(2) (2018), #P2.24 8

1 2 3 4

u1
m(u1) = {2, 3}

u2
m(u2) = {4}

u
N(u1) = {1, 2, 3, 4}
N(u2) = {4}
N(u) = {1, 2, 3, 4}

Figure 2: Sample graph for when a vertex u is presented. Element 1 is strongly available,
and both 2 and 3 are (just) available for u. Element 4 is not available for u. Vertex u1 is
ready for u.

Algorithm 1: α− BALANCED(u) - round t

1 let mt := mt−1

2 let mt(u) := ∅
3 pick up at most α strongly available elements for u and put it into mt(u)
4 while there exists a vertex e ∈ U that is ready for u and satisfies∣∣mt(u)

∣∣+ 2 6
∣∣mt(e)

∣∣
do

5 from the set of all such vertices pick e with maximal size of mt(e)
6 move one vertex available for u from mt(e) to mt(u)

The condition in line 3 guarantees that the size of mt(u) is never greater than α. Note
also that α-BALANCED never leaves mt(u) empty if there exists an element available
for u; thus, in this respect, α-BALANCED can be considered as greedy. For α = 1, the
above algorithm is just a simple greedy construction of a bipartite matching.

The following proposition describes the performance of α-BALANCED.

Proposition 5. The size k of the multi-match produced by α-BALANCED in a deferred
α-matching game with a size of n equals n − (x0 + x1 + · · · + xk) for a certain pair
(k, (x0, . . . , xk)) satisfying (1).

Proof. Consider an instance of the matching game with a size of n in which the Builder
produced the graph G = (U,D,E), and α-BALANCED algorithm constructed the multi-
match m : U → P(D). Suppose that T rounds have been played in the game. The
presentation time of an element u ∈ U is the index of the round in which u has been
revealed.

Let X be the set of all vertices in D such that m(U) ∩X = ∅. The size of the multi-
match produced by α-BALANCED is equal to the size of Y = {u ∈ U : m(u) 6= ∅}. The
proof of the proposition requires the following claims.

Claim 6. Suppose that x 6= y, mt1(x)∩mt2(y) 6= ∅ and t1 < t2, then |mt1+1(x)| > |mt2(y)|.

the electronic journal of combinatorics 25(2) (2018), #P2.24 9

Proof. We will prove the claim by the induction on t2−t1. For the induction base suppose
that t2 = t1 +1. This means that during round t2, the α-BALANCED algorithm removed
(at least) one element from mt2(x) and inserted it into mt2(y). Let d ∈ mt1(x)∩mt2(y) be
the last such element (see Figure 3). This only happens when the condition from line 4
of the algorithm is satisfied, and x is a vertex with the maximum size of the assigned set
among the vertices ready for y. Let s be the size of the set assigned to x at that moment
(in terms of Algorithm 1, this is |mt2(x)|). Clearly, |mt1(x)| > s, since |mt1(x)| is the size
of the set assigned to x in the beginning of round t2, and since that set can only become
smaller during the round. Furthermore, s − 1 = |mt1+1(x)|, since element d was the last
one removed from mt2(x).

The condition from line 4 of α-BALANCED guarantees that the set that has just been
increased has no more elements than the set that has been decreased. That property,
combined with the fact that for any vertex that was ready for y, the assigned set was not
greater than s, gives s > |mt2(y)|. Thus, indeed, |mt1+1(x)| > |mt2(y)|.

For the general case take any d ∈ mt1(x) ∩mt2(y) and consider the last round t > t1,
where d ∈ mt(x). Note that t < t2, since through the assumption, we know that d ∈ mt2(y)
for y 6= x and t2 > t1. Therefore, there is z ∈ U different from x such that d ∈ mt+1(z).
Based on the induction base and the fact that the sizes of the matching sets of fixed u ∈ U
never increase, we obtain |mt1(x)| > |mt1+1(x)| > |mt+1(x)| > |mt+1(z)|. If z = y, then
simply |mt+1(z)| > |mt2(y)|, and the claim follows. The case z 6= y implies that t+1 < t2;
however we also have t2 − (t+ 1) < t2 − t1. Therefore, based on the induction, we obtain
|mt+1(z)| > |mt+2(z)| > |mt2(y)|, which concludes the proof.

This claim has the following interesting consequence: if we focus on a single element
d ∈ D and track the sizes of the matching sets that contain this element during the game,
then these sizes form a non-increasing sequence.

d

x y

d

d
s

|mt1(x)|
s− 1 > |mt2(y)|

Figure 3: Moving element d from m(x) into m(y).

Claim 7. If t is the presenting time of u and N(u) ∩X 6= ∅, then |mt(u)| = α.

Proof. Let d ∈ N(u) ∩ X. By the definition of X, element d is strongly available for
u when u is presented. But d is not chosen in the line 3 of α-BALANCED. It means

the electronic journal of combinatorics 25(2) (2018), #P2.24 10

that there were at least α other strongly available elements for u that had been added to
mt(u). Thus, indeed |mt(u)| = α.

The next claim will allow us to prove that inequalities (1) are satisfied for carefully
chosen (k, (x0, . . . , xk)). We will apply it for quite specific values of Y ⊆ Y (we sort
Y so that the sizes of m(y) do not increase along the list, and the consider prefixes
of the resulting list). However, as this does not seem to simplify the proof, the claim
is formulated for arbitrary Y ⊆ Y. Once it is fixed (see Figure 4), we denote by µ the
minimum size of m(y) for y ∈ Y . Set M ⊂ D consists of elements assigned to the elements
of Y after the game (i.e. M = m(Y)). Finally, set Q ⊂ U consists of all elements that
contain at least one element of M or X in their neighbourhood (in particular, Y ⊂ Q).
Intuitively these are the elements that directly influence the final shape of M .

y1 y2
. . .

yi

X M D −X −M

Q U −QY

m(y1) m(y2) · · · m(yi)

Figure 4: A partition of U and D with a chosen subset Y = {y1, y2, . . . , yi} ⊆ U . Set
M is equal to

⋃
y∈Y m(y). Each element q ∈ Q has a neighbour in M or in X, i.e.

N(q) ∩ (M ∪X) 6= ∅. For element u ∈ U −Q, we have N(u) ⊆ D −M −X.
Recall that x ∈ X iff x /∈ m(u) for all u ∈ U .

Claim 8. For any subset Y ⊆ Y we have

(|Q| − |Y |)(µ− 1) + |M | 6 |D −X| ,

where µ = min{|m(y)| : y ∈ Y },M =
⋃
y∈Y m(y) and Q is the set of all vertices q ∈ U

for which N(q) ∩ (M ∪X) 6= ∅.

Proof. For every element q ∈ Q, we will assign a witnessing set Zq ⊆ D −X, such that

(a) all sets Zq are mutually disjoint,

(b) |Zq| > |m(q)| for q ∈ Y ,

(c) |Zq| > µ− 1 for q ∈ Q− Y .

the electronic journal of combinatorics 25(2) (2018), #P2.24 11

Consequently, the left hand side of the claimed inequality will be the lower bound for the
total count of the witnessing elements, which is

∑
q∈Q |Zq|. This number must be lower

than the total number of the assigned elements, which is the value of the right hand side.
The claim is obvious for µ = 1, since M ∩ X = ∅. We assume that µ > 1. Let

i = |Y | , s = |Q|, and let (q1, . . . , qs) be the enumeration of Q for which the sequence
of the corresponding presenting times (t1, . . . , ts) is strictly decreasing. This means that
q1, . . . , qs are in the reverse of the arrival order. For each qj, we recursively define its
witnessing set as

Zj := mtj(qj)− (Z1 ∪ . . . ∪ Zj−1) ⊆ D −X.
Clearly, these sets are disjoint and consist of elements of D−X; therefore, |Z1|+· · ·+|Zs| 6
|D −X|. All we need to complete the proof now is to show that |Zj| > µ − 1 for all j
(1 6 j 6 s), and Zj ⊇ m(qj) for qj ∈ Y . See (b) and (c).

Suppose first that qj ∈ Y . The set mt(qj) of the elements assigned to qj can only
become smaller after vertex qj has been presented; therefore, we have m(qj) ⊆ mt(qj) for
all t > tj. In particular, for every j′ 6 j− 1, we have tj′ > tj, hence m(qj)∩Zj′ = ∅. This
gives Zj ⊇ m(qj).

Suppose now that qj /∈ Y . Let Rj := (Z1 ∪ . . . ∪ Zj−1) ∩mtj(qj) (so that mtj(qj) =
Zj ∪ Rj). Assume also that |Zj| < α, since otherwise |Zj| = α > µ − 1. Consider two
cases:

qj

d ∈M

u

Zj

mtj (qj)

Zj−1 Z1

Figure 5: Case Rj = ∅ at the round tj. The element d ∈ M is available for qj, but
d ∈ mtj(u) for some u ∈ U .

Case 1: Rj = ∅. Based on Claim 7 and the definition of qj ∈ Q, inequality |Zj| < α
implies that N(qj) ∩ X = ∅ and thus N(qj) ∩M 6= ∅. Let d ∈ N(qj) ∩M . Note that
element d is not strongly available for qj (at the time tj). Otherwise, it would be inserted
into mtj(qj) (knowing that |Zj| < α). However, since after the game d ∈ m(y) for some
y ∈ Y , this would also mean that d ∈ Rj, which contradicts our assumption that Rj = ∅.
Therefore, at the time tj, element d must already belong to mtj(u) for some u ∈ U
presented earlier (see Figure 5).

We show that d is available for qj (at the time tj). At the end of the game m(y) has
the size of at least µ; therefore, based on Claim 6, the sets containing d during the game
were at least of that size. In particular, we have |mtj(u)| > µ > 2 (since µ > 1). It means
that d is indeed available for qj at the time tj.

the electronic journal of combinatorics 25(2) (2018), #P2.24 12

The algorithm in round tj did not select the element d to be assigned to qj; conse-
quently, at the end of the round, the inequality in line 4 of the algorithm was not satisfied.
This means that |Zj| = |mtj(qj)| > |mtj(u)| − 1 > µ− 1.

Case 2: Rj 6= ∅. Let t > tj be the lowest number (the first moment) for which
Rj∩mt(qj) = ∅ (this is a straightforward consequence of the definition that such t exists).
This means that t is the last round in which an element of Rj was removed from the set
assigned to qj, in particular, |Zj| > |mt(qj)|. Consider any element d ∈ Rj ∩ mt−1(qj).
Based on the definition of Zj, there exists a number l < j such that d ∈ Zl ⊆ mtl(ql)
with t− 1 < tl. Based on Claim 6, this means that |mt(qj)| > |mtl(ql)|, thus |Zj| > |Zl|.
Straightforward induction (with Case 1 as basis) gives |Zj| > µ− 1.

We are ready to prove the proposition. Fix any optimal (maximum) matching in
graph G and let F ⊆ D be the set of all elements in D outside the matching. Consider
an enumeration (y1, . . . , yk) of Y such that, for xi = |m(yi)| − 1, we have x1 > x2 > . . . >
xk > 0. Let x′ = |X − F |, f ′ = |F −X| and x0 = x′−f ′. Observe that |F | = f ′+|X|−x′.
This implies that

|D −X| = |D| − |X| = n+ |F | − |X| = n− x0. (10)

To show that (k, (x0, x1, . . . , xk)) satisfies (1), fix 1 6 i 6 k and apply Claim 8 for
Y = {y1, . . . , yi}. Thus, |M | = x1 + · · · + xi + i and µ = xi + 1. Recall that in the
selected optimal matching each vertex in D − F has a unique match in U . Therefore,
|Q| > |M − F |+ |X − F | = |M − (F −X)|+ |X − F | > |M | − f ′ + x′ since M ∩X = ∅,
and thus,

(|M | − i+ x0)(µ− 1) + |M | 6 |D −X| (10)= n− x0,

which can be rewritten as

(x0 + x1 + · · ·+ xi) · (1 + xi) 6 n− i.

To show (1 + α)x0 6 n, we will consider the set Q′ of all vertices q ∈ U for which
N(q)∩X 6= ∅. For each q ∈ Q′ we define s(q) as the set of all strongly available elements
inserted into mt(q), at the time t when q was presented, in line 3 of the algorithm.
Firstly, note that s(q1) and s(q2) are disjoint for distinct q1, q2 ∈ Q′. This is because
s(q) gathers only strong available elements, which will never be strong available elements
again. Secondly, based on Claim 7, we know that |s(q)| = α for each q ∈ Q′.

The above two facts imply that α |Q′| 6 n − x0, since
⋃
q∈Q′ s(q) ⊆ D − X and

through (10). Furthermore, since each element in D − F has a unique match in U , we
have |Q′| > |X − F | = x′ > x0. Therefore, (1 + α)x0 6 n.

To complete the proof, recall that
⋃
y∈Ym(y) = D − X. Thus, x1 + · · · + xk + k =

n−x0, and consequently, the size of the multi-match constructed by the algorithm equals
k = n − (x0 + x1 + · · · + xk). Furthermore, since k cannot be larger than n, we have
x0 + · · ·+ xk > 0.

Combining Proposition 4 and Proposition 5 we finally arrive at Theorem 1.

the electronic journal of combinatorics 25(2) (2018), #P2.24 13

4 Competitiveness of the algorithm

Recall that the worst (minimum) size of the multi-match constructed by α-BALANCED
in any deferred α-matching game with a size of n is denoted by valα−BALANCED(n). To
simplify this notation we use bal(α, n) instead of valα−BALANCED(n). Similarly, for the
competitive ratio of α-BALANCED, i.e. lim infn→∞ bal(α, n)/n, we use the notation
bal(α).

Propositions 4 and 5 imply that in order to determine bal(α, n), it is sufficient to
find a pair (k, (x0, . . . , xk)) that satisfies (1) and maximises

∑k
i=0 xi. Moreover, based on

Proposition 3, we can assume that in the maximising solution, we have x0 = b n
1+α
c. From

now on, we will consider x0 in system (1) as fixed together with n and α.
Consider a pair (k, x) such that xi = xi+1 for some i > 1. If (k, x) satisfies the (i+1)-th

inequality from (1), i.e. (x0 + · · ·+ xi+1)(1 + xi+1) 6 n− (i+ 1), then it also satisfies the
i-th inequality from (1):

(x0 + · · ·+ xi)(1 + xi) 6 (x0 + · · ·+ xi + xi+1)(1 + xi+1) 6 n− (i+ 1) < n− i.

This suggests another representation of the solutions. Let (k, x) be a pair satisfying (1)
with x = (x1, . . . , xk). Note that x is a non-increasing sequence of non-negative integers.
We will assume, without a loss of generality, that xk > 0. Let Y (x) = (y1, . . . , ym), such
that yj = |{i > 0 : 1 + xi = j}|, for j = 1, . . . ,m, and m be such that ym 6= 0. Thus,
yj is simply the number of the (consecutive) entries of x with the value j − 1. Clearly,
m − 1 equals the maximum value of the sequence x. This value is realised in x1, which
gives m = x1 + 1. Consequently, for every i for which xi 6= xi+1, the inequality

(x0 + x1 + · · ·+ xi)(1 + xi) 6 n− i

can be rewritten as

(x0 + (m− 1) · ym + · · ·+ (t− 1) · yt) · t 6 n− (ym + · · ·+ yt),

where t = xi + 1. Thus, the sequence (y1, . . . , ym) belongs to the image of Y whenever it
satisfies the following system of inequalities

Ψn,m(x0) : t · x0 +
m∑
i=t

(1 + (i− 1)t)yi 6 n for t = 1, . . . ,m. (11)

Moreover, since yi > 0, the m-th inequality in (11) implies that

n−mx0 > 0. (12)

On the other hand, having any m > 0 satisfying (12) and any solution (y1, . . . , ym)
of (11), we can easily find (using the definition of the yj’s) a solution (k, x) of (1) such
that x0 + x1 + · · ·+ xk = x0 +

∑m
i=1(i− 1)yi.

The above considerations are summarised in the following proposition.

the electronic journal of combinatorics 25(2) (2018), #P2.24 14

Proposition 9. The minimal size of the multi-match constructed by α-BALANCED in
all deferred α-matching games with a size of n is equal to

bal(α, n) = n− x0 − sup

{
m∑
i=1

(i− 1)yi

}
,

where x0 = bn/(1 + α)c and the supremum is taken over all integers m > 0 such that
n − mx0 > 0 and over all vectors (y1, . . . , ym) of the non-negative integers that satisfy
Ψn,m(x0).

4.1 LP formulation

In order to maximise
∑m

i=1(i − 1)yi, we will consider the following linear program. We
present the primal and the dual formulation.
Primal

maximise:
∑m

j=1
(j − 1)yj

subject to:
∑m

j=i
(1 + (j − 1)i)yj 6 n− ix0, and yi > 0 for i = 1, . . . ,m

Dual

minimise:
∑m

i=1
(n− ix0)zi

subject to:
∑j

i=1
(1 + (j − 1)i)zi > j − 1, and zj > 0 for j = 1, . . . ,m

Let Pi(y) =
∑m

j=i(1 + (j − 1)i)yj and Dj(z) =
∑j

i=1(1 + (j − 1)i)zi. Note that both
systems (Pi(y) = n − ix0)i=1,...,m and (Dj(z) = j − 1)j=1,...,m are quadratic and have
unique solutions. Based on the Complementary Slackness Theorem, these solutions will
be optimal as long as both are non-negative vectors.

To solve the first system, note that Pi+2(y)+Pi(y)−2Pi+1(y) = (1−i+i2)yi−(1+i)2yi+1.
This, together with the initial values for ym and ym−1, lead to

yi = yi+1
(i+ 1)2

1− i+ i2
for i = 1, . . . ,m− 2, (13)

ym =
n−m · x0

1 +m(m− 1)
, ym−1 =

x0 + (m− 1)ym
1 + (m− 1)(m− 2)

. (14)

Through (12), ym > 0, and thus all yi are non-negative.
For the second system observe that Dj+1(z) +Dj−1(z)− 2Dj(z) = (1 + j + j2)zj+1 −

(1− j)2zj. Again, with the initial values for z1 and z2, we arrive at

zj+1 = zj
(j − 1)2

1 + j + j2
for j = 2, . . . ,m− 1,

z1 = 0, z2 = 1/3.

the electronic journal of combinatorics 25(2) (2018), #P2.24 15

Therefore, zi > 0, and, indeed, the above vectors y and z are the optimal solutions for
the primal and the dual LP.

To calculate the target function
∑m

j=1(j − 1)yj, consider a new variable y0 defined
by the additional condition: P0(y) = n. Equation (13) still works for y0. Furthermore,
after combining P0(y) with P1(y), we obtain

∑m
j=1(j − 1)yj = y0− x0. Finally, using (13)

and (14) and after rearrangement, we arrive at

x0 +
m∑
j=1

(j − 1)yj = y0 =
(m− 1)n+ x0

m

m−1∏
i=1

i+ i2

1 + i+ i2
. (15)

4.2 Lower bound

The solution for the LP relaxation of (11) may not be an integer; therefore, with the
solution (15), we only have the following bound:

bal(α, n) > n− sup{y0 : n−mx0 > 0}.

Let F (z,m) = (m−1)+z
m

∏m−1
i=1

i+i2

1+i+i2
. Thus, for fixed m, we obtain y0 = n ·F (x0/n,m).

Note that the function F (z,m) increases with m. For m 6 1/z and F (0,m), it increases
indefinitely with m. Therefore for x0 = bn/(1 + α)c > 0, we have

bal(α, n)/n > 1− max
m6n/x0

F (x0/n,m)

= 1− F (x0/n, bn/x0c)
n→∞−→ 1− F (1/(1 + α), 1 + α), (16)

and for x0 = 0 (this occurs when α > n) the bound is

bal(α, n)/n > 1− lim
m→∞

F (0,m) = 1−
∞∏
i=1

i+ i2

1 + i+ i2
= 1− π

cosh
√
3
2
π
. (17)

4.3 Upper bound

Consider m = min(bn/x0c, lnn), with the assumption that n/x0 is greater than lnn
when x0 = 0, and let (y1, . . . , ym) be the optimal rational solution of Ψn,m(x0). Let
v = (v1, . . . , vm) be such that vi = byic. The vector v contains only non-negative, integer
entries and v 6 y. The shape of the system Ψn,m(x0) guarantees that v also satisfies
Ψn,m(x0). Finally, we have

x0 +
m∑
i=1

(i− 1)vi > x0 +
m∑
i=1

(i− 1)yi −
m∑
i=1

(i− 1).

The definition of m indicates that m = o(n). Therefore, through Proposition 4, we arrive
at

bal(α, n) < n · (1− F (x0/n,m)) +m(m− 1)/2 = n · (1− F (x0/n,m)) + o(n)

the electronic journal of combinatorics 25(2) (2018), #P2.24 16

Hence, for x0 = bn/(1 + α)c > 0 the bound is

bal(α, n)/n < 1− F (x0/n, bn/x0c) + o(1)
n→∞−→ 1− F (1/(1 + α), 1 + α), (18)

and for x0 = 0 we have

bal(α, n)/n < 1− F (0, lnn) + o(1)
n→∞−→ 1−

∞∏
i=1

i+ i2

1 + i+ i2
= 1− π

cosh
√
3
2
π
. (19)

4.4 Competitive ratio

If α is finite, then based on (16) and (18), the ratio of α-BALANCED is equal to bal(α) =

1−F (1
α+1

, α+1). Note that for the case α→∞, F (1/(1+α), 1+α)→ π/cosh
√
3
2
π. Thus,

based on (16-19), we arrive at bal(α) = 1− π/cosh
√
3
2
π. This finally proves Theorem 2.

5 Conclusions and remarks

In the classical on-line matching problem, the randomised approach has a considerable
advantage over the deterministic approach. This paper shows that in the model with the
deferred decisions, the deterministic bounds can be pushed further. It is interesting to
know what can be achieved with randomised strategies.

Problem 10. What is the competitive ratio of the randomised version of the deferred
matching problem?

The authors of [16] consider a variant (called b-matching), in which each server can
perform up to b tasks. The competitive ratio of their optimal algorithm approaches 1− 1

e

with b → ∞, which is a barrier for any randomised matching algorithm (see [18]). We
expect that in our model, it will be possible to break the 1− 1

e
limit in case of b-matching.

Problem 11. What is the competitive ratio of the deferred (α, b)-matching problem?

Note that the underlying graph G of a partial order P with a height of most 2 is
bipartite. The following Claim 12 implies that the problems of finding the maximal
matching of G and finding the minimal chain partition of P are dual.

Claim 12. Let G be a bipartite graph with N vertices. If n is the size of the maximal
matching in G, and w is the size of the maximal independent set in G, then n+ w = N .

This allows the results of this paper to be adopted for the deferred (a.k.a. adaptive)
approach of the on-line chain partition problem (which was mentioned in the introduc-
tion). We only provide the result without the prove, which is only a technical modification
of the proofs in this paper.

Theorem 13. There is an algorithm for the α-adaptive chain partitioning of up-growing
orders with a height of 2, with competitive ratio equal to 1 + α

1+α

∏α−1
i=1

i+i2

1+i+i2
.

For unlimited α, i.e. α→∞, the competitive ratio equals 1 + π/cosh
√
3
2
π ≈ 1.412.

the electronic journal of combinatorics 25(2) (2018), #P2.24 17

References

[1] Yossi Azar and Yoel Chaiutin. Optimal node routing. In Bruno Durand and Wolfgang
Thomas, editors, STACS 2006, volume 3884 of Lecture Notes in Computer Science,
pages 596–607. Springer Berlin Heidelberg, 2006.

[2] Yossi Azar, Joseph Naor, and Raphael Rom. The competitiveness of on-line assign-
ments. Journal of Algorithms, 18(2):221 – 237, 1995.

[3] Yossi Azar and Yossi Richter. Management of multi-queue switches in qos networks.
Algorithmica, 43(1):81–96, Sep 2005.

[4] Bahman Bahmani and Michael Kapralov. Improved bounds for online stochastic
matching. In Proceedings of the 18th annual European conference on Algorithms:
Part I, ESA’10, pages 170–181, Berlin, Heidelberg, 2010. Springer-Verlag.

[5] Benjamin Birnbaum and Claire Mathieu. On-line bipartite matching made simple.
SIGACT News, 39(1):80–87, March 2008.

[6] Bart lomiej Bosek, Stefan Felsner, Kamil Kloch, Tomasz Krawczyk, Grzegorz Matecki,
and Piotr Micek. On-line chain partitions of orders: A survey. Order, 29(1):49–73,
2012.

[7] Kamalika Chaudhuri, Constantinos Daskalakis, Robert D. Kleinberg, and Henry Lin.
Online bipartite perfect matching with augmentations. In INFOCOM 2009, IEEE,
pages 1044–1052, April 2009.

[8] Ashish Chiplunkar, Sumedh Tirodkar, and Sundar Vishwanathan. On randomized
algorithms for matching in the online preemptive model. In Nikhil Bansal and Irene
Finocchi, editors, Algorithms – ESA 2015, volume 9294 of Lecture Notes in Computer
Science, pages 325–336. Springer Berlin Heidelberg, 2015.

[9] Nikhil R. Devenur and Thomas P. Hayes. The adwords problem: online keyword
matching with budgeted bidders under random permutations. In Proceedings of the
10th ACM conference on Electronic commerce, EC ’09, pages 71–78, New York, NY,
USA, 2009. ACM.

[10] Leah Epstein, Asaf Levin, Danny Segev, and Oren Weimann. Improved Bounds for
Online Preemptive Matching. In Natacha Portier and Thomas Wilke, editors, 30th
International Symposium on Theoretical Aspects of Computer Science (STACS 2013),
volume 20 of Leibniz International Proceedings in Informatics (LIPIcs), pages 389–
399, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[11] Jon Feldman, Nitish Korula, Vahab Mirrokni, S. Muthukrishnan, and Martin Pál.
Online ad assignment with free disposal. In Stefano Leonardi, editor, Internet and
Network Economics, volume 5929 of Lecture Notes in Computer Science, pages 374–
385. Springer Berlin Heidelberg, 2009.

[12] Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and S. Muthukrishnan. Online
stochastic matching: Beating 1-1/e. In Proceedings of the 2009 50th Annual IEEE
Symposium on Foundations of Computer Science, FOCS ’09, pages 117–126, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

the electronic journal of combinatorics 25(2) (2018), #P2.24 18

[13] Stefan Felsner. On-line chain partitions of orders. Theoret. Comput. Sci., 175(2):283–
292, 1997.

[14] Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models
with applications to adwords. In Proceedings of the nineteenth annual ACM-SIAM
symposium on Discrete algorithms, SODA ’08, pages 982–991, Philadelphia, PA,
USA, 2008. Society for Industrial and Applied Mathematics.

[15] Anupam Gupta, Amit Kumar, and Cliff Stein. Maintaining assignments online:
Matching, scheduling, and flows. In Chandra Chekuri, editor, Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,
Portland, Oregon, USA, January 5-7, 2014, pages 468–479. SIAM, 2014.

[16] Bala Kalyanasundaram and Kirk R. Pruhs. An optimal deterministic algorithm for
online b-matching. Theoretical Computer Science, 233(1-2):319 – 325, 2000.

[17] Chinmay Karande, Aranyak Mehta, and Pushkar Tripathi. Online bipartite matching
with unknown distributions. In Proceedings of the 43rd annual ACM symposium on
Theory of computing, STOC ’11, pages 587–596, New York, NY, USA, 2011. ACM.

[18] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line
bipartite matching. In Proceedings of the twenty-second annual ACM symposium on
Theory of computing, STOC ’90, pages 352–358, New York, NY, USA, 1990. ACM.

[19] Vahideh H. Manshadi, Shayan Oveis Gharan, and Amin Saberi. Online stochastic
matching: Online actions based on offline statistics. Mathematics of Operations
Research, 37(4):559–573, 2012.

[20] Aranyak Mehta and Debmalya Panigrahi. Online matching with stochastic rewards.
In Proceedings of the 2012 IEEE 53rd Annual Symposium on Foundations of Com-
puter Science, FOCS ’12, pages 728–737, Washington, DC, USA, 2012. IEEE Com-
puter Society.

[21] Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and
generalized online matching. J. ACM, 54(5):no. 5, October 2007.

the electronic journal of combinatorics 25(2) (2018), #P2.24 19

	Introduction
	Further related work
	Problem definition
	Main results

	Worst case scenario
	The best matching algorithm
	Competitiveness of the algorithm
	LP formulation
	Lower bound
	Upper bound
	Competitive ratio

	Conclusions and remarks

