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Abstract

It has been conjectured that automorphism groups of vertex-transitive (di)graphs,
and more generally 2-closures of transitive permutation groups, must necessarily
possess a fixed-point-free element of prime order, and thus a non-identity element
with all orbits of the same length, in other words, a semiregular element. It is the
purpose of this paper to prove that vertex-transitive graphs of order 3p2, where p is
a prime, contain semiregular automorphisms.

Mathematics Subject Classifications: 20B25, 05C25

1 Introduction

It is known that every finite transitive permutation group contains a fixed-point-free
element of prime power order (see [5, Theorem 1]), but not necessarily a fixed-point-free
element of prime order (which is equivalent to existence of a semiregular element) [3, 5].
In 1981 it was asked if every vertex-transitive digraph admits a semiregular automorphism
(see [17, Problem 2.4]). The existence of such automorphisms plays an important role
in solutions to many important open problems in algebraic graph theory, such as, for
example, in the classifications of graphs satisfying certain prescribed symmetry conditions
(see [14, 15, 21, 23, 26]). Semiregular automorphisms have also proved useful in a long
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standing hamiltonicity problem for connected vertex-transitive graphs and in a recently
explored dichotomy of even/odd automorphisms (see [1, 12, 16]).

In 1997 Klin generalized the semiregularity problem conjecturing that every tran-
sitive 2-closed permutation group contains a semiregular element (see [2]) – the term
polycirculant conjecture is sometimes used for the semiregularity problem in this wider
context. (Recall that for a finite permutation group G on a set V the 2-closure G(2)

of G is the largest subgroup of the symmetric group Sym(V ) containing G and hav-
ing the same orbits as G in the induced action on V × V .) The problem has spurred
a lot of interest in the mathematical community producing several partial results. In
particular, Giudici [9] settled the question for quasiprimitive group actions, leaving as
one of the main open cases graphs admitting solvable group actions (see [19]). Further-
more, there have also been a number of papers dealing with semiregularity problem for
vertex-transitive graphs satisfying certain valency and order restrictions (see, for instance,
[3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 20, 22, 24, 25]). For example, it is known that every 2-closed
group of square-free degree admits semiregular elements (see [7]). As for composite non-
square orders the only positive result is, if we disregard prime power orders, that every
vertex-transitive graph of order 2p2, p a prime, admits semiregular automorphisms (see
[20]). It is the object of this paper to prove the existence of semiregular automorphisms in
vertex-transitive graphs of order 3p2, where p is a prime. We hope that this will motivate
further research, leading eventually to the solution of the semiregularity problem in the
case of vertex-transitive (di)graphs of cube-free order.

Theorem 1. A vertex-transitive graph of order 3p2, where p is a prime, admits a semireg-
ular automorphism.

Theorem 1 is proved in Section 2 after a series of propositions each of which considers
vertex-transitive graphs in question with particular (im)primitivity actions of their auto-
morphism groups. A comment is in order. There are two reasons for the restriction to
vertex-transitive graphs in the main theorem. First, in the proof of Theorem 1 we use cer-
tain results from [19], proved within a restricted setting of vertex-transitive graphs. The
second reason is somewhat more philosophical and reflects author’s personal bias. If one’s
goal is a complete solution of the semiregularity problem, then rather than worrying over
the distinction between the original question and its generalization to 2-closed groups,
one should primarily aim at advancements for groups which are not quasiprimitive - say
be it solvable or of particular degrees - even if only in the context of vertex-transitive
(di)graphs.

2 Vertex-transitive graphs of order 3p2

Let us first recall the concept imprimitive groups. Given a transitive permutation
group G on a set V , we say that a partition B of V is a G-invariant if the elements
of G permute the parts, that is, blocks of B, setwise. If the trivial partitions {V } and
{{v} | v ∈ V } are the only G-invariant partitions of V , then G is said to be primitive, and
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is said to be imprimitive otherwise. In the latter case we shall refer to a corresponding G-
invariant partition as to a complete imprimitivity block system, in short an imprimitivity
block system, of G. A transitive permutation group is quasiprimitive if each of its non-
identity normal subgroups is transitive, and is said to be genuinely imprimitive otherwise.
Note that in the latter case there exists an imprimitivity block system of G arising from
orbits of an intransitive normal subgroup of G. A vertex-transitive graph is primitive if
its automorphism group is primitive. Otherwise it is called an imprimitive graph.

The following proposition, proved by Giudici in [9], implies the existence of semiregular
automophisms in a vertex-transitive graph in case its automorphism group is quasiprim-
itive. (A finite transitive permutation group is said to be elusive if it has no semiregular
element.)

Proposition 2. [9] A 2-closed quasiprimitive group is not elusive.

Proposition 2 implies that only those graphs with genuinely imprimitive automorphism
groups need to be considered. In particular, let X be a vertex-transitive graph of order
3p2, where p is a prime. We may assume that there exists an intransitive normal subgroup
N of the automorphism group Aut(X) of X. In fact, we may, without loss of generality,
assume that N is a minimal normal subgroup of Aut(X). The size of the blocks arising
from the orbits of N divides the order of X, and is therefore 3, p, p2 or 3p. The proposition
below was recently proved in [19], where semiregularity in vertex-transitive graphs with a
solvable automorphism group is considered. Note, however, that this particular result does
not require the permutation group to be solvable. The proposition implies the existence
of semiregular automorphisms in X in case the blocks arising from the orbits of N are of
prime size.

Proposition 3. [19, Corollary 2.2] Let G be a permutation group acting transitively on
a set V and let M be a minimal normal subgroup of G having orbits of prime length q on
V . Then G(2) contains a semiregular element of order q.

The remaining two cases, that is graphs whose automorphism groups admit an in-
transitive normal subgroup giving rise to imprimitivity block system consisting of blocks
of size p2 and 3p, are considered in Propositions 6 and 7. For the sake of completeness
we first state the following classical result which will be used in the proofs. It implies
that in a vertex-transitive graph of order 3p2, where p is a prime, the orbits of a Sylow
p-subgroup of the automorphism group are of length p2.

Proposition 4. [27, Theorem 3.4] Let p be a prime and let P be a Sylow p-subgroup of a
permutation group G acting on a set Ω. Let ω ∈ Ω. If pm divides the length of the G-orbit
containing ω, then pm also divides the length of the P -orbit containing ω.

Before considering the remaining two cases let us recall a recent result about existence
of semiregular automorphisms in a vertex-transitive graph with solvable automorphism
group of order mp2, where m satisfies certain conditions. This result implies that only
vertex-transitive graphs of order 3p2 with non-solvable automorphism groups need to be
considered.
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Proposition 5. [19, Theorem 2.4] Let X be a connected vertex-transitive graph of order
p2q, where p and q are primes, and either q 6 p or p2 < q. Then either

(i) X admits a semiregular automorphism, or

(ii) 2 < q < p and Aut(X) is nonsolvable with an intransitive non-abelian minimal
normal subgroup whose orbits are either of length p2 or of length pq.

In the next proposition we consider the case where the blocks of imprimitivity are of
size p2.

Proposition 6. Let p be a prime and let X be a vertex-transitive graph of order 3p2,
where p > 3 is a prime, admitting an imprimitivity block system consisting of three blocks
of size p2 arising from orbits of an intransitive normal subgroup N of Aut(X). Then X
admits a semiregular automorphism.

Proof. We may assume that X is connected as otherwise a semiregular automorphism
in X can be easily constructed via semiregular automorphisms in the connected compo-
nents. Namely, if X is disconnected then its connected components are vertex-transitive
graphs of order 3, p, p2 or 3p, and it is well known that such graphs admit semiregular
automorphisms.

Let B = {A,B,C} be the imprimitivity block system arising from the orbits of N ,
each of length p2. Clearly, in view of Proposition 4, the orbits A, B and C coincide with
the orbits of a Sylow p-subgroup P of Aut(X). Observe also that there must exist an
automorphism π ∈ Aut(X) which cyclically permutes the three blocks in B. We may,
without loss of generality, assume that π|B = (AB C).

The center Z(P ) of the Sylow p-subgroup P is non-trivial and thus there exists a
central element α ∈ Z(P ) of order p. Clearly, for each Y ∈ {A,B,C} either αY is trivial
or αY is semiregular of order p. If α is not semiregular then there are essentially only two
possibilities that need to be considered, depending on the number of orbits Y ∈ {A,B,C}
for which the restriction αY is trivial.

Case 1. αA is semiregular and αB = αC = 1.

Then (παπ−1)B and (π2απ−2)C are semiregular, and

(παπ−1)A = (παπ−1)C = (π2απ−2)A = (π2απ−2)B = 1,

implying that α · παπ−1 · π2απ−2 = (απ)3π−3 is the desired semiregular automorphism.

Case 2. αA = 1, and αB and αC are semiregular of order p.

Recall that B = {A,B,C} consists of orbits of the normal subgroup N . For each Y ∈ B
let K(Y ) = Ker(N → NY ). Then α ∈ K(A), and there exists β ∈ K(B) (without loss of
generality we may assume that β = απ) such that βA and βC are semiregular of order
p. Now consider αβ. Clearly, (αβ)A and (αβ)B are semiregular of order p. We need to
consider the action of αβ on C. Observe that either the orbits of 〈α〉 on C are blocks
of imprimitivity for NC – as K(A) is normal in N and so KC

(A) is normal in NC – or
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K(A) is transitive on C. In the latter case the bipartite subgraphs X[A,B], X[B,C]
and X[A,C] are all isomorphic to the complete bipartite graph Kp2,p2 , and X clearly
admits a semiregular automorphism. (For disjoint subsets U,W of the vertex set V (X)
the subgraph of X induced by the set U is denoted by X[U ], and similarly, the bipartite
subgraph of X induced by the edges having one endvertex in U and the other endvertex
in W is denoted by X[U,W ].) Hence, we may assume that the orbits of 〈α〉 on C are
blocks of imprimitivity for NC . Note that (αβ)C either fixes the orbits of α or cyclically
permutes them. We deal with these two cases in the two subcases below.

Subcase 2.1. (αβ)C fixes the orbits of α.

It follows that the orbits of α and β on C coincide. Denote these orbits by Ci, i ∈ Zp. If
all of the restrictions (αβ)Ci , i ∈ Zp, are of order p then αβ is a semiregular automorphism
of X. If not, then there exists r ∈ Zp such that the restrictions (αβ)Cj are of order p
for j ∈ {r + 1, . . . , p − 1} and are not of order p for j ∈ {0, 1, . . . , r}. We now define a
semiregular automorphism σ of X in the following way:

σ(u) =

{
αβ(u), u ∈ A ∪B ∪ Cr+1 ∪ Cr+2 ∪ . . . ∪ Cp−1
α(u), u ∈ C0 ∪ C1 ∪ . . . ∪ Cr

.

To show that σ is indeed an automorphism of X observe first that the bipartite graph
X[Ci, Cj], where i ∈ {0, 1, . . . , r} and j ∈ {r + 1, . . . , p − 1}, is either isomorphic to
the complete bipartite graph Kp,p or is totally disconnected. Combining this with the
fact that (αβ)B = αB we obtain that σB∪C is an automorphism of the subgraph of X
induced on B ∪ C. To complete the proof we need to check the edges of the induced
bipartite graph X[A,C]. Since for each j ∈ {0, 1, . . . , r} there exists kj coprime with
p such that ((αβ)kj)Cj = 1 if follows that each of the bipartite graphs X[Ai, Cj], where
A = {Ai | i ∈ Zp} is a partition of A into the orbits of β and j ∈ {0, 1, . . . , r}, is either
isomorphic to the complete bipartite graph Kp,p or is totally disconnected. It follows that
σ preserves the edges of X[A,C], and consequently σ is an automorphism of X.

Subcase 2.2. (αβ)C cyclically permutes the orbits of α.

Then either (αβ)C is of order p and clearly semiregular, in which case αβ is a semiregular
automorphism of X. Alternatively, (αβ)C is of order p2 in which case (αβ)p is trivial on
A ∪ B and semiregular of order p on C. In this case take (αβ)pαπ

2
to get the desired

semiregular automorphism.

In the next proposition we deal with blocks of size 3p.

Proposition 7. Let X be a vertex-transitive graph of order 3p2, where p > 3 is a prime,
admitting an imprimitivity block system consisting of p blocks of size 3p arising from
orbits of an intransitive normal subgroup N of Aut(X). Then X admits a semiregular
automorphism.

Proof. We may again assume that X is connected. Let B be the imprimitivity block
system arising from orbits of N . Let P be a Sylow p-subgroup of Aut(X) with orbits
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A, B and C. Observe that each block in B intersects each of A, B and C in exactly p
vertices. We have

A = A0 ∪ A1 ∪ . . . ∪ Ap−1,
B = B0 ∪B1 ∪ . . . ∪Bp−1,
C = C0 ∪ C1 ∪ . . . ∪ Cp−1,

and B = {Yi | i ∈ Zp} where Yi = Ai ∪Bi ∪ Ci.
The center Z(P ) of P is non-trivial and thus there exists a central element α ∈ Z(P )

of order p such that for each Y ∈ {A,B,C} either αY is trivial or αY is semiregular of
order p. If α is not semiregular then there are essentially only two possibilities depending
on the number of orbits Y ∈ {A,B,C} for which the restriction αY is trivial.

Case 1. αA is semiregular of order p, and αB = αC = 1 .

First observe that, since B is an imprimitivity block system, the set of orbits of αA is
equal to the set {Ai | i ∈ Zp}. By [18, Proposition 3.2], every transitive group of degree
p2 contains a regular (abelian) subgroup, and so there exists Q 6 P such that QB is either
a cyclic or an elementary abelian subgroup acting regularly on B. Thus we distinguish
two subcases.

Subcase 1.1. QB ∼= Zp2 .

There exists ρ ∈ Q of order p2 such that ρB is also of order p2 and maps according to the
rule

ρ : Bi → Bi+1, i ∈ Zp.

Further, since Ai ∪ Bi ∪ Ci are blocks of imprimitivity we have that ρ(Ai) = Ai+1 and
ρ(Ci) = Ci+1 for every i ∈ Zp. Let e, f , and g denote the respective orders of ρA, ρB, and
ρC . Then (e, f, g) is one of the following ordered triples:

(p2, p2, p2), (p, p2, p2), (p2, p2, p) or (p, p2, p).

In the first case ρ is semiregular. In the second case αρp is semiregular. In the third and the
fourth case, the existence of automorphisms α and σp implies that each of the bipartite
subgraphs X[Ai, Bj], X[Bi, Cj], and X[Ai, Cj] (i, j ∈ Zp) is either isomorphic to the
complete bipartite graph Kp,p or is totally disconnected. Consequently, any permutation
ω fixing each of Ai, Bi and Ci, i ∈ Zp, set-wise and satisfying the property that ωA,
ωB, and ωC is, respectively, an automorphism of X[A], X[B], and X[C], is in fact an
automorphism of X. As in the case of the orbit B and the subgroup Q 6 P there exists
a subgroup R 6 P such that RC is a regular abelian group. Since Ci, i ∈ Zp, are the
intersections of the blocks Yi, i ∈ Zp, with the orbit C there must exist an automorphism
τ ∈ R fixing these blocks and such that τC is semiregular (and of order p on each Ci).
We now define ω as follows

ω(u) =


α(u), u ∈ A
σp(u), u ∈ B
τ(u), u ∈ C

.
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Clearly, ω is the desired semiregular automorphism of X.

Subcase 1.2. QB ∼= Z2
p.

There exist ρ, σ ∈ Q such that both ρB and σB are of order p. Furthermore, we may assume
that the orders of ρC and σC are either p or 1, for otherwise an argument analogous to
the one used in Subcase 1. 1, with B replaced by C, applies. As for the orders of ρA and
σA they can be 1, p or p2.

We may assume that ρB permutes the sets Bi and that σB fixes the sets Bi. Conse-
quently, ρC permutes the sets Ci, and so ρ is semiregular on both B and C. If ρA is of
order p then it permutes the sets Ai, and so ρA is semiregular, and thus ρ is semiregular.
Hence we may assume that ρA is of order p2. Consider now σ. Clearly, σB is semiregular.
If σC is of order p and semiregular then we are done because we can construct the desired
automorphism ω as follows:

ω(u) =


α(u), u ∈ A
σ(u), u ∈ B
σ(u), u ∈ C

.

The mapping ω is an automorphism of X since each of the bipartite subgraphs X[Ai, Bj]
and X[Ai, Cj] is either isomorphic to the complete bipartite graph Kp,p or is totally
disconnected.

Finally, suppose that σC is not semiregular. In this case apart from the bipartite
subgraphs X[Ai, Bj] and X[Ai, Cj] also any of the induced bipartite subgraphs X[Bi, Cj]
is either isomorphic to the complete bipartite graph Kp,p or is totally disconnected. Recall
that σB is semiregular with orbits Bi. Analogously, we may assume that there exits τ ∈ P
such that τC is semiregular with orbits Ci. Hence the permutation defined by the rule

ω(u) =


α(u), u ∈ A
σ(u), u ∈ B
τ(u), u ∈ C

is a semiregular automorphism of X.

Case 2. αA = 1, and αB and αC are semiregular of order p.

There exists Q 6 P such that QA is abelian and regular, and so either cyclic or elementary
abelian. Observe also that the set of orbits of αB is equal to the set {Bi | i ∈ Zp} and
that the set of orbits of αC coincides with the set {Ci | i ∈ Zp}.
Subcase 2.1. QA ∼= Zp2 .

Note that non-identity elements of P are all of order p or p2. There exists ρ ∈ Q of order
p2 such that ρA is also of order p2. Let σ = ρp. Hence σA is semiregular of order p. We
now analyze possibilities for σB and σC : they are either trivial or semiregular of order p. If
σB and σC are both semiregular then σ is the desired automorphism. If σB = σC are both
trivial then σα is the desired automorphism. Finally, without loss of generality, assume
that σB is semiregular and σC = 1. Then 〈ρ〉B ∼= Zp2 and being contained in 〈α, ρ〉B
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which is abelian (since α ∈ Z(P )), it follows that 〈ρ〉B=〈α, ρ〉B. Therefore αB ∈ 〈ρ〉B. In
particular αB = (ρpj)B, for some j ∈ Z∗p. It follows that αρpj is the desired automorphism.

Subcase 2.2. QA ∼= Z2
p.

There are elements σ, ρ ∈ P such that 〈σ, ρ〉A ∼= Z2
p. Of course, both ρA and σA are

semiregular. Moreover, since the sets {Ai ∪ Bi ∪ Ci}, i ∈ Zp are blocks, we may assume
that ρA maps Ai to Ai+1, and similarly ρB maps Bi to Bi+1 and ρC maps Ci to Ci+1,
whereas σA, σB and σC fix these sets. In particular, this means that σB and σC fix the
orbits of α on B and C. Consider now the action of the conjugates εk = ρ−kσρk (k ∈ Zp)
on B and C. Clearly, εAk = σA. If σ is semiregular on B and C then we are done. If
σ is not semiregular on B then there exists Bi such that σBi = 1. Consequently, every
bipartite subgraph X[Aj, Bi], i, j ∈ Zp, is either isomorphic to the complete bipartite
graph Kp,p or is totally disconnected. Applying the automorphisms εk we see that each of
the bipartite subgraphs X[Aj, Bk] is isomorphic to the complete bipartite graph Kp,p or is
totally disconnected. An analogous argument holds for the case when σ is not semiregular
on C, implying that X[Aj, Ck] is either isomorphic to the complete bipartite graph Kp,p

or is totally disconnected. Then the permutation ω mapping according to the rule:

ω(u) =


σ(u), u ∈ A
α(u), u ∈ B
α(u), u ∈ C

is a semiregular automorphism of X. We are now left with the case where σ is semiregular
on one of the two orbits B and C and not semiregular on the other. Without loss of
generality we assume that σB is semiregular and σC is not semiregular. Then applying
the same argument as above it follows that each of the bipartite subgraphs X[Aj, Ci] and
X[Bj, Ci], j ∈ Zp, is either isomorphic to the complete bipartite graph Kp,p or is totally
disconnected. Applying then the automorphisms εk it follows that the same holds for all
of the subgraphs X[Aj, Ck] and X[Bj, Ck], j, k ∈ Zp. Then the permutation ω mapping
according to the rule:

ω(u) =


σ(u), u ∈ A
σ(u), u ∈ B
α(u), u ∈ C

is the desired semiregular automorphism of X.

We are now ready to prove Theorem 1.

Proof of Theorem 1: Let X be a vertex-transitive graph of order 3p2, where p is a
prime, and let Aut(X) be its automorphism group. If p ∈ {2, 3} then X is of order 12
or 33, and the existence of semiregular automorphisms follows from the fact that X is a
Cayley graph in both of these two cases (see [18]). We may therefore assume that p > 3.

If Aut(X) is quasiprimitive then Proposition 2 implies the existence of semiregular
automorphisms in Aut(X). We may thus assume that Aut(X) is genuinely imprimitive.
Let N be an intransitive minimal normal subgroup of Aut(X), and let B be an Aut(X)-
invariant partition of V (X) arising from the orbits of N . Then the blocks in B are of
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size 3, p, p2 or 3p. If the blocks in B are of prime size then the existence of semiregular
automorphisms is assured by Proposition 3. If the blocks in B are of prime-squared
size then the existence of semiregular automorphisms follows from Proposition 6. If,
however, the blocks in B are of size 3p then semiregular automorphisms in Aut(X) exist
by Proposition 7. �
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