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Abstract

A linear cycle in a 3-uniform hypergraph H is a cyclic sequence of hyperedges
such that any two consecutive hyperedges intersect in exactly one element and
non-consecutive hyperedges are disjoint. Let α(H) denote the size of a largest
independent set of H.

We show that the vertex set of every 3-uniform hypergraph H can be covered by
at most α(H) edge-disjoint linear cycles (where we accept a vertex and a hyperedge
as a linear cycle), proving a weaker version of a conjecture of Gyárfás and Sárközy.

Mathematics Subject Classifications: 05C35, 05C69

1 Introduction

A well-known theorem of Pósa [3] states that the vertex set of every graph G can be
partitioned into at most α(G) cycles where α(G) denotes the independence number of G
(where a vertex or an edge is accepted as a cycle).

Definition 1. A (linear cycle) linear path is a (cyclic) sequence of hyperedges such that
two consecutive hyperedges intersect in exactly one element and two non-consecutive
hyperedges are disjoint.

An independent set of a hypergraph H is a set of vertices that contain no hyperedges
of H. Let α(H) denote the size of a largest independent set of H and we call it the
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independence number of H. Gyárfás and Sárközy [2] conjectured that the following
extension of Pósa’s theorem holds: One can partition every k-uniform hypergraph H into
at most α(H) linear cycles (here, as in Pósa’s theorem, vertices and subsets of hyperedges
are accepted as linear cycles). In [2] Gyárfás and Sárközy prove a weaker version of their
conjecture for weak cycles (where only cyclically consecutive hyperedges intersect, but
their intersection size is not restricted) instead of linear cycles. Recently, Gyárfás, Győri
and Simonovits [1] showed that this conjecture is true for k = 3 if we assume there are
no linear cycles in H.

In this note, we show their conjecture is true for k = 3 provided we allow the linear
cycles to be edge-disjoint, instead of being vertex-disjoint.

Theorem 2. If H is a 3-uniform hypergraph, then its vertex set can be covered by at
most α(H) edge-disjoint linear cycles (where we accept a single vertex or a hyperedge as
a linear cycle).

Our proof uses induction on α(H). However, perhaps surprisingly, in order to make
induction work, our main idea is to allow the hypergraph H to contain hyperedges of size
2 (in addition to hyperedges of size 3). First we will delete some vertices, and add certain
hyperedges of size 2 into the remaining hypergraph so as to ensure the independence
number of the remaining hypergraph is smaller than that of H. Then applying induc-
tion we will find edge-disjoint linear cycles (which may contain these added hyperedges)
covering the remaining hypergraph. It will turn out that the added hyperedges behave
nicely, allowing us to construct edge-disjoint linear cycles in H covering all of its vertices.
The detailed proof is given in the next section.

2 Proof of Theorem 2

We call a hypergraph mixed if it can contain hyperedges of both sizes 2 and 3. A linear
cycle in a mixed hypergraph is still defined according to Definition 1. We will in fact prove
our theorem for mixed hypergraphs (which is clearly a bigger class of hypergraphs than
3-uniform hypergraphs). More precisely, we will prove the following stronger theorem.

Theorem 3. If H is a mixed hypergraph, then its vertex set V (H) can be covered by at
most α(H) edge-disjoint linear cycles (where we accept a single vertex or a hyperedge as
a linear cycle).

Proof. We prove the theorem by induction on α(H). If |V (H)| = 1 or 2, then the
statement is trivial. If |V (H)| ≥ 3 and α(H) = 1, then H contains all possible edges
of size 2 and there is a Hamiltonian cycle consisting only of edges of size 2, which is of
course a linear cycle covering V (H).

Let α(H) > 1. If E(H) = ∅, then α(H) = V (H) and the statement of our theorem
holds trivially since we accept each vertex as a linear cycle. If E(H) 6= ∅, then let P be
a longest linear path in H consisting of hyperedges h0, h1, . . . , hl (l ≥ 0). If hi is of size
3, then let hi = vivi+1ui+1 and if it is of size 2, then let hi = vivi+1. A linear subpath
of P starting at v0 (i.e., a path consisting of hyperedges h0, h1, . . . , hj for some j ≤ l) is
called an initial segment of P . Let C be a linear cycle in H which contains the longest
initial segment of P . If there is no linear cycle containing h0, then we simply let C = h0.
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Let us denote the subhypergraph of H induced on V (H) \ V (C) by H \ C. Let
R = {vkuk | {vk, uk} ⊆ V (P ) \V (C) and v0vkuk ∈ E(H)} be the set of red edges. Let us
construct a new hypergraph H ′ where V (H ′) = V (H)\V (C) and E(H ′) = E(H \C)∪R.
We will show that α(H ′) < α(H) and any linear cycle cover of H ′ can be extended to a
linear cycle cover of H by adding C and extending the red edges by v0.

The following claim shows that the independence number of H ′ is smaller than the
independence number of H. This fact will later allow us to apply induction.

Claim 4. If I is an independent set in H ′, then I ∪ v0 is an independent set in H.

Proof. Suppose by contradiction that h ⊆ (I∪v0) for some h ∈ E(H). Then, clearly v0 ∈
h because otherwise I is not an independent set in H ′. Now let us consider different cases
depending on the size of h∩(V (P )\V (C)). If |h ∩ (V (P ) \ V (C))| = 0 then, by adding h
to P , we can produce a longer path than P , a contradiction. If |h ∩ (V (P ) \ V (C))| = 1,
let h∩(V (P )\V (C)) = {x}. Then the linear subpath of P between v0 and x together with
h forms a linear cycle which contains a larger initial segment of P than C, a contradiction.
If |h ∩ (V (P ) \ V (C))| = 2, then let h ∩ (V (P ) \ V (C)) = {x, y}. Let us take smallest i
and j such that x ∈ hi and y ∈ hj (i.e., if x ∈ hi ∩ hi+1 then let us take hi). If i 6= j, say
i < j without loss of generality, then the linear subpath of P between v0 and x together
with h forms a linear cycle with longer initial segment of P than C, a contradiction.
Therefore, i = j but in this case, {x, y} is a red edge and so at most one of them can be
contained in I, contradicting the assumption that h = v0xy ⊆ (I ∪ v0). Hence, I ∪ v0 is
an independent set in H, as desired.

The following claim will allow us to construct linear cycles in H from red edges.

Claim 5. The set of hyperedges of every linear cycle in H ′ contains at most one red edge.

Proof. Suppose by contradiction that there is a linear cycle C ′ in H ′ containing at least
two hyperedges which are red edges. Then there is a linear subpath P ′ of C ′ consisting
of hyperedges h′0, h

′
1, . . . , h

′
m such that h′0 := vsus and h′m := vtut (where s > t) are red

edges but h′k is not a red edge for any 1 ≤ k ≤ m − 1. Let us first take the smallest i
such that V (P ′) ∩ hi 6= ∅ and then the smallest j such that h′j ∩ hi 6= ∅. It is easy to

see that |V (P ′) ∩ hi| ≤ 2 (since i was smallest). If
∣∣∣h′j ∩ hi∣∣∣ = 1, then the linear cycle

consisting of hyperedges h′1, . . . , h
′
j and hi, hi−1, . . . , h0 and v0vsus contains a larger initial

segment of P than C (as h′j ∩ hi ∈ V (P ) \ V (C)), a contradiction. If
∣∣∣h′j ∩ hi∣∣∣ = 2,

then notice that
∣∣∣h′j+1 ∩ hi

∣∣∣ = 1. Now the linear cycle consisting of the hyperedges
h′m−1, h

′
m−2, . . . , h

′
j+1 and hi, hi−1, . . . , h0 and v0vtut contains a larger initial segment of P

than C, a contradiction.

By Claim 4, α(H ′) ≤ α(H)−1. So by induction hypothesis, V (H ′) can be covered by
at most α(H)−1 edge-disjoint linear cycles (where we accept a single vertex or a hyperedge
as a linear cycle). Now let us replace each red edge {x, y} with the hyperedge xyv0 of
H. Claim 5 ensures that in each of these linear cycles, at most one of the hyperedges is a
red edge. Therefore, it is easy to see that after the above replacement, linear cycles of H ′

remain as linear cycles in H and they cover V (H ′) = V (H) \V (C). Now the linear cycle
C, together with these linear cycles give us at most α(H) − 1 + 1 = α(H) edge-disjoint
linear cycles covering V (H), completing the proof.
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