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Abstract

One of the most intriguing problems for q-analogs of designs, is the existence
question of an infinite family of q-Steiner systems that are not spreads. In particular
the most interesting case is the existence question for the q-analog of the Fano
plane, known also as the q-Fano plane. These questions are in the front line of
open problems in block design. There was a common belief and a conjecture that
such structures do not exist. Only recently, q-Steiner systems were found for one
set of parameters. In this paper, a definition for the q-analog of the residual design
is presented. This new definition is different from previous known definition, but
its properties reflect better the q-analog properties. The existence of a design with
the parameters of the residual q-Steiner system in general and the residual q-Fano
plane in particular are examined. We construct different residual q-Fano planes for
all q, where q is a prime power. The constructed structure is just one step from a
construction of a q-Fano plane.

Mathematics Subject Classifications: 05B40, 51E10

1 Introduction

Let Fq be the finite field with q elements and let Fnq be the set of all vectors of length n
over Fq. Fnq is a vector space with dimension n over Fq. For a given integer k, 0 6 k 6 n,
let Gq(n, k) denote the set of all k-dimensional subspaces (k-subspaces in short) of Fnq .
Gq(n, k) is often referred to as a Grassmannian. It is well known that

|Gq(n, k)| =
[
n

k

]
q

def
=

(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)

where
[
n
k

]
q

is the q-binomial coefficient (known also as the Gaussian coefficient [42, pp.

325-332]).
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Let Q be a set with n elements. A t-(n, k, λ) design, is a collection of k-subsets of V ,
called blocks, such that each t-subset of Q is contained in exactly λ blocks. A t-(n, k, λ)
design with t = λ = 1 is trivial: it is simply a partition of Q into k-subsets, which
exists if and only if k divides n. A t-(n, k, 1) design with t > 2 is known as a Steiner
system, and usually denoted S(t, k, n). Steiner systems are among the most beautiful
and well-studied structures in combinatorics. Their history goes back to the work of
Plücker [31], Kirkman [26], Cayley [8], and Steiner [35] in the first half of the 19-th century.
Today, the significance of Steiner systems extends well beyond combinatorics — they have
found applications in many areas, including group theory, finite geometry, cryptography,
and coding theory [2, 12, 17]. For example, a finite projective plane of order q can be
characterized as a Steiner system S(2, q+1, q2+ q+1), with lines as blocks. As another
example, the Mathieu groups (which played an important role in the classification of finite
simple groups) are most naturally understood as automorphism groups of certain Steiner
systems.

A long-standing problem in design theory asks whether nontrivial (meaning t < k < n)
Steiner systems with t > 5 exist. Keevash recently announced a resolution of this problem:
his breakthrough paper [24] moreover shows that Steiner systems S(t, k, n) exist for all
t < k and all sufficiently large integers n that satisfy the necessary divisibility conditions.
More recently another (simpler) proof was provided by Glock, Kühn, Lo, and Osthus [22].

The classical theory of q-analogs of mathematical objects and functions has its begin-
nings in the work of Euler [20, 27]. In 1957, Tits [41] further suggested that combinatorics
of sets could be regarded as the limiting case q → 1 of combinatorics of vector spaces over
the finite field Fq. Indeed, there is a strong analogy between subsets of a set and subspaces
of a vector space, expounded by numerous authors—see [11, 23, 43] and references therein.
It is therefore natural to ask which combinatorial structures can be generalized from sets
(the q → 1 case) to vector spaces over Fq. For t-designs and Steiner systems, this question
was first studied by Cameron [9, 10] and Delsarte [13] in the early 1970s. Specifically, let
Fnq be a vector space of dimension n over the finite field Fq. Then a t-(n, k, λ) design
over Fq is defined in [9, 10, 13] as a collection of k-subspaces of Fnq , called blocks, such
that each t-subspace of Fnq is contained in exactly λ blocks. Such t-designs over Fq are
the q-analogs of conventional combinatorial designs. By analogy with the q → 1 case,
a t-(n, k, 1) design over Fq is said to be a q-Steiner system, and denoted Sq(t, k, n).

Remark. We observe that q-analogs of designs and Steiner systems are not only of inter-
est in their own right, but also arise naturally in other areas, such as network coding [16].
The appropriate code in random network coding is a collection of subspaces of Fnq that
are well-separated according to a metric defined on the Grassmannian. Consequently, a
q-Steiner system Sq(t, k, n) can be thought of as an optimal code for error-correction in
networks. For more details on this, see [17, 28].

Following the work of Cameron [9, 10] and Delsarte [13], the first examples of nontrivial
t-designs over Fq were found by Thomas [39] in 1987. Today, owing to the efforts of many
authors [6, 21, 25, 30, 32, 36, 37, 38, 40], numerous such examples are known.

However, the situation is very different for q-Steiner systems. They are known to exist
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in the trivial cases t = k or k = n, and in the case where t = 1 and k divides n. In the
latter case, q-Steiner systems coincide with the classical notion of spreads in projective
geometry [42, Chapter 24]. Some 40 years ago, Beutelspacher [4] asked whether nontrivial
q-Steiner systems with t > 2 exist, and this question has tantalized mathematicians ever
since. The problem has been studied by numerous authors [1, 18, 29, 33, 39, 40], without
much progress toward constructing such q-Steiner systems. In particular, Thomas [40]
showed in 1996 that certain kinds of S2(2, 3, 7) q-Steiner systems (the smallest possible
example) cannot exist. Three years later, Metsch [29] conjectured that nontrivial q-Steiner
systems with t > 2 do not exist in general. In contrast to this conjecture, a q-Steiner
system S2(2, 3, 13) was constructed recently [5]. In fact, once one such system was found,
other nonisomorphic systems with the same parameters were found.

Similarly, to Steiner systems, simple necessary divisibility conditions for the existence
of a given q-Steiner system were developed [33, 36].

Theorem 1. If a q-Steiner system Sq(t, k, n) exists, then for each i, 1 6 i 6 t − 1, a
q-Steiner system Sq(t− i, k − i, n− i) exists.

Corollary 2. If a q-Steiner system Sq(t, k, n) exists, then for all 0 6 i 6 t− 1,[
n−i
t−i

]
q[

k−i
t−i

]
q

must be integers.

Deriving new designs from designs in general and q-Steiner systems in particular is
an important direction to find new designs and to exclude the possible existence of other
designs. Using q-analog of the derived design and the residual designs it was proved
that sometimes the necessary conditions for the existence of a q-Steiner system Sq(t, k, n)
are not sufficient [25]. The first set of parameters (t, k, and n) for which the existence
question of q-Steiner systems is not settled is the parameters for the q-analog of the Fano
plane, i.e. the q-Steiner systems Sq(2, 3, 7), which will be called also in this paper the
q-Fano plane. There was a lot of effort to find whether the q-Fano plane, especially for
q = 2, exists or does not exist, e.g. [7, 14, 18, 40]. All these attempts did not provide any
answer to the existence question. It was proved recently in [7] that if such system exists
for q = 2, then its automorphism group has a small order. In [15] a different approach
to consider q-Steiner systems was given. This approach is based on puncturing a possible
existing q-Steiner systems and considering the parameters of the structure derived from
the punctured systems. Properties of the q-Fano plane based on this approach were also
discussed. This approach led to the results in the current paper.

In this paper we present a construction for a design with the same parameters as the
design derived from a q-Fano plane, the residual q-Fano plane. The constructed design
will be also called the residual q-Fano plane. The construction has many places in which
there is flexibility for many choices which lead to a construction of many such designs.
Our definition for the residual q-Steiner system and the derived q-Steiner system result
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in two structures whose union has the same size as the related q-Steiner system, which
is not the case for the definition given in [25] and other possible definitions. This makes
the residual q-Fano plane obtained by our construction to be a design which is almost as
close as possible to a q-Fano plane. This definition of residual q-Steiner system and the
construction of the residual q-Fano plane is a new direction for a research to solve the
existence question of q-Steiner systems in general and q-Fano planes in particular.

The rest of this paper is organized as follows. In Section 2 we present a definition for a
residual q-Steiner system, explain why this definition represents the appropriate q-analog
definition, and compare it to the other definitions. In Section 3 a few combinatorial
structures which are used in the construction are defined and some of their properties are
discussed. In Section 4 we will discuss representation of subspaces for our construction. In
Section 5 it will be explained how to extend and expand the subspaces in F4

q to subspaces
in F6

q. The construction of the residual q-Fano plane is presented in Section 6, where its
correctness is also proved. Conclusions and future research are discussed in Section 7.
In particular we indicate on the points in the construction in which there is flexibility to
construct many different residual q-Fano planes.

2 Derived and Residual Designs

For a design S on a set Q, and an element x ∈ Q, the derived design is defined by

{B \ {x} : B ∈ S, x ∈ B} ,

and the residual ”design” is defined by

{B : B ∈ S, x /∈ B} .

In [25] there is a simple definition for a q-analog of the derived design and the residual
design. For this definition we choose an element u ∈ Fnq and an (n− 1)-subspace V ⊂ Fnq
such that 〈{u} ∪ V 〉 = Fnq , where 〈X〉 denote the linear span of X. The derived design of
a design S over Fq, was defined as

{B ∩ V : B ∈ S, u ∈ B} , (1)

and the residual design of S, was defined as

{B : B ∈ S, B ⊂ V } . (2)

By these definitions, the derived design and residual design of a q-Steiner system are
both designs over Fq. This is on the positive side. On the negative side, the size of their
union is significantly smaller than the size of the design from which they were derived.

We present now a different definition for the q-analog of a derived design and a residual
design which solves this problem in the definition of [25]. Let u be the unit vector with

the unique one in the last coordinate, and V
def
={(x, 0) : x ∈ Fn−1q }. Also, for a subspace
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B ⊂ Fnq , let Z(B) be the subspace obtained from B, by removing the last coordinate of
all the vectors in B. The derived and residual designs are defined by

der(S)
def
={Z(B ∩ V ) : B ∈ S, u ∈ B} . (3)

res(S)
def
={Z(B) : B ∈ S, u /∈ B} . (4)

The two definitions of the derived design are equivalent, but there is a significant
difference in the two definitions of the residual design. For the new definitions given
in (3) and (4), we have that |S| = |der(S)|+ |res(S)|, a property that does not hold for the
definitions given in (1) and (2). The fact that the union of the two derived designs has size
as the original design is one argument that these definitions serve better as the q-analog
of the derived design and the residual design. We continue to examine more properties,
but the examination will relate only to Steiner systems S(t, k, n) or only Steiner triple
system S(2, 3, n), which are the topic of this paper (but, these properties are also true for
other parameters). Another argument is that the uncovered pairs in a residual Steiner
triple system S(2, 3, n) form a perfect matching (known also as a 1-factor or S(1, 2, n−1))
(see the work of Spencer [34] for the uncovered pairs of triple systems). The q-analog is
the uncovered 2-subspaces in a residual design of a q-Steimer system Sq(2, 3, n). These
uncovered pairs form a q-Steiner system Sq(1, 2, n−1) (known also as a 1-spread). Indeed,
the uncovered pairs in the residual q-Steiner system defined in (4) are exactly the q-analog
of the uncovered pairs of the residual Steiner system. This property does not exist in the
definition given in (2). A third argument is a consequence of the next theorem.

The union of the derived q-Steiner system and the residual q-Steiner system was called
in [15], the punctured (or 1-punctured) q-Steiner system. But, no such system was con-
structed in [15]. In the exposition given in [15] it was proved that

Theorem 3. If S is a q-Steiner system Sq(t, k, n), then the derived system contains exactly
[n−1
t−1]q

[k−1
t−1]q

distinct (k−1)-subspaces which form a q-Steiner system Sq(t−1, k−1, n−1). Each

t-subspace of Fn−1q which is contained in a (k − 1)-subspace of der(S) is not contained in
any of the k-subspaces of res(S). Each t-subspace of Fn−1q which is not contained in a
(k − 1)-subspace of der(S), appears exactly qt times in the k-subspaces of res(S).

We will now define any two sets of subspaces which satisfy the properties given in
Theorem 3 as the derived design and the residual design for a q-Steiner system Sq(t, k, n)
(but do not depend on the existence of a q-Steiner system Sq(t, k, n)). For a q-Steiner
system Sq(t, k, n) these definitions are given as follows:

• A derived q-Steiner system for a q-Steiner system Sq(t, k, n) is a q-Steiner system
Sq(t− 1, k − 1, n− 1).

• Let der(S) be a q-Steiner system Sq(t − 1, k − 1, n − 1). The residual q-Steiner
system, res(S), for a q-Steiner system Sq(t, k, n) (which might not exists), S, is a set
of distinct k-subspaces from Fn−1q such that each t-subspace of Fn−1q which is not
contained in der(S), is contained in exactly qt k-subspaces of res(S).
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It should be noted that when q → 1, i.e. for a Steiner system based on an n-set, each
t-subset of the (n − 1)-set which is not contained in the derived design, is contained in
exactly one k-subset of the derived design. This is another indication that our definition
for the q-analog of the residual design reflects the best transformation from subsets to
subspaces.

It is interesting to know if there exists a system with the same properties of the residual
design in which each t-subspace which is not contained in the derived design, is contained
in exactly λ subspaces of the residual design, where λ < qt. It is not difficult to prove that
this is not possible if λ is not divisible by q (the proof is left for the interested reader),
but it is intriguing to know if λ divisible by q is possible.

3 Combinatorial Structures for the Construction

The construction of the residual q-Fano plane given in the Section 6 will make use of a
few combinatorial structures which are defined, described, and discussed in this section.

The first object is a 1-spread (spread in short) in Fnq , where n is even. A spread S
in Fnq is a set of 2-subspaces of Fnq , such that each nonzero vector of Fnq is contained in
exactly one 2-subspace of S. It is well known that such a spread exists whenever n is
even.

A 1-parallelism (parallelism in short) in Fnq is a partition of the 2-subspaces of Fnq into

pairwise disjoint spreads. The number of 2-subspaces in such a spread is qn−1
q2−1 . It was

proved by Beutelspacher [3] that such a parallelism exists whenever n is a power of 2.
We will be interested in a parallelism in F4

q, i.e. a partition of the (q2 + q + 1)(q2 + 1)
2-subspaces of F4

q into q2 + q + 1 disjoint spreads.
We further partition, for our construction of a residual q-Fano plane, the q2 + q + 1

pairwise disjoint spreads of any given parallelism into three sets A, B, and C. The set A
contains one spread. The set B contains q spreads, and the set C contains q2 spreads.
Any partition of the q2 + q + 1 spreads is appropriate for this purpose. Such a partition
for F4

2 is given in Table 1.
In the construction, we have another set D which contains all the q3 + q2 + q + 1

distinct 3-subspaces of F4
q. An example for a basis of the fifteen 3-subspaces of F4

2 is given
in Table 2.

Let α be a primitive element in Fq. The next structure that has to be considered is
a set of q2 different matrices of size 2× (q + 1) over Fq. These matrices must satisfy the
following properties:

1. Let v1, v2, . . . , vq+1 be the q + 1 consecutive columns of such a matrix. For each i,
3 6 i 6 q+1, vi = αi−3v1 +v2 (a scalar β is multiplied by each element of a vector v
in the product βv, and the vector addition v1 + v2 is performed element by element
in Fq.).

2. The set of q2 matrices form a linear subspace of dimension two over Fq.
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Table 1: Partition of the 2-subspaces of F4
2 into the sets A. B, and C

A

000
011
011
101

011
011
101
000

011
101
011
011

011
101
000
101

011
000
101
110

B

000
011
101
000

011
000
101
101

011
101
011
101

011
101
101
110

011
011
000
101

011
101
000
000

000
011
101
110

011
101
110
101

011
011
011
101

011
000
101
011

C

011
101
110
000

011
101
011
110

011
011
101
011

011
000
000
101

000
011
101
101

011
101
101
000

011
011
101
101

011
000
011
101

000
011
101
011

011
101
000
011

011
101
110
011

011
101
000
110

011
101
011
000

011
101
101
101

000
000
011
101

011
011
101
110

011
101
101
011

000
011
000
101

011
000
101
000

011
101
110
110

Table 2: A basis for each one of the fifteen 3-subspaces of the set D for F4
2

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15
000
010
011
100

001
010
010
100

001
010
011
100

010
011
100
000

010
010
100
001

010
011
100
001

010
100
010
011

010
100
011
011

010
100
011
010

010
100
000
101

010
100
001
100

010
100
001
101

010
000
100
111

010
001
100
110

010
001
100
111

3. For each i, 1 6 i 6 q + 1, the q2 i-th column vectors in the q2 matrices are all
distinct, i.e. they consist of all possible q2 column vectors of length 2.

Since these q2 matrices form a linear subspace, it follows that there union is a linear code.
In the sequel, this code will be called the extension code.

Lemma 4. For each power of a prime q there exists an extension code.

Proof. We start with two 2× (q+ 1) matrices over Fq which will be the basis of the code.
For the first matrix M1 the first column will be

(
1
0

)
and the second column will be(

0
1

)
. The i-th column, 3 6 i 6 q + 1, is αi−3

(
1
0

)
+
(

0
1

)
=

(
αi−3

1

)
.

For the second matrix M2 the first column will be
(

0
1

)
and the second column will be(

1
β

)
, where β ∈ Fq. The i−th column, 3 6 i 6 q + 1, is αi−3

(
0
1

)
+
(

1
β

)
=

(
1

αi−3 + β

)
. We

have to prove that there exists a β ∈ Fq such that the requirements for the extension code
are satisfied.

For this proof we form a (q + 1) × (q + 1) matrix M whose first row consists of the
columns of the matrix M1 in their given order. The other rows are indexed by the elements
of Fq. The row which are indexed by β ∈ Fq has

(
0
1

)
in the first entry and

(
1
β

)
in the

second entry. The i-th entry, 3 6 i 6 q+ 1, will be
(

1

αi−3 + β

)
. It is easy to verify that the

q × q sub-matrix M′ of M defined by removing the first row and first column of M is a
Latin square (each row and each column is a permutation of the q column vectors

(
1
β

)
,

β ∈ Fq). For each i, 3 6 i 6 q + 1, the element in the i-th entry of the first row of M
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appears in the linear span of the i-th entry of exactly one row of M′. Since M′ has q
rows, it follows that there exists at least one row which share no linearly dependent entry
with the first row of M. The β of such a row is the required β for M2.

The two matrices M1 and M2 are linearly independent. In fact, for each i, 1 6 i 6 q+1,
the i-th columns of the two matrices are linearly independent. Hence, the linear span of
M1 and M2 form a linear subspace of dimension two and for the each i, 1 6 i 6 q + 1,
the i-th columns of al matrices in the code are distinct.

Next, we consider all matrices which are candidates for the extension code. This set
of candidates consists of all the q4 distinct 2× (q+ 1) matrices over Fq. If v1, v2, . . . , vq+1

are the q + 1 consecutive columns of such a matrix, then for each i, 3 6 i 6 q + 1,
vi = αi−3v1 + v2. This set of matrices is clearly a linear subspace which will be called the
extension space. Since the entries of the first two column vectors can be chosen arbitrarily,
it follows that there are q4 matrices in the extension space. Moreover, these q4 matrices
form a linear subspace of dimension four over Fq. Since the extension code is a linear
subspace of dimension two of the extension space, it follows that we can partition the q4

matrices of the extension space into q2 sets of size q2 having the following properties:

1. The extension code is the first set.

2. Let v1, v2, . . . , vq+1 be the q + 1 consecutive columns of any matrix in any of the
codes. For each i, 3 6 i 6 q + 1, vi = αi−3v1 + v2.

3. For each i, 1 6 i 6 q + 1, the q2 i-th column vectors in the q2 matrices, of any of
the q2 sets, are all distinct, i.e. they consist of all possible column vectors of length
2.

An example for an extension space (the extension code and its coset) is given in
Table 3.

Table 3: The extension space for q = 2 (C is the code and Ci, i = 1, 2, 3, are its cosets)

C
000
000

011
110

101
011

110
101

C1
000
110

011
000

101
101

110
011

C2
110
000

101
110

011
011

000
101

C3
110
110

101
000

011
101

000
011

The construction of the residual q-Fano plane will starts from sets of subspaces from F4
q.

The subspaces of these sets will be extended in various ways to 3-subspaces of F6
q, in a

way that all these extensions will result in the residual q-Fano plane. The extension space
will have an important role in these extensions as will be explained in Sections 4 and 6.
The methods in which subspaces are extended is explained in Section 4.

We end this section with a connection between the subspaces of A and the subspaces
of the set D.

Lemma 5. A 2-subspace X of F4
q can be expanded in q + 1 distinct ways to a 3-subspace

of F4
q.
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Proof. A 2-subspace X has q + 1 pairwise linearly independent vectors. F4
q has q4−1

q−1 =

q3+q2+q+1 pairwise linearly independent vectors. Each one of the q3+q2 pairwise linearly
independent vectors not in X can be used to for a 3-subspace of F4

q. Each 3-subspace

contain q3−1
q−1 = q2 + q + 1 pairwise linearly independent vectors, i.e. q2 additional vector

to X. Each one of them will form the same 3-subspace when appended to X. Hence X
can be expanded in q3+q2

q2
= q + 1 distinct ways to a 3-subspace of F4

q.

Lemma 6. Each 3-subspace of F4
q (also of D) contains a unique 2-subspace of the set A.

Proof. If X ∈ A and v ∈ F4
q is a vector such that v /∈ A, then Y

def
=〈X ∪ {v}〉 is clearly

a 3-subspace of F4
q. Since Y is a 3-subspace and all the 2-subspaces of A are pairwise

disjoint, it follows that Y cannot contain two 2-subspaces of A.
There are q + 1 different 3-subspaces which contain X, q2 + 1 different 2-subspaces

in A, and hence there are (q2 + 1)(q + 1) = q4−1
q−1 3-subspaces which contain 2-subspaces

from A. The total number of different 3-subspace of F4
q is q4−1

q−1 . It implies that each

3-subspace of F6
q contains a unique 2-subspace of the set A.

4 Representation of Subspaces

The construction of the derived q-Fano plane and the residual q-Fano plane will be pre-
sented in Section 6. The construction will start with subspaces from F4

q which will consists
of the unique 0-subspace of F4

q and the subspaces of the sets A, B, C, and D. These sub-
spaces will be extended and/or expanded to 2-subspaces in F6

q for the derived q-Fano
plane, and to 3-subspaces in F6

q for the residual q-Fano plane. Most of these extensions
will be performed with the extension space and hence the representations of these sub-
spaces and the matrices of the extension space must be matched in their representation
to make sure that the outcome will be subspaces with the required properties. To make
these extensions and/or expansions simple to explain we will use certain representations
of 2-subspaces and 3-subspaces of F4

q, and 2-subspaces and 3-subspaces of F6
q. These

representations will also help to verify the correctness of the construction. For these rep-
resentations we form an order between the vectors of length 4 of F4

q. For simplicity we
will use the standard lexicographic order from the smallest to the largest element.

In the representations which follows we will take only one of the q−1 different vectors
from which any two are linearly dependent, i.e., q+1 vectors for a 2-subspace and q2+q+1
vectors for a 3-subspace. W.l.o.g. (without loss of generality) the vectors which will be
taken will always be those whose first nonzero element is a one.

Representation of 2-Subspaces of Fr
q, r ∈ {4, 6}:

A 2-subspace X of Frq will be presented by an r × (q + 1) matrix M and an expanded
representation by an r × (q2 + q + 1) matrix E(M) (or E(X)) as follows. The first q + 1
columns of the matrices (M and E(M)) will be the q + 1 vectors of length r of X, where
each two columns are linearly independent (let us denote these q+ 1 columns by Y ), with
the following two properties:
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• Any two columns of the 4× (q + 1) matrix defined by the first 4 rows and the first
q + 1 columns of Y are linearly independent, and hence form a basis for Y .

• Let v1v2 . . . vq+1 be the consecutive columns of the matrix defined by the first four
rows and the first q + 1 columns of Y . The first two columns are the smallest
among the q+1 columns in the given lexicographic order and v1 < v2. Furthermore,
vi = αi−3v1 + v2, 3 6 i 6 q + 1.

This completes the definition of M . For the definition of E(M), the next column (the
(q+ 2)-th column) will be an all-zero column. The next (and last) (q− 1)(q+ 1) columns
will consists of q − 1 identical copies of Y .

Any 2-subspace which cannot be represented in this way will not be considered for
this representation (These are 2-subspaces of F6

q which have vectors starting with four
zeroes.).

The 2-subspaces in Table 1 are represented by this definition.

Representation of 3-Subspaces of Fr
q, r ∈ {4, 6}:

A 3-subspace X of Frq (obtained from D) will be presented by an r× (q2 +q+1) matrix
M as follows. The first q + 1 columns of M will be the q + 1 vectors of length r of a
2-subspace of X, where each two columns are linearly independent (let us denote these
q + 1 columns by Y ), with the following two properties:

• The first q+ 1 columns of the 4× (q+ 1) matrix defined by the first 4 rows and the
first q+ 1 columns of Y represent a 2-subspace of A, whose existence is guaranteed
by Lemma 6.

• Let v1v2 . . . vq+1 be the consecutive columns of the matrix defined by the first four
rows and the first q+1 columns of Y . The first two columns are the smallest among
the q + 1 columns in the given order and v1 < v2. Furthermore, vi = αi−3v1 + v2,
3 6 i 6 q + 1.

The next column of M (the (q + 2)-th column) will be a non-zero column vector v of
length r linearly independent of the first q + 1 columns of M (or Y ). It will be taken as
the smallest vector, in the lexicographic order, among the other columns of X. The next
(q − 1)(q + 1) columns of M will consists of q − 1 r × (q + 1) matrices, where the i-th
matrix, 0 6 i 6 q − 2, is αiv + Y (the addition of a column vector v of length r to an
r ×m matrix Y is done by adding v to each column of Y .). Hence, any two of the first
q + 1 columns with the (q + 2)-th column form a basis for the 3-subspace.

After describing the representations of 2-subspaces and 3-subspaces, we are in a posi-
tion to describe how we extend and expand a subspace in F4

q to a subspace in F6
q, while

keeping these representations. To make these extensions and expansions simple, we will
give a few properties of our representations whose proofs are trivial. First let ui (u′i),
1 6 i 6 q2 + q + 1, be the i-th column in the representation of two distinct subspaces.

Lemma 7. In the representation of a 3-subspace u1, u2, uq+2 are linearly independent.
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Lemma 8. If for a given 3-subspace and 1 6 i < j < k 6 q2 + q+1 we have γiui+γjuj +
γkuk = 0, where γi, γj, γk ∈ Fq, then for another subspace (of dimension two or three) we
have γiu

′
i + γju

′
j + γku

′
k = 0.

Lemma 9. Any 2-subspace X of a 3-subspace Y contains either all the q+1 first columns
of Y or exactly one of the first q + 1 columns of Y .

Lemma 10. There exists a set P which contains q2+q+1 subsets of {1, 2, . . . , q2+q+1},
each subset is of size q + 1, such that the columns of the q2 + q + 1 2-subspaces of any
r × (q2 + q + 1) matrix M , r ∈ {4, 6}, which represents a 3-subspace, are exactly on the
coordinates of the subsets of P.

5 Extensions and Expansions of Subspaces

The construction of the derived q-Fano plane and the residual q-Fano plane will start
with 2-subspaces and 3-subspaces of F4

q. They will be extended and possibly expanded to
3-subspaces of F6

q. We start with a formal definition of the expansion, which was mentioned
before in the representation E(X) of a 2-subspace X.

The expansion E(M,u) of an r × (q + 1) matrix M , having columns v1, v2, . . . , vq+1,
with a column vector u of length r to an r × (q2 + q + 1) matrix as follows. The next
column vq+2 is u, and the next q2− 1 columns consists of q− 1 r× (q+ 1) matrices, where
the i-th matrix is αiu+M . We note that if M represent a 2-subspace X and u is linearly
independent in the columns of X (i.e. M) then E(M,u) represent a 3-subspace. If M
represents a 2-subspaces we can write E(X, u) instead of E(M,u).

The following simple lemmas which were also proved in [15] provide some of the
foundations for the extensions (with possible expansions).

Lemma 11. Each 2-subspace in Frq has exactly q2 distinct extensions to a 2-subspace
in Fr+1

q .

Lemma 12. Each 2-subspace in Frq has a unique extension (with expansion) to a 3-
subspace in Fr+1

q .

Lemma 13. Each 3-subspace in Frq has exactly q3 distinct extensions to a 3-subspace
in Fr+1

q .

Lemma 14. Each 2-subspace in F4
q has exactly q4 distinct extensions to a 2-subspace

in F6
q. Each such extension is done by a different 2 × (q + 1) matrix of the extension

space.

In the extensions with possible expansions required in our construction, these lemmas
are implemented as follows.
Extension of a 2-subspace from F4

q to a 2-subspace of F6
q:

Let X be any 2-subspace of F4
q which is going to be extended to a 2-subspace of F6

q.
This extension can be done in two steps:
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1. Choose a 2× (q + 1) matrix Z from the extension space.

2. Form a 6 × (q + 1) representation matrix for a 2-subspace whose first four rows is
the 4× (q + 1) matrix representation of X and last two rows is Z.

Lemma 15. A 2-subspace X of F4
q can be extended in q4 distinct ways to a 2-subspace

of F6
q.

Proof. There are q4 distinct ways to choose an extension matrix Z from the extension
space. Each one yields a different 2-subspace of F6

q and all extensions can be formed in
this way.

Extension of a 2-subspace from F4
q to a 3-subspace of F6

q:

There are two distinct ways to extend a 2-subspace X of F4
q to a 3-subspace of F6

q.
One way is to extend X first to one of the q2 distinct 2-subspaces of F5

q and then use a
unique extension (with expansion) to a 3-subspace of F6

q. This is done by extending X to a

2-subspace X̃ of F6
q by appending to X any one of the q2 matrices of the extension space

whose second row is an all-zero row. The unique 3-subspace of F6
q is obtain by expanding

X with e6, the unit vector of length 6 with the one in the last position. Hence, the final
3-subspace is E(X̃, e6). Therefore, there are q2 distinct ways for this extension (with
expansion).

The second way is to extend X in a unique way (with expansion) to a 3-subspace
of F5

q. The 3-subspace can be extended in q3 distinct ways to a 3-subspace of F6
q. This

is done first by appending to X an all-zero row and expand is with e5, the unit vector of
length 5 with the one in the last position. There are q3 ways to extend the 3-subspace
of F5

q to a 3-subspace of F6
q. This is done either by using any of the q3 linear combinations

of the first five rows to form the 6-th row, or by taking any of the q3 assignments from Fq
to positions 1, 2, and q + 2, and the other positions are fixed by the linear combinations
of the other columns.

Lemma 16. A 2-subspace X of F4
q can be extended in q3+q2 distinct ways to a 3-subspace

of F6
q.

Extension of a 3-subspace from F4
q to a 3-subspace of F6

q:

Let Y be any 3-subspace of F4
q which is going to be extended to a 3-subspace of F6

q.
This extension can be done in four steps:

1. Choose a 2× (q + 1) matrix Z from the extension space.

2. Choose a column vector u of length two over Fq.

3. Form the 2× (q2 + q + 1) expansion E(Z, u).

4. Form a 6× (q2 + q+ 1) representation matrix for a 3-subspace whose first four rows
is the matrix representation of Y and last two rows is E(Z, u).
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Lemma 17. A 3-subspace Y of F4
q can be extended in q6 distinct ways to a 3-subspace

of F6
q.

Proof. There are q4 distinct ways to choose an extension matrix Z from the extension
space and q2 way to choose the vector u for E(Z, u). Each such choice will yield a
different 3-subspace of F6

q since the process starts with a 3-subspace. To complete the
proof we note that each extension can be formed in this way.

6 Construction of Residual q-Fano Planes

The construction of the derived q-Fano plane and the residual q-Fano plane is based
on extensions and possible expansion of the subspaces in the sets A, B, C, and D, which
contain 2-subspaces and 3-subspaces of F4

q into 3-subspaces in F6
q. These extensions and/or

expansions and the extension of the null-subspace of F4
q will form the residual q-Fano plane.

There is one possible way to form a 2-subspace of F6
q whose first four rows in the matrix

representation corresponds to the 0-subspace of F4
q. The set of size one which contains

this 2-subspace will be denoted by S0.

Extension of Type A:

The set A of 2-subspaces of F4
q contains q2 + 1 subspaces. Each one is extended in

the q2 possible distinct ways, based on the extension code C, to a 2-subspace in F6
q. The

result is a set with q4 + q2 distinct 2-subspaces of F6
q. This set will be denoted by SA.

Lemma 18. The set S0 ∪ SA is a spread in F6
q.

Proof. The set A is a spread in F4
q by definition. The extension based on C is a 2-subspace

in F6
q. A spread in F6

q contains q6−1
q2−1 = q4 + q2 + 1 disjoint 2-subspaces. S0 has one 2-

subspace and SA contains q4 +q2 2-subspaces. Hence, to complete the proof it is sufficient
to prove that no nonzero vector of F6

q appears more than once in a subspaces of S0 ∪ SA.
Assume a vector v ∈ F6

q appears in two such subspaces. Let v′ ∈ F4
q be the prefix vector

of length 4 obtained from v. By the definition of A we have that v′ is either the all-zero
vector or it is contained in a unique 2-subspace of A. If v′ is the all-zero vector then v is
contained only in the unique subspace of S0. If v′ is contained in a unique 2-subspace X
of A, then by the definition of the extension code C, each one of the q2 extensions of X
with the extension code C appends a different suffix of length two to v′ and hence v cannot
appear more than once.

Table 4 presents the 21 2-subspaces of S0 ∪ SA for q = 2. The first four rows in the
matrix representation is a 2-subspace of SA and the last two rows are taken from the
extension code.

Extension of Type B:

The set B of 2-subspaces of F4
q contains q spreads with a total of q(q2 + 1) subspaces.

Each one is extended in all possible q2 distinct ways to a 2-subspace in F5
q. Each such
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Table 4: the 2-subspaces of S0 ∪ SA for q = 2

000
000
000
000
011
101

000
011
011
101
000
000

011
011
101
000
000
000

011
101
011
011
000
000

011
101
000
101
000
000

011
000
101
110
000
000

000
011
011
101
011
110

011
011
101
000
011
110

011
101
011
011
011
110

011
101
000
101
011
110

011
000
101
110
011
110

000
011
011
101
101
011

011
011
101
000
101
011

011
101
011
011
101
011

011
101
000
101
101
011

011
000
101
110
101
011

000
011
011
101
110
101

011
011
101
000
110
101

011
101
011
011
110
101

011
101
000
101
110
101

011
000
101
110
110
101

2-subspace of F5
q is extended in a unique way to a 3-subspace in F6

q. The result is a set
with q3(q2+1) distinct 3-subspaces of F6

q. This set will be denoted by SB. Table 5 presents
the forty 3-subspaces of SB for q = 2. Note that the third vector in all the subspaces is
the same.

Table 5: A basis for each one of the forty 3-subspaces of SB for q = 2

000
010
100
000
000
001

000
010
100
000
010
001

000
010
100
000
100
001

000
010
100
000
110
001

010
000
100
100
000
001

010
000
100
100
010
001

010
000
100
100
100
001

010
000
100
100
110
001

010
100
010
100
000
001

010
100
010
100
010
001

010
100
010
100
100
001

010
100
010
100
110
001

010
100
100
110
000
001

010
100
100
110
010
001

010
100
100
110
100
001

010
100
100
110
110
001

010
010
000
100
000
001

010
010
000
100
010
001

010
010
000
100
100
001

010
010
000
100
110
001

010
100
000
000
000
001

010
100
000
000
010
001

010
100
000
000
100
001

010
100
000
000
110
001

000
010
100
110
000
001

000
010
100
110
010
001

000
010
100
110
100
001

000
010
100
110
110
001

010
100
110
100
000
001

010
100
110
100
010
001

010
100
110
100
100
001

010
100
110
100
110
001

010
010
010
100
000
001

010
010
010
100
010
001

010
010
010
100
100
001

010
010
010
100
110
001

010
000
100
010
000
001

010
000
100
010
010
001

010
000
100
010
100
001

010
000
100
010
110
001

Extension of Type C:

The set C of 2-subspaces of F4
q contains q2 spreads, each one has q2 + 1 subspaces. We

further partition C into q subsets Cξ, ξ ∈ Fq, where Cξ contains q spreads.
For each ξ, ξ ∈ Fq, the set Cξ of 2-subspaces of F4

q contains q(q2 + 1) subspaces. Each
one is extended in a unique way to a 3-subspace in F5

q. Each such 3-subspace of F5
q has q3

extensions to a 3-subspace in F6
q. Let SCξ be the set of these 3-subspaces which have ξ in

the 6-th row of the (q + 2)-th column of the matrix representation. This set SCξ contains
q3(q2 + 1) distinct 3-subspaces of F6

q since there are q2 distinct ways to choose the pair of
symbols in the sixth row for the first two linearly independent vectors of the 3-subspace.

If SC
def
= ∪ξ∈Fq SCξ then clearly SC contains q4(q2 + 1) distinct 3-subspaces.

Table 6 presents the eighty 3-subspaces of SC for q = 2, where the first two spreads in
Table 1 are taken as C0 and the other two spreads form C1. Note, that the third vector in
the basis of the subspaces from SC0 and the one from SC1 differ exactly in the last entry.
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Table 6: A basis for each one of the eighty 3-subspaces of SC for q = 2

SC0

010
100
110
000
001
000

010
100
110
000
001
010

010
100
110
000
001
100

010
100
110
000
001
110

010
100
010
110
001
000

010
100
010
110
001
010

010
100
010
110
001
100

010
100
010
110
001
110

010
010
100
010
001
000

010
010
100
010
001
010

010
010
100
010
001
100

010
010
100
010
001
110

010
000
000
100
001
000

010
000
000
100
001
010

010
000
000
100
001
100

010
000
000
100
001
110

000
010
100
100
001
000

000
010
100
100
001
010

000
010
100
100
001
100

000
010
100
100
001
110

SC0

010
100
100
000
001
000

010
100
100
000
001
010

010
100
100
000
001
100

010
100
100
000
001
110

010
010
100
100
001
000

010
010
100
100
001
010

010
010
100
100
001
100

010
010
100
100
001
110

010
000
010
100
001
000

010
000
010
100
001
010

010
000
010
100
001
100

010
000
010
100
001
110

000
010
100
010
001
000

000
010
100
010
001
010

000
010
100
010
001
100

000
010
100
010
001
110

010
100
000
010
001
000

010
100
000
010
001
010

010
100
000
010
001
100

010
100
000
010
001
110

SC1

010
100
110
010
001
001

010
100
110
010
001
011

010
100
110
010
001
101

010
100
110
010
001
111

010
100
000
110
001
001

010
100
000
110
001
011

010
100
000
110
001
101

010
100
000
110
001
111

010
100
010
000
001
001

010
100
010
000
001
011

010
100
010
000
001
101

010
100
010
000
001
111

010
100
100
100
001
001

010
100
100
100
001
011

010
100
100
100
001
101

010
100
100
100
001
111

000
000
010
100
001
001

000
000
010
100
001
011

000
000
010
100
001
101

000
000
010
100
001
111

SC1

010
010
100
110
001
001

010
010
100
110
001
011

010
010
100
110
001
101

010
010
100
110
001
111

010
100
100
010
001
001

010
100
100
010
001
011

010
100
100
010
001
101

010
100
100
010
001
111

000
010
000
100
001
001

000
010
000
100
001
011

000
010
000
100
001
101

000
010
000
100
001
111

010
000
100
000
001
001

010
000
100
000
001
011

010
000
100
000
001
101

010
000
100
000
001
111

010
100
110
110
001
001

010
100
110
110
001
011

010
100
110
110
001
101

010
100
110
110
001
001

Extension of Type D:

First, we partition the cosets of the extension code C (all the extension space exclud-
ing C) into q + 1 parts, C1, C2, . . . , Cq+1, each one contains q− 1 cosets with q2 matrices,
i.e. Cj, 1 6 j 6 q + 1, contains q2(q − 1) matrices.

The set D of 3-subspaces of F4
q has size q3 + q2 + q + 1. By Lemma 6 each 3-subspace

of D contains a unique 2-subspace from A. By Lemma 5 for a given such 2-subspace
X ∈ A there are q + 1 different 3-subspaces of F4

q which contain X (expanded from X,
the first vector is defined by the lexicographic order). Let Y1, Y2, . . . , Yq+1 be the q + 1

subspaces of D which contain X, where Yj
def
=E(X, u) for a column vector u ∈ F4

q.
For any j, 1 6 j 6 q + 1, we extend the 3-subspace Yj using Cj as follows. For each

2 × (q + 1) matrix Z from the q2(q − 1) matrices of Cj and for each column vector v
of length 2 from F2

q we form the expanded representation E(Z, v). Yj is extended with
E(Z, v), i.e the new 3-subspace is represented by a 6× (q2 + q+ 1) matrix whose first four
rows is the matrix representation of Yj and the last two rows are E(Z, v). The result is
a set SX,j which contains q4(q − 1) distinct 3-subspaces (q2(q − 1) matrices in Cj, where
each matrix is expanded with q2 vectors of length 2).

The set of all 3-subspaces formed from the 2-subspace X ∈ A will be denoted by SX
and its size is q4(q− 1)(q+ 1) = q4(q2− 1). The set of all 3-subspaces formed from D will
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be denoted by SD and its size is q4(q2 − 1)(q2 + 1) = q4(q4 − 1) since the size of A (from
which X was taken) is q2 + 1.

Tables 7 and 8 present first forty eight 3-subspaces of SD for q = 2, where X is taken
as the first 2-subspace of A in Table 1 and the cosets of the extension code are taken from
Table 3. The 3-subspaces Y1 = Y1, Y2 = Y2, and Y3 = Y3 are presented first with their
basis as in Table 2 and after that with their matrix representation. Note, that the first
four rows of the 3-subspaces in Table 8 form the matrix representation of Y1, Y2, and Y3.
The other 192 3-subspaces of SD are presented in Tables 9, 10, 11, and 12.

Table 7: The three 3-subspaces of the set D which contain the first 2-subspace of A

Y1 Y2 Y3 Y1 Y2 Y3
000
010
011
100

001
010
010
100

001
010
011
100

0000000
0110011
0111100
1010101

0001111
0110011
0110011
1010101

0001111
0110011
0111100
1010101

Let
Sdef

=S0 ∪ SA ∪ SB ∪ SC ∪ SD .

A simple algebraic computation leads to

Lemma 19.

|S| = |S0|+ |SA|+ |SB|+ |SC|+ |SD| =

[
7
2

]
q[

3
2

]
q

.

By Lemma 19, the number of subspaces in the sets S is the same as the number of
3-subspaces in a q-Fano plane. Recall, that by Lemma 18 we have that S0∪SA is a spread.
Hence, to show that S \ (S0 ∪ SA) is a residual q-Fano plane it is sufficient to prove that
either each 2-subspace of F6

q which is not contained in S0 ∪ SA is contained in at least q2

subspaces of S, or each 2-subspace of F6
q which is not contained in S0 ∪ SA is contained in

at most q2 subspaces of S.

Lemma 20. Each 2-subspace of F6
q which can be extended from a 2-subspace of A, but not

extended to a 2-subspace of the spread S0 ∪ SA, is contained q2 times in the 3-subspaces
of SD.

Proof. Since the 2-subspaces of A are extended only to the spread of S0 ∪ SA, it follows
that any 2-subspaces of F6

q which can be extended from a 2-subspace of A was formed
by extending the 3-subspaces of D. By Lemma 6 each 2-subspace of A is contained in
q + 1 distinct 3-subspaces of D. By the definition for the representation of 3-subspaces,
this 2-subspace appear in the first four rows and the first q + 1 column of the 3-subspace
representation. Let X ∈ A and let Y1, Y2, . . . , Yq+1 be the q + 1 subspaces of D which
contain X. By the extensions of D, each matrix Z of the extension space, which is not
part of the extension code, is used q2 times to extend X, using the 2×(q2+q+1) matrices
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Table 8: Extensions of Type D with Y1 = Y1, Y2 = Y2, and Y3 = Y3

Y1, C1

0000000
0110011
0111100
1010101
0000000
1100110

0000000
0110011
0111100
1010101
0000000
1101001

0000000
0110011
0111100
1010101
0001111
1100110

0000000
0110011
0111100
1010101
0001111
1101001

0000000
0110011
0111100
1010101
0110011
0000000

0000000
0110011
0111100
1010101
0110011
0001111

0000000
0110011
0111100
1010101
0111100
0000000

0000000
0110011
0111100
1010101
0111100
0001111

Y1, C1

0000000
0110011
0111100
1010101
1010101
1010101

0000000
0110011
0111100
1010101
1010101
1011010

0000000
0110011
0111100
1010101
1011010
1010101

0000000
0110011
0111100
1010101
1011010
1011010

0000000
0110011
0111100
1010101
1100110
0110011

0000000
0110011
0111100
1010101
1100110
0111100

0000000
0110011
0111100
1010101
1101001
0110011

0000000
0110011
0111100
1010101
1101001
0111100

Y2, C2

0001111
0110011
0110011
1010101
1100110
0000000

0001111
0110011
0110011
1010101
1100110
0001111

0001111
0110011
0110011
1010101
1101001
0000000

0001111
0110011
0110011
1010101
1101001
0001111

0001111
0110011
0110011
1010101
1010101
1100110

0001111
0110011
0110011
1010101
1010101
1101001

0001111
0110011
0110011
1010101
1011010
1100110

0001111
0110011
0110011
1010101
1011010
1101001

Y2, C2

0001111
0110011
0110011
1010101
0110011
0110011

0001111
0110011
0110011
1010101
0110011
0111100

0001111
0110011
0110011
1010101
0111100
0110011

0001111
0110011
0110011
1010101
0111100
0111100

0001111
0110011
0110011
1010101
0000000
1010101

0001111
0110011
0110011
1010101
0000000
1011010

0001111
0110011
0110011
1010101
0001111
1010101

0001111
0110011
0110011
1010101
0001111
1011010

Y3, C3

0001111
0110011
0111100
1010101
1100110
1100110

0001111
0110011
0111100
1010101
1100110
1101001

0001111
0110011
0111100
1010101
1101001
1100110

0001111
0110011
0111100
1010101
1101001
1101001

0001111
0110011
0111100
1010101
1010101
0000000

0001111
0110011
0111100
1010101
1010101
0001111

0001111
0110011
0111100
1010101
1011010
0000000

0001111
0110011
0111100
1010101
1011010
0001111

Y3, C3

0001111
0110011
0111100
1010101
0110011
1010101

0001111
0110011
0111100
1010101
0110011
1011010

0001111
0110011
0111100
1010101
0111100
1010101

0001111
0110011
0111100
1010101
0111100
1011010

0001111
0110011
0111100
1010101
0000000
0110011

0001111
0110011
0111100
1010101
0000000
0111100

0001111
0110011
0111100
1010101
0001111
0110011

0001111
0110011
0111100
1010101
0001111
0111100

E(Z, u), where any column vector of length 2 over Fq is used once as u. By lemma 16,
these are all the possible extensions of 2-subspaces from A (note, that the extensions of
subspaces from A with the extension code are exactly the 2-subspaces of SA.).

Lemma 21. Each 2-subspaces of F6
q extended from a 2-subspace of B is contained exactly

once in the 3-subspaces of SB.
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Proof. Any 2-subspace X of B is first extended in all the q2 possible distinct ways to a
2-subspace of F5

q. Each 2-subspace Y of these q2 subspaces is extended in a unique way
to a 3-subspace Z. Such a 3-subspace Z contains all the q2 distinct 2-subspaces of F6

q,
extended from Y .

Lemma 22. Each 2-subspaces of F6
q extended from a 2-subspace of C is contained exactly

once in the 3-subspaces of SC.

Proof. Any 2-subspace X of C is first extended in a unique way to a 3-subspace Z of F5
q.

Such a 3-subspace Z contains all the q2 distinct 2-subspaces of F5
q, extended from X. Each

such 3-subspace Y is extended to q2 (out of the q3) distinct 3-subspaces of F6
q. All these

q2 distinct 3-subspaces have the same symbol in the last row of the (q + 2)-th column, in
the matrix representation, which implies that each distinct 2-subspace of F5

q is extended
in q2 distinct ways to all possible distinct 2-subspaces of F6

q extended from X.

For the next set of 2-subspaces we need one property of the extension space.

Lemma 23. Let C ′ be a coset of the extension code, let M1 and M2 two 2 × (q + 1)
matrices of C ′, and let u1 and u2 two column vectors of F2

q. Let {i1, i2, . . . , iq+1} ∈ P,
defined in Lemma 10, and let X be a 3-subspace. If Y1 and Y2 are extensions of X with
E(M1, u1) and E(M2, u2), respectively, then columns i1, i2, . . . , iq+1 of Y1 and Y2 define
two different 2-subspaces of F6

q unless M1 = M2 and {i1, i2, . . . , iq+1} = {1, 2, . . . , q + 1}
or M1 = M2 and u1 = u2.

Proof. By the definition of the extension code, the columns of M1 and M2 are distinct
in pairs unless M1 = M2. Hence, by Lemma 9 we infer the result in the case that
M1 6= M2. If M1 = M2 then u1 6= u2 implies that except for the first q+ 1 columns all the
columns of E(M1, u1) and E(M2, u2) are different in pairs and hence the result follows
from Lemma 9.

Since each 2-subspace of either B or C is contained in q2−1 3-subspaces of D, it follows
as a consequence of Lemma 23 that

Lemma 24. Each 2-subspaces of F6
q extended from a 2-subspace of either B or C is

contained exactly q2 − 1 times in the 3-subspaces of SD.

Lemma 25. Each 2-subspace of F6
q which contains a vector which start with five zeroes

is contained either in S0 or contained q2 times in SB.

Proof. The unique 2-subspace in which all vectors start with four or five zeroes is contained
in S0.

Vectors which start with five zeroes are contained in S0 and in the extensions of
2-subspaces from B. The reason is that the 2-subspaces of B are first extended to 2-
subspaces of F5

q in q2 distinct ways. Since B contains q spreads, it follows that each
nonzero vector of length 4 is contained q times in the 2-subspaces of B. Since there are q2

distinct extensions of a 2-subspace of F4
q to a 2-subspace of F5

q is follows that each vector
of length 4 is extended with a symbol ξ ∈ Fq to a vector of length 5 exactly q times.
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Hence, each nonzero vector of length 5 appears in the extensions of B to 2-subspaces of F5
q

exactly q2 times. Thus, each vector of length 6 appears exactly q2 times in the extensions
(with expansions) of B to 3-subspaces in a unique way. Thus, each 2-subspace which
contains a vector of length 6 starting with 5 zeroes is contained in q2 distinct 3-subspaces
of SB.

Lemma 26. Each 2-subspace of F6
q which contains a vector which start with four zeroes

and the 5-th symbol is nonzero, is contained either in S0 or contained q2 times in SC.

Proof. The unique 2-subspace in which all vectors start with four zeroes is contained in S0.
Vectors which start with four zeroes and the 5-th symbol is nonzero, are contained

in S0 and in the extensions of subspaces from C. Since C contains q2 spreads, it follows
that each nonzero vector of length 4 is contained q2 times in the 2-subspaces of C. Hence,
each vector of length 5 appears exactly q2 times in the extensions (with expansions) of C to
3-subspaces in a unique way. Thus, each 2-subspace which contains a vector of length 5
starting with 4 zeroes and 5-th nonzero, is contained in q2 distinct 3-subspaces of F5

q

extended (and expanded) from C. For each 2-subspace of F5
q which contains a vector

which starts with 4 zeroes there are q2 distinct extensions to a 2-subspace of F6
q. Each

one is considered in the extensions of Cξ, ξ ∈ Fq, and since each 2-subspace of F5
q was

contained q2 times, it follows that the same is true for the 2-subspaces of F6
q which contain

a vector which start with four zeroesand the 5-th symbol is nonzero.

A consequence of Lemmas 19, 20, 21, 22, 24, 25, 26, we have the concluding result.

Theorem 27. S0 ∪ SA is a derived q-Fano plane and SB ∪ SC ∪ SD is a residual q-Fano
plane.

7 Conclusions and Future Research

We have presented a new definition for the residual q-design which reflects better the
relations between the design on one side and its derived design and residual designs on the
other hand. We have constructed designs with the parameters of the residual design of the
q-Fano plane for each power of a prime q. This is the closest as was achieved until today
towards a construction of infinite family of q-Steiner systems, arguably, the most intriguing
open problem in block design today. Our construction is flexible which enable to construct
many residual q-Fano planes for each q. The number of different residual q-Fano planes
is increased with the increase of q. The first point with flexibility is the number of
parallelisms in F4

q which are generally increasing as q get larger. The number of partitions
of the spreads in such a parallelism into the sets A, B, and C, is clearly increasing as q
get larger. Similarly, C can be partitions in a few different ways to {Cξ : ξ ∈ Fq} and the
number of such partitions is clearly increasing with q. The extension code can be chosen in
a few different ways and the number of different ways is also increasing when q increases.
Finally, there are many different ways to make the extensions of Type D. First, the cosets
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of the extension code (the extension space without the extension code) can be partitioned
in a few different ways (with an exception for q = 2) to C1, C2, . . . , Cq+1 and these number
of different ways is clearly increasing with the increase of q. The matching of the pairs
(Yi, Ci), for the extension of Type D, can be done in (q + 1)! different ways and this can
be done for each spread in A. Hence, we have many different residual q-Fano planes for
each q and each one might have different properties and can be used for different purpose.
This is a subject for future research. In particular one can find different residual q-Fano
planes which differ in a small number of subspaces (by using pairs in the extensions of
Type D which differ only in one transposition). One can easily verify that the structure
obtained from the dual subspaces of the subspaces in a residual q-Fano plane is also a
residual q-Fano plane. This can lead to other interesting properties of the q-Fano plane
and this is a topic for future research. Finally, an applications of the new structure in
network coding is presented in [19].

The new construction and the new structure open also a sequence of other directions
for future research, for which we list a few:

• Provide more constructions for residual q-Steiner systems with other parameters.

• Can a residual q-Steiner system exists, while a related q-Steiner system does not
exist? We conjecture that the answer is positive.

• Prove that the residual q-Fano plane constructed can be extended or cannot be
extended to a q-Fano plane. For q = 2 it cannot be extended, while for some q > 2
such an extension might be possible.

• For q = 2 the stabiliser of the the constructed 3-dimensional subspaces is trivial. Is
this is the same for all q?

• Examine the properties of the residual q-Steiner systems with respect to the possible
existence of a related q-Steiner systems.

Finally, we note that the subspaces used throughout the construction can be repre-
sented by their basis and the same is true for the construction. We believe that with
such more natural representation the proof of the main result and its verification will be
more complicated and less intuitive. But, based on our exposition the construction can
be easily and readily given with basis for subspaces.

Appendix

In the appendix we present the extensions of Type D to the 3-subspaces Y4, Y5, Y6,
Y7, Y8, Y9, Y10, Y11, Y12, Y13, Y14, and Y15.
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Table 9: Extensions of Type D with Y1 = Y4, Y2 = Y5, and Y3 = Y6
0110011
0111100
1010101
0000000
0000000
1100110

0110011
0111100
1010101
0000000
0000000
1101001

0110011
0111100
1010101
0000000
0001111
1100110

0110011
0111100
1010101
0000000
0001111
1101001

0110011
0111100
1010101
0000000
0110011
0000000

0110011
0111100
1010101
0000000
0110011
0001111

0110011
0111100
1010101
0000000
0111100
0000000

0110011
0111100
1010101
0000000
0111100
0001111

0110011
0111100
1010101
0000000
1010101
1010101

0110011
0111100
1010101
0000000
1010101
1011010

0110011
0111100
1010101
0000000
1011010
1010101

0110011
0111100
1010101
0000000
1011010
1011010

0110011
0111100
1010101
0000000
1100110
0110011

0110011
0111100
1010101
0000000
1100110
0111100

0110011
0111100
1010101
0000000
1101001
0110011

0110011
0111100
1010101
0000000
1101001
0111100

0110011
0110011
1010101
0001111
1100110
0000000

0110011
0110011
1010101
0001111
1100110
0001111

0110011
0110011
1010101
0001111
1101001
0000000

0110011
0110011
1010101
0001111
1101001
0001111

0110011
0110011
1010101
0001111
1010101
1100110

0110011
0110011
1010101
0001111
1010101
1101001

0110011
0110011
1010101
0001111
1011010
1100110

0110011
0110011
1010101
0001111
1011010
1101001

0110011
0110011
1010101
0001111
0110011
0110011

0110011
0110011
1010101
0001111
0110011
0111100

0110011
0110011
1010101
0001111
0111100
0110011

0110011
0110011
1010101
0001111
0111100
0111100

0110011
0110011
1010101
0001111
0000000
1010101

0110011
0110011
1010101
0001111
0000000
1011010

0110011
0110011
1010101
0001111
0001111
1010101

0110011
0110011
1010101
0001111
0001111
1011010

0110011
0111100
1010101
0001111
1100110
1100110

0110011
0111100
1010101
0001111
1100110
1101001

0110011
0111100
1010101
0001111
1101001
1100110

0110011
0111100
1010101
0001111
1101001
1101001

0110011
0111100
1010101
0001111
1010101
0000000

0110011
0111100
1010101
0001111
1010101
0001111

0110011
0111100
1010101
0001111
1011010
0000000

0110011
0111100
1010101
0001111
1011010
0001111

0110011
0111100
1010101
0001111
0110011
1010101

0110011
0111100
1010101
0001111
0110011
1011010

0110011
0111100
1010101
0001111
0111100
1010101

0110011
0111100
1010101
0001111
0111100
1011010

0110011
0111100
1010101
0001111
0000000
0110011

0110011
0111100
1010101
0001111
0000000
0111100

0110011
0111100
1010101
0001111
0001111
0110011

0110011
0111100
1010101
0001111
0001111
0111100

Table 10: Extensions of Type D with Y1 = Y7, Y2 = Y8, and Y3 = Y9
0110011
1010101
0110011
0111100
0000000
1100110

0110011
1010101
0110011
0111100
0000000
1101001

0110011
1010101
0110011
0111100
0001111
1100110

0110011
1010101
0110011
0111100
0001111
1101001

0110011
1010101
0110011
0111100
0110011
0000000

0110011
1010101
0110011
0111100
0110011
0001111

0110011
1010101
0110011
0111100
0111100
0000000

0110011
1010101
0110011
0111100
0111100
0001111

0110011
1010101
0110011
0111100
1010101
1010101

0110011
1010101
0110011
0111100
1010101
1011010

0110011
1010101
0110011
0111100
1011010
1010101

0110011
1010101
0110011
0111100
1011010
1011010

0110011
1010101
0110011
0111100
1100110
0110011

0110011
1010101
0110011
0111100
1100110
0111100

0110011
1010101
0110011
0111100
1101001
0110011

0110011
1010101
0110011
0111100
1101001
0111100

0110011
1010101
0111100
0111100
1100110
0000000

0110011
1010101
0111100
0111100
1100110
0001111

0110011
1010101
0111100
0111100
1101001
0000000

0110011
1010101
0111100
0111100
1101001
0001111

0110011
1010101
0111100
0111100
1010101
1100110

0110011
1010101
0111100
0111100
1010101
1101001

0110011
1010101
0111100
0111100
1011010
1100110

0110011
1010101
0111100
0111100
1011010
1101001

0110011
1010101
0111100
0111100
0110011
0110011

0110011
1010101
0111100
0111100
0110101
0111100

0110011
1010101
0111100
0111100
0111100
0110110

0110011
1010101
0111100
0111100
0111100
0111100

0110011
1010101
0111100
0111100
0000000
1010101

0110011
1010101
0111100
0111100
0000000
1011010

0110011
1010101
0111100
0111100
0001111
1010101

0110011
1010101
0111100
0111100
0001111
1011010

0110011
1010101
0111100
0110011
1100110
1100110

0110011
1010101
0111100
0110011
1100110
1101001

0110011
1010101
0111100
0110011
1101001
1100110

0110011
1010101
0111100
0110011
1101001
1101001

0110011
1010101
0111100
0110011
1010101
0000000

0110011
1010101
0111100
0110011
1010101
0001111

0110011
1010101
0111100
0110011
1011010
0000000

0110011
1010101
0111100
0110011
1011010
0001111

0110011
1010101
0111100
0110011
0110011
1010101

0110011
1010101
0111100
0110011
0110011
1011010

0110011
1010101
0111100
0110011
0111100
1010101

0110011
1010101
0111100
0110011
0111100
1011010

0110011
1010101
0111100
0110011
0000000
0110011

0110011
1010101
0111100
0110011
0000000
0111100

0110011
1010101
0111100
0110011
0001111
0110011

0110011
1010101
0111100
0110011
0001111
0111100
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Table 11: Extensions of Type D with Y1 = Y10, Y2 = Y11, and Y3 = Y12
0110011
1010101
0000000
1011010
0000000
1100110

0110011
1010101
0000000
1011010
0000000
1101001

0110011
1010101
0000000
1011010
0001111
1100110

0110011
1010101
0000000
1011010
0001111
1101001

0110011
1010101
0000000
1011010
0110011
0000000

0110011
1010101
0000000
1011010
0110011
0001111

0110011
1010101
0000000
1011010
0111100
0000000

0110011
1010101
0000000
1011010
0111100
0001111

0110011
1010101
0000000
1011010
1010101
1010101

0110011
1010101
0000000
1011010
1010101
1011010

0110011
1010101
0000000
1011010
1011010
1010101

0110011
1010101
0000000
1011010
1011010
1011010

0110011
1010101
0000000
1011010
1100110
0110011

0110011
1010101
0000000
1011010
1100110
0111100

0110011
1010101
0000000
1011010
1101001
0110011

0110011
1010101
0000000
1011010
1101001
0111100

0110011
1010101
0001111
1010101
1100110
0000000

0110011
1010101
0001111
1010101
1100110
0001111

0110011
1010101
0001111
1010101
1101001
0000000

0110011
1010101
0001111
1010101
1101001
0001111

0110011
1010101
0001111
1010101
1010101
1100110

0110011
1010101
0001111
1010101
1010101
1101001

0110011
1010101
0001111
1010101
1011010
1100110

0110011
1010101
0001111
1010101
1011010
1101001

0110011
1010101
0001111
1010101
0110011
0110011

0110011
1010101
0001111
1010101
0110011
0111100

0110011
1010101
0001111
1010101
0111100
0110011

0110011
1010101
0001111
1010101
0111100
0111100

0110011
1010101
0001111
1010101
0000000
1010101

0110011
1010101
0001111
1010101
0000000
1011010

0110011
1010101
0001111
1010101
0001111
1010101

0110011
1010101
0001111
1010101
0001111
1011010

0110011
1010101
0001111
1011010
1100110
1100110

0110011
1010101
0001111
1011010
1100110
1101001

0110011
1010101
0001111
1011010
1101001
1100110

0110011
1010101
0001111
1011010
1101001
1101001

0110011
1010101
0001111
1011010
1010101
0000000

0110011
1010101
0001111
1011010
1010101
0001111

0110011
1010101
0001111
1011010
1011010
0000000

0110011
1010101
0001111
1011010
1011010
0001111

0110011
1010101
0001111
1011010
0110011
1010101

0110011
1010101
0001111
1011010
0110011
1011010

0110011
1010101
0001111
1011010
0111100
1010101

0110011
1010101
0001111
1011010
0111100
1011010

0110011
1010101
0001111
1011010
0000000
0110011

0110011
1010101
0001111
1011010
0000000
0111100

0110011
1010101
0001111
1011010
0001111
0110011

0110011
1010101
0001111
1011010
0001111
0111100

Table 12: Extensions of Type D with Y1 = Y13, Y2 = Y14, and Y3 = Y15
0110011
0000000
1010101
1101001
0000000
1100110

0110011
0000000
1010101
1101001
0000000
1101001

0110011
0000000
1010101
1101001
0001111
1100110

0110011
0000000
1010101
1101001
0001111
1101001

0110011
0000000
1010101
1101001
0110011
0000000

0110011
0000000
1010101
1101001
0110011
0001111

0110011
0000000
1010101
1101001
0111100
0000000

0110011
0000000
1010101
1101001
0111100
0001111

0110011
0000000
1010101
1101001
1010101
1010101

0110011
0000000
1010101
1101001
1010101
1011010

0110011
0000000
1010101
1101001
1011010
1010101

0110011
0000000
1010101
1101001
1011010
1011010

0110011
0000000
1010101
1101001
1100110
0110011

0110011
0000000
1010101
1101001
1100110
0111100

0110011
0000000
1010101
1101001
1101001
0110011

0110011
0000000
1010101
1101001
1101001
0111100

0110011
0001111
1010101
1100110
1100110
0000000

0110011
0001111
1010101
1100110
1100110
0001111

0110011
0001111
1010101
1100110
1101001
0000000

0110011
0001111
1010101
1100110
1101001
0001111

0110011
0001111
1010101
1100110
1010101
1100110

0110011
0001111
1010101
1100110
1010101
1101001

0110011
0001111
1010101
1100110
1011010
1100110

0110011
0001111
1010101
1100110
1011010
1101001

0110011
0001111
1010101
1100110
0110011
0110011

0110011
0001111
1010101
1100110
0110011
0111100

0110011
0001111
1010101
1100110
0111100
0110011

0110011
0001111
1010101
1100110
0111100
0111100

0110011
0001111
1010101
1100110
0000000
1010101

0110011
0001111
1010101
1100110
0000000
1011010

0110011
0001111
1010101
1100110
0001111
1010101

0110011
0001111
1010101
1100110
0001111
1011010

0110011
0001111
1010101
1101001
1100110
1100110

0110011
0001111
1010101
1101001
1100110
1101001

0110011
0001111
1010101
1101001
1101001
1100110

0110011
0001111
1010101
1101001
1101001
1101001

0110011
0001111
1010101
1101001
1010101
0000000

0110011
0001111
1010101
1101001
1010101
0001111

0110011
0001111
1010101
1101001
1011010
0000000

0110011
0001111
1010101
1101001
1011010
0001111

0110011
0001111
1010101
1101001
0110011
1010101

0110011
0001111
1010101
1101001
0110011
1011010

0110011
0001111
1010101
1101001
0111100
1010101

0110011
0001111
1010101
1101001
0111100
1011010

0110011
0001111
1010101
1101001
0000000
0110011

0110011
0001111
1010101
1101001
0000000
0111100

0110011
0001111
1010101
1101001
0001111
0110011

0110011
0001111
1010101
1101001
0001111
0111100
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[5] M. Braun, T. Etzion, P. R. J. Österg̊ard, A. Vardy, and A. Wassermann
Existence of q-Analogs of Steiner Systems, Forum of Mathematics, Pi, 4 (2016), 1–14.

[6] M. Braun, A. Kerber and R. Laue, Systematic construction of q-analogs of
t-(v, k, λ)-designs, Designs, Codes, and Cryptography 34 (2005) 55–70.

[7] M. Braun, M. Kiermaier, and A. Nakić On the automorphism group of a
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