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Abstract

For a graph G and p ∈ [0, 1], let Gp arise from G by deleting every edge mutually
independently with probability 1− p. The random graph model (Kn)p is certainly
the most investigated random graph model and also known as theG(n, p)-model. We
show that several results concerning the length of the longest path/cycle naturally
translate to Gp if G is an arbitrary graph of minimum degree at least n− 1.

For a constant c > 0 and p = c
n , we show that asymptotically almost surely the

length of the longest path in Gp is at least (1− (1 + ε(c))ce−c)n for some function

ε(c) → 0 as c → ∞, and the length of the longest cycle is a least (1 − O(c−
1
5 ))n.

The first result is asymptotically best-possible. This extends several known results
on the length of the longest path/cycle of a random graph in the G(n, p)-model to
the random graph model Gp where G is a graph of minimum degree at least n− 1.

Mathematics Subject Classifications: 05C38, 05C80

1 Introduction

Around 1960 Erdős and Renyi proved the first results about random graphs – especially
about graphs on n vertices where every possible edge is present independently with proba-
bility p, which is nowadays known as the G(n, p)-model. It is not an overstatement saying
that this field has grown enormously since then and for numerous graph parameters the
typical value is (precisely) known for large n. In particular, the lengths of paths and

cycles are investigated. As for any ε > 0 and p > (1+ε) logn
n

a.a.s.1 a graph in G(n, p) is

1For a sequence of graphs (Gi)i∈N and numbers (pi)i∈N in [0, 1], we say that the graph sequence has
property P asymptotically almost surely (a.a.s.) if P[(Gi)pi

∈ P]→ 1 as i→∞.
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hamiltonian, we consider the length of a longest path/cycle if p = c
n

for some constant
c > 1. A series of papers [1, 3, 4, 5, 6] finally led to the following theorem, where

α(c) = sup
α>0

{
G ∈ G(n, cn−1) contains a path of length at least αn a.a.s.

}
and β(c) analogously for the length of cycles.

Theorem 1. There exists a function ε(c)→ 0 as c→∞ such that

α(c), β(c) = 1− (1 + ε(c))ce−c.

Let us consider a more general random graph model. For a graph G, we denote by
Gp the random subgraph obtained by deleting every edge independently with probability
1 − p from the edge set of G. Thus (Kn)p has the same distribution as G(n, p). In this
paper we consider the typical asymptotic behavior of (Gk)p instead of (Kn)p where Gk is
a simple graph of minimum degree at least k. In our setting p depends on k instead of
the order of Gk. To be precise, we consider p = c

k
where c > 0 and k is large enough in

terms of c. We denote by G the set of all graph sequences G1, G2, . . . such that Gk has
minimum degree at least k. We define

α′(c) = inf
(Gk)k>1∈G

sup
α>0

{
(Gk) c

k
contains a path of length at least αk a.a.s.

}
and β′(c) analogously for cycles. It is clear that α′(c) 6 α(c) and β′(c) 6 β(c). We prove
that there is essentially no difference between α′(c) and α(c) and our second contribution
is a lower bound on β′(c).

Theorem 2. There exists a function ε(c)→ 0 as c→∞ such that

α′(c) = 1− (1 + ε(c))ce−c.

Theorem 3. We have β′(c) = 1−O(c−
1
5 ) as c→∞.

Thus Theorem 2 describes precisely the asymptotic behavior of α′(c) as c→∞ improv-

ing a result due to Krivelevich, Lee and Sudakov [8] who showed that α′(c) = 1−O(c−
1
2 ).

In addition, it generalizes the statement about paths in Theorem 1.
Theorem 3 improves a result of Krivelevich, Lee and Sudakov [8] and Riordan [10]

implying β′(c) = 1 − o(1). It also generalizes early results of the length of the longest
cycle in the G(n, p)-model [1, 5].

Note that the questions of hamiltonicity in the G(n, p) setting naturally translates to
the question whether Gk has a cycle of length at least k+1. These extensions are success-
fully settled by Krivelevich, Lee and Sudakov [8], and by Glebov, Naves and Sudakov [7].

We do not believe that the bound in Theorem 3 is tight and conjecture that α′(c) =
β′(c) holds. However, due to the different setting as in the G(n, p)-model, the construction
of cycles is much more complicated as a graph of minimum degree at least k can clearly
have arbitrarily large girth. Thus any cycle in Gp might be much larger than k and is
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therefore difficult to detect. This may be one reason why the approach of Glebov, Naves
and Sudakov in [7] needs so much more effort and additional tools in comparison to a
proof that shows the same threshold behavior in the G(n, p)-model. We think that a proof
that describes the behavior of β′(c) may be similarly complicated. In comparison to the
approach in [7], the proof of Theorem 3 is rather short.

2 Preliminaries

We use standard notation. In particular, we denote the vertex set of a graph G by V (G).
For a path P and two vertices u, v ∈ V (P ), we denote by uPv the subpath of P with
endvertices u, v.

We will frequently need to show that a binomial random variable is very close to its
expected value and use for these purposes Chernoff’s inequality.

Theorem 4 (Chernoff’s inequality [2]). If X is a binomial distributed random variable
with X ∼ Bin (n, p) and 0 < λ 6 np = EX, then

P [|X − np| > λ] 6 2e−
λ2

3np .

Several results in this paper are based on the depth-first-search algorithm (DFS-
algorithm) which is a frequently used exploration method of graphs. We briefly describe
this algorithm and introduce some notation along the way. To the best of our knowledge,
Krivelevich and Sudakov were the first who used this method in connection with random
graphs [9]. This paper and [10] present very nice and short proofs of previously known
and new results.

The DFS-algorithm is an algorithm traversing a graph such that all vertices of a given
graph G are finally visited and outputs a rooted spanning forest T of G. It proceeds in
the following way.

At any step, there is a partition of the vertex set V (G) into three sets R, S and U .
The set U contains the vertices that have not yet been visited during the exploration, R
denotes the set of vertices whose exploration is complete, and all the remaining vertices
that are currently under exploration are contained in S. The vertices of S are kept in a
stack, which is a last-in-first-out data structure.

The algorithm starts with U = V (G) and R = S = ∅ and executes the following rounds
(one round is the execution of (a) or (b)) until every vertex is explored, i.e. R = V (G)
and S = U = ∅.

(a) If S = ∅, then some unreached vertex v in U is moved to S. This vertex v will be the
root of a new component of our rooted spanning forest T .

(b) Otherwise, let v be the top element of the stack S (the last-in vertex). The algorithm
queries whether v has some neighbor w in U . If so, w is placed on top of the stack S.
If v has no neighbor in U , it is completely explored and is moved to R.
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In each round of the algorithm there is exactly one vertex moved either from U to S
or from S to R. So indeed, after 2|V (G)| rounds every vertex has been moved from U to
R through S and the algorithm terminates with a rooted spanning forest T .

The following properties of the DFS-algorithm are important to us:

(I) Every positively answered query about a neighbor in U increases the size of R ∪ S
by exactly one.

(II) The set S always spans a path in T .

(III) At any round of the algorithm, all possible edges between the set R and U have
been queried and answered negatively.

(IV) Every edge e = uv of the graph G which is not tested during the exploration of G
joins two vertices on some vertical path in the rooted spanning forest T (because
otherwise the algorithm would have queried the edge uv during the exploration).

We will use the DFS-algorithm to explore the random graph Gp. Therefore, we assume
that the algorithm already knows the underlying graph G and all the edges of G. The
DFS-algorithm only queries about these edges of G during the exploration of Gp. That is,
if the DFS-algorithm looks for neighbors of some vertex v, it only considers the neighbors
w of v in G, and queries whether this vertex is also a neighbor of v in Gp. We receive a
positive answer of each such query independently with probability p. In this way, following
this algorithm, we explore a rooted spanning forest of our random graph Gp. Note that by
definition the answer of a query does not depend on the answers of the previous queries.
We say an edge of G is tested if the DFS-algorithm queried whether this edge is in Gp

and otherwise we say it is untested.
Throughout the paper we consider graphs Gk of minimum degree at least k. Several

inequalities in our computations are only correct if k is large enough. For the purpose
of readability we often drop the index k and simple write G. Additionally, we leave out
necessary roundings where it does not affect the argument.

3 Long Cycles

In this section we prove Theorem 3. Let G be a graph of minimum degree at least k on
n vertices and let p = c

k
for c sufficiently large and k sufficiently large in terms of c.

We consider a rooted forest T which is an output of the DFS-algorithm described in
Section 2. We emphasize that every untested edge of G is present in Gp independently of
T .

This proof is based on ideas of Riordan [10] and follows its strategy. In particular,
the first two short lemmas naturally transfer to our setting. Note that he considers
p = ω(k−1); that is, in our case p is significantly smaller. As a consequence, in our case
many smaller error quantities do not vanish as k →∞. Therefore, we carefully introduced
a suitable hierarchy of these small quantities. Beside that a few new ideas are need to
deal with a smaller edge probability p.
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The strategy of the proof is as follows. At first we show that for most of the vertices
in G almost all incident edges are not queried by the DFS-algorithm (Lemma 5 and 6).
By (IV), all untested edges connect two vertices in the same component of T . Thus we
may assume that there are not too many untested edges joining two vertices in distance
at least (1 − 5c−1/5)k in T . Using this we show that T contains a long root-to-leaf path
P with certain properties (Lemma 7 and 8). Finally, we use P and all the untested edges
that join two vertices on P to find a long cycle in Gp.

Lemma 5. During the DFS-algorithm on Gp a.a.s. at most 2n
p

= 2nk
c

many edges are
tested.

Proof. We run the DFS-algorithm on Gp. Note that the rooted spanning forest T of Gp

has at most n − 1 edges and that every positively answered query contributes an edge
to our exploration of this forest. Let X be the number of tested edges. For a positive
integer `, let A` be the event that out of ` queries at most n− 1 are answered positively.
By comparison with a binomial distribution and using Chernoff’s inequality, we obtain

P [X > 2n/p] 6 P
[
A2n/p

]
6 2e−

n
3 = o(1),

which completes the proof.

From now on, let ε = c−1/5. In view of the statement, we assume from now always that
ε < 10−4. Let Eu be the set of untested edges of G during the DFS-algorithm. We call a
vertex free if it is incident with at least (1− ε)k untested edges in Eu.

Lemma 6. A.a.s., at most 4ε4n vertices of the rooted forest T produced by the DFS-
algorithm are not free.

Proof. Let v ∈ V (T ) be a vertex that is not free. Since the minimum degree of G is
at least k, the vertex v is incident with at least εk tested edges. Assume that there are
more than 4ε4n vertices that are not free. Hence, we have more than 1

2
4ε4n · εk = 2nk

c

many tested edges in total. By Lemma 5, the probability of this is o(1), which implies
the statement.

Following the proof of Riordan [10], for a rooted forest T and a vertex v ∈ V (T ), we
introduce the following notation.

• Let A(v) be the set of ancestors of v in T excluding v and let D(v) be the set of
descendants of v in T excluding v.

• Let Ai(v) and Di(v) be the sets of ancestors and descendants of v at distance exactly
i, respectively, and let A6i(v) and D6i(v) be the sets of ancestors and descendants
of v at distance at most i.

• The height of the vertex v is defined as max{i : Di(v) 6= ∅}.
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• For two vertices u, v, let d(u, v) be the number of edges on a shortest u, v-path in
T if such a path exists, otherwise set d(u, v) =∞.

• We say the vertex v is up if |D(v)| > εk. If this is not the case, then v is down.

• We call the vertex v skinny if |D6(1−5ε)k(v)| 6 (1 − 4ε)k. Let Y denote the set of
vertices in T which are not skinny.

Lemma 7. If a rooted forest T contains at most 5ε4n down vertices, then, for any constant
h > 1, at most 6hε3n vertices of T are at height less than hk.

Proof. We define the set

S1 = {(v, w) : v is up, v is at height at most hk, and w ∈ D(v) is down}.

As A(w) forms a path, every vertex w which is down is contained in at most hk pairs
(v, w) ∈ S1. Since there are at most 5ε4n down vertices, we conclude |S1| 6 5hkε4n. As a
vertex v which is up and at height at most hk is contained in at least εk pairs (v, w) ∈ S1,
there are at most 5hε3n such vertices. That is, at most 5hε3n+ 5ε4n 6 6hε3n vertices in
T are at height less than hk.

Lemma 8. If a rooted forest T contains at most 5ε4n down vertices and X ⊆ V (T ) such
that |X| 6 5ε4n, then, T contains a vertical path P of length at least 4k containing at
most 1

4
εk vertices in X ∪ Y .

Proof. Let X be a subset of V (T ) of size at most 5ε4n. First we show that the set
Y ⊆ V (T ) is small enough for our purposes. (Recall that Y denotes the set of vertices
which are not skinny.) We define the set

S2 = {(v, w) : v ∈ A(w), d(v, w) 6 (1− 5ε)k}.

Since a vertex has at most one ancestor at any given distance, we conclude

|S2| 6 (1− 5ε)kn.

By Lemma 7, all but at most 6ε3n vertices v are at height at least k and thus, each such
v appears in at least (1− 5ε)k pairs (v, w) ∈ S2. This contributes at least

(1− 5ε)(1− 6ε3)kn > (1− 5ε)kn− 6ε3kn (1)

pairs to the set S2. Any vertex which is not skinny contributes another εk pairs to the
lower bound (1). As |S2| 6 (1− 5ε)kn, we conclude |Y | 6 6ε3kn

εk
= 6ε2n.

Next we want to find the desired path P . We define the set

S3 = {(v, w) : w ∈ X ∪ Y, v ∈ A(w), d(v, w) 6 4k} .
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Since a vertex has at most one ancestor at each distance, for a pair (v, w) ∈ S3, the vertex
w can appear in at most 4k different pairs in S3. We obtain

|S3| 6 4k · |X ∪ Y |
6 4k ·

(
5ε4n+ 6ε2n

)
6 25ε2kn.

This implies that the number of vertices v that can appear in more than 1
4
εk pairs (v, w) ∈

S3, is bounded from above by

25ε2kn
1
4
εk

= 100εn.

By Lemma 7, all but at most 24ε3n vertices of T are at height at least 4k and from above
follows that all but at most 100εn vertices v appear in at most 1

4
εk pairs (v, w) ∈ S3.

Hence, for c sufficiently large such that ε is small enough, there exists a vertex v at height
at least 4k that appears in at most 1

4
εk pairs (v, w) ∈ S3. Let P be the vertical path from

v to some vertex in D4k(v). Then P has length 4k and by the choice of v, the path P
contains at most 1

4
εk vertices in X ∪ Y .

Proof of Theorem 3. Recall, G is a graph of minimum degree at least k and p = c
k

for c
sufficiently large.

We run the DFS-algorithm on Gp. Let T be the spanning forest and let Eu be the
set of untested edges of G that we obtain from this algorithm. By Lemma 6, we may
assume that all but at most 4ε4n vertices of T are free, that is, incident with at least
(1 − ε)k untested edges. Due to property (IV) of the DFS-algorithm, for every untested
edge uv ∈ Eu, either u ∈ A(v) or u ∈ D(v).

Suppose we have ∣∣∣ {u : uv ∈ Eu, d(u, v) > (1− 5ε)k}
∣∣∣ > εk (2)

for more than log k vertices v. This means, we can find at least εk log k untested edges
uv ∈ Eu in G with d(u, v) > (1− 5ε)k. With probability

1− (1− p)εk log k 6 1− e−c4/5 log k = 1− o(1)

at least one of these edges present in Gp. Such an edge uv forms together with the
u, v-path in T the desired cycle of length at least (1− 5ε)k in Gp.

Hence we may assume that for all vertices v except for at most log k, we have∣∣∣ {u : uv ∈ Eu, d(u, v) > (1− 5ε)k}
∣∣∣ < εk. (3)

Let V0 be the set of vertices v that do not satisfy (3); that is, |V0| 6 log k.

Claim. A.a.s., there are at most 5ε4n down vertices.
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Proof of the claim: Assume that some vertex v ∈ V (T ) \ V0 is free and down. Since
|D(v)| < εk and v is free, there are at least (1 − ε)k − εk = (1 − 2ε)k untested edges
uv ∈ Eu with u ∈ A(v). Since each vertex has at most one ancestor at each distance, v
has at least (1− 2ε)k− (1− 5ε)k = 3εk ancestors u with uv ∈ Eu and d(u, v) > (1− 5ε)k,
which is a contradiction as v /∈ V0. Therefore, no down vertex in V (T ) \ V0 is free. By
Lemma 6, a.a.s. all but 4ε4n vertices are free. Hence, at most

4ε4n+ |V0| 6 4ε4n+ log k 6 5ε4n

vertices are down, where the last inequality holds for sufficiently large k since n > k. �

Thus we may apply Lemma 8, where X is the union of V0 and the set of vertices that
are not free, that is, |X| 6 4ε4n + log k 6 5ε4n (Lemma 6). Recall that Y is the set of
vertices that are not skinny. Let P be the path of length 4k that is given by the Lemma 8
and let Z be the set of vertices of V (P ) \ V0 that are free and skinny. By Lemma 8, we
obtain ∣∣V (P ) \ Z

∣∣ =
∣∣(X ∪ Y ) ∩ V (P )

∣∣ 6 1

4
εk.

For any vertex v ∈ Z, there are at least (1 − ε)k untested edges uv ∈ Eu with u ∈
A(v)∪D(v). We want to show that there are sufficiently many of these vertices u in A(v).

Since v ∈ Z implies v /∈ V0, at least (1− 2ε)k of these vertices u with uv ∈ Eu satisfy
d(u, v) 6 (1− 5ε)k. Moreover, as v is skinny, at least (1− 2ε)k− (1− 4ε)k = 2εk vertices
u must be ancestors of v with d(u, v) 6 (1−5ε)k. We define a set of ancestors of v within
a certain distance, namely

B(v) = {u ∈ A(v) : uv ∈ Eu, εk 6 d(u, v) 6 (1− 5ε)k}.

Again, since v has only one ancestor at each distance, we obtain |B(v)| > εk.
Let u1 ∈ V (P ) be the vertex on the path P , which is at height k in P . Let V1 be the

set of the first descendants of u1 on P , such that
∣∣V1∩Z∣∣ > log k. Since |V (P )\Z| 6 1

4
εk,

we have

V1 ⊆ D6 1
4
εk+log k(u1) ∩ V (P ).

For each of these vertices v ∈ V1 ∩ Z, we have |B(v)| > εk. Hence, there are at least
εk log k untested edges uv ∈ Eu such that v ∈ V1 ∩ Z and u ∈ B(v). With probability at
least 1 − (1 − p)εk log k = 1 − o(k−1) one of these edges is present. Let v1u2 be one of it
such that v1 ∈ V1, u2 ∈ B(v1).

Assume for some i > 2 we have defined vertices v1, u1, v2, u2, . . . , ui−1, ui that appear
in this bottom-to-top order on P such that

• vjuj+1 ∈ E(Gp),

• uj+1 ∈ B(vj),
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• vj ∈ D6 1
4
εk+log k(uj) and |V (ujPvj) ∩ Z| 6 1 + log k for all 1 6 j 6 i− 1, and

• d(u1, ui) 6 2k where d(u, v) denotes the distance between two vertices u, v in T .

Next we show how to define vi and ui+1. Let Vi be the set of the first descendants of ui
on P such that |Vi ∩ Z| > log k. Thus for every vertex w ∈ Vi, we have d(w, ui−1) >
εk − 1

4
εk − 2 log k > ε

2
k. Again, as

∣∣Vi ∩ Z∣∣ > log k, there is an edge viui+1 present in Gp

with vi ∈ Vi and ui+1 ∈ B(vi) ⊆ V (P ) with probability 1− o(k−1).
We may continue this iterative procedure to find such edges vjuj+1 until we reach a

vertex ui+1 with d(u1, ui+1) > 2k. Since d(uj, uj+1) >
1
2
εk, this implies i 6 4ε−1. Thus

the procedure does not fail with probability 1− o(ε−1k−1) = 1− o(1).
Suppose i is even. Consider the following cycle C obtained by the concatenation of

the following paths:

v1u2, u2Pv3, v3u4, u4Pv5, v5u6, u6Pv7 . . .

vi−1ui, uiPui+1, ui+1vi, viPui−1, ui−1vi−2, vi−2Pui−3, . . .

u3v2, v2Pv1.

Note that the number of vertices of V1 ∪ . . . ∪ Vi that are not contained in C is at most
|V (P ) \ Z|+ i log k 6 1

4
εk + 4ε−1k. Since d(u1, ui+1) > 2k, the length of C is at least

2k − 1

4
εk − 4ε−1 log k > k.

A similar argument applies if i is odd.

4 Long Paths and the DFS-algorithm

Before we prove Theorem 2, in we cite and prove some results for later use. The first one
uses a nice and direct analysis of the DFS-algorithm.

Lemma 9 (Krivelevich, Lee, Sudakov [8]). Let p = c
k

for c sufficiently large, and let G
be a graph of minimum degree at least k. If G is bipartite, then Gp a.a.s. contains a path
of length

(
2− 6c−1/2

)
k.

The next lemma is of a similar flavor as the last one. We suitably modify a result
of [8] for our purposes.

Lemma 10. Let p = c
k

for c sufficiently large, and let G be a graph of minimum degree
at least k. If V0 ⊆ V (G) with |V0| > log k, then Gp a.a.s. contains a path of length(
1− 2c−1/2

)
k which starts at a vertex in V0.

Proof. Let ε = c−1/2. Let V0 ⊆ V (G), and we may assume that |V0| = dlog ke. We modify
the DFS-algorithm as follows.

Recall that the stack S denotes the vertices that are currently under exploration. If
S = ∅ in some step of the algorithm, then as long as possible we select a vertex of V0 ∩U
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as the new root of a component and put it onto the stack S. Hence, by this modified
DFS-algorithm, at least up to the point when we explored log k vertices, the root of the
current component is in V0.

We stop this modified DFS-algorithm when we reach |R∪S| = (1− ε)k. Let A be the
event that S = ∅ at some moment after 1

2
log k steps of the algorithm and let B be the

event that there are less than (1 − ε)k positive answers among the first k
p

= ε2k2 tested
edges.

Claim. P[A ∪ B] = o(1).

Assuming this claim we can a.a.s. find a path of length (1 − ε)k starting in a vertex
of V0 as follows.

Suppose neither A nor B holds. Consider the step of the DFS-algorithm at which we
reach |R ∪ S| = (1 − ε)k. Thus the root of the current component is contained in V0, as
A does not hold. Due to property (I) such a step exists. Recall that the vertices in S
form a path (property (II)). If |S| > (1 − 2ε)k, then the statement of the lemma follows
directly. Thus, we may assume that

|S| < (1− 2ε)k (4)

which implies |R| > εk. Moreover, each vertex in R has at least k−|R∪S| > εk neighbors
in G in the set of unreached vertices U . Due to property (III), all these edges between R
and U have been queried and answered negatively. Hence at least |R| · εk > ε2k2 queries
are answered negatively and less than (1 − ε)k are answered positively. Thus B holds,
which is a contradiction.

We complete the proof of the lemma by the proof of claim. For a positive integer i,
let Ai be the event that we complete exploring a component when |R| = i. Since every
vertex has degree at least k, in this moment of the algorithm every vertex in R has at least
k − i > εk neighbors in U (for i 6 (1 − ε)k) and all these edges are queried negatively.
Thus we queried at least iεk edges in total, and had at most i positive answers. The
probability that this occurs is at most the probability that a binomial distributed random
variable Xi with Xi ∼ Bin(iεk, p) is at most i. Hence EXi = iεc = ic1/2. By Chernoff’s
inequality, we obtain

P[Ai] 6 P[Xi 6 i] 6 P
[∣∣∣Xi − ic1/2

∣∣∣ > ic1/2

2

]
6 2e−

ic1/2

12 6
1

2i
.

Using the union bound leads to the desired result

P[A] 6 P

 (1−ε)k⋃
i= 1

2
ln k

Ai

 6 (1−ε)k∑
i= 1

2
ln k

P[Ai] 6
(1−ε)k∑
i= 1

2
ln k

1

2i
= o(1).

An upper bound for the event B follows by a direct applications of Chernoff’s inequality.

Let Y be a binomial distributed random variable with Y ∼ Bin
(
k
p
, p
)

. Then,

P[B] 6 P[Y 6 (1− ε)k] 6 2 exp

(
−ε

2k

3

)
= o(1).
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This implies P[A ∪ B] = o(1), which completes the proof of the claim and thus the proof
of the lemma.

5 Long Cycles in Pseudo-Cliques

Consider the well-known G(n, p)-model and with our notation (Kn)p. It is very natural
and intuitive that (Kn)p and Hp typically have the same properties if H is a graph on n
vertices which is almost a clique. In this section we indicate that a result of Frieze [6] can
be suitably modified.

Let γ > 0 be a constant sufficiently small, say γ < 10−5. We call a graph G on n
vertices a k-pseudo-clique (or simply pseudo-clique) if its minimum degree is at least k
and n 6 (1 + γ)k.

We say a vertex v has small degree if dG(v) 6 c
10

and otherwise its degree is large.
Let S and L be the set of all vertices of small and large degree in Gp, respectively. For
1 6 i 6 4, let Wi be the set of all vertices v of small degree such that there is a vertex w
of small degree and a v, w-path of length i or v is contained in a cycle of length i. We set
W = W1 ∪ . . . ∪W4.

The following lemmas are extensions of the results of Frieze [6], who prove the analo-
gous results for G = Kk+1. Lemma 11 summarizes a several properties of Gp. The proof
is very similar as the original proof of Frieze. The extra factor (1 + γ) for the larger order
disappears quickly in all the calculations. The same applies for the proofs of Lemma 12
and 13. Theorem 14 needs even fewer changes as it uses the properties provided by
Lemma 11–13. Thus we decided to omit the proofs.

We denote by e(G) the number of edges of G and for two disjoint sets X, Y ⊆ V (G),
we denote by G[X, Y ] the bipartite subgraph of graph G spanned by the vertices X and
Y .

Lemma 11. Let G be a k-pseudo-clique on n vertices, p = c
k

and let ` > 7 be a fixed
integer. Then a.a.s. Gp has the following properties,

(a) |{v ∈ V (G) : dGp(v) 6 c
10

+ 1}| 6 (1 + γ)ke−
2
3
c,

(b) for all sets Z ⊆ V (G) with |Z| > ke−c, we have |{e ∈ E(Gp) : e ∩ Z 6= ∅}| 6 4c|Z|,

(c) ∆(Gp) 6 4 log k,

(d) |W | 6 c4e−
4c
3 k,

(e) ∅ 6= Z ⊆ L and |Z| 6 k
2`

implies |NGp(Z)| > `|Z|, and

(f) Z ⊆ V (G) and k
2`
6 |Z| 6 1

2
k implies e(Gp[Z, V (G) \ Z]) > c|Z|

3`
.

Let us comment on the changes that need to be done to the calculations due to the
original Lemma 2.1 due to Frieze. The statements (a)-(f) refer to (2.1)-(2.6) in Lemma 2.1.
As (a) follows directly by a standard application of Chernoff’s inequality and the ‘linearity
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of expectations’ no further changes are needed. For (b) a factor of (1 + γ)4+1/c < 11/10

has to be added. Since
∑

i>ke−c(
11e5+1/c

2560
)ci still vanishes as k → ∞, this proves (b). The

calculation for (c) is easy to modify and would even work for γ = 1. For (d), observe that
e−2/3 is once estimated by e−0.669, so we have here some room to spare to add another
factor of (1 + γ). For (e), observe that in the proof of (2.5) the factor e−

3·20
7 is once

estimated by e−8, again giving enough room to add the corresponding factors of 1 + γ.
For (f), the same estimation as in the proof of (2.6) holds for c and k large enough as
(1 + γ)/c→ 0 for c→∞ and hence, it still holds

2

dk/2e∑
i=bk/(2`)c

(
(1 + γ)ke

i

)i(3`i
(
(1 + γ)k − i

)
e

ci

)ci/(3`) ( c
k

)ci/(3`)
e−ci/3 = o(1).

Lemma 12. Let G be a k-pseudo-clique on n vertices, p = c
k
, and let X1, X2, . . . be a

sequence obtained by the following rule

Xi =

{
v ∈ V (G) :

∣∣∣∣∣NGp(v) ∩

(
S ∪

i−1⋃
j=1

Xj

)∣∣∣∣∣ > 2

}
.

If X =
⋃
j>1Xj, then |X| 6 500c4e−

4c
3 k a.a.s.

Again, let us comment on the original Lemma 2.2 due to Frieze. It originally states
that |X| 6 2e4c4e−4c/3n a.a.s. By observing that 2e4(1 + γ) 6 500, it can be easily seen
that the proof of Lemma 12 works analogously as the original proof of Frieze. This also
explains why the additional factor of 1 + γ vanishes in our statement.

Let V2 be vertex set of the largest subgraph of Gp with minimum degree 2 (Gp[V2] is
also known as the 2-core). Moreover, let Y be the set of all vertices v in Gp which have
degree 2 and have a neighbor in X. Let A = V2 \ (W ∪X ∪ Y ).

Lemma 13. Let G be a k-pseudo-clique on n vertices and p = c
k
. Then, a.a.s.

|A| >
(
1− (1 + ε(c))ce−c

)
k,

where ε(c)→ 0 as c→∞.

The above lemma refers to Lemma 2.4 of Frieze. Note that there is a little typo in
Frieze’s version and the corrected statement (2.27) should be

|Ak′| >
(

1− (1 + ε(c))
ck
′−1

(k′ − 1)!
e−c
)
n.

In our case, we have k′ = 2. As n > k for the minimum degree k, no further changes are
needed.

Having proved these three lemmas for pseudo-cliques, one can go once again along the
lines of the result of Frieze to obtain the following.
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Theorem 14. Let G be a k-pseudo-clique on n vertices and p = c
k
. Then, a.a.s. Gp

contains a cycle of length at least(
1− (1 + ε(c))ce−c

)
k,

where ε(c)→ 0 as c→∞.

As the proof of Theorem 14 only exploits the statements of the lemmas before, no
alterations are necessary.

6 Long Paths

This section is devoted to the proof of Theorem 2. This proof is inspired by a result in
[8] which states that a.a.s. the random subgraph Gp of a graph G of minimum degree at

least k contains a path of length k if p = (1+ε) log k
k

for any fixed ε > 0.
Our strategy for the proof is as follows. If G contains a pseudo-clique, then Theorem 14

gives rise to the desired path. Otherwise, we use Theorem 3 that guarantees a cycle C of
length (1−O(c−1/5))k. Next we either dry to extend C by a path that leads away from it
or we use a set of vertices, which is small, but large enough for our purposes, that forms
together with C a larger cycle.

Proof of Theorem 2. Let c be sufficiently large, k be sufficiently large in terms of c, and

let ε = 5
(
c
3

)−1/5
. If G contains a set V ′ ⊆ V (G) such that(

1− 1

log k

)
k 6 |V ′| 6 (1 + 10ε)k (5)

and the minimum degree of the graph G[V ′] is at least (1− 2
log k

)k, then by Theorem 14,
Gp a.a.s. contains a cycle of length at least(

1− (1 + δ(c))ce−c
)
k,

for some function δ(c) → 0 as c → ∞, which implies the statement. Hence, we may
assume that G does not contain such a set V ′.

In the following, we use a technique which is known as sprinkling. In our case, we
expose the edges of Gp in three rounds and in each round we suppose an edge to be
present independently with probability c

3k
. Thus we consider the union of three graphs

Gp1 ∪Gp2 ∪Gp3 , where pi = c
3k

. As

1− (1− p1)(1− p2)(1− p3) =

(
1− c

3k
+

c2

27k2

)
c

k
6 p,

the union of these three graphs underestimates the model Gp. Therefore, if we can show
that Gp1∪Gp2∪Gp3 a.a.s. contains a path of the desired length, then also Gp a.a.s. contains
such a path.
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By Theorem 3, we know that Gp1 a.a.s. contains a cycle C of length at least (1− ε)k
(in the proof we use explicitly this constant). Moreover, we may assume that |C| <
(1− (1 + δ(c))ce−c) k. Let A ⊆ V (G)\V (C) be the set of vertices having at least (1−20ε)k
neighbors in V (C) and let B = V (G) \ (V (C) ∪ A).

We divide the proof into two parts. First, we suppose that |A| 6 10εk. Hence, if
B 6= ∅, then G[B] has minimum degree at least 10εk.

Suppose first that at least 4k log k edges join B and C in G and denote this set by
E. Consider an ordering b1, b2, . . . of the vertices in B and consider an ordering e1, e2, . . .
of the edges in E which respects the ordering on B, that is, if i < j, then the indices
of the edges incident to bi are smaller than the indices of the edges incident to bj. For
1 6 i 6 d2 log ke, let Ei = {ej : (2i − 2)k < j 6 (2i − 1)k}. This implies that there
is no vertex b ∈ B incident to an edge in Ei and Ej for i 6= j, since a vertex in B has
at most |V (C)| 6 k neighbors in C. Moreover, with probability at least 1 − e− c3 , every
set Ei contains at least one edge in Gp2 independently for every i. Thus by Chernoff’s
inequality, at least log k sets Ei contain an edge in Gp2 with probability 1 − o(1). Let S
be a set of log k vertices in B incident to an edge in Gp2 . By Lemma 10, with probability
1 − o(1), there is a path in Gp3 [B] starting in S of length, say, εk. The union of C, a
suitable edge in some Ei, and this path leads to a path in Gp1 ∪ Gp2 ∪ Gp3 of length at
least k with probability 1− o(1).

Therefore, we may assume that at most 4k log k edges join B and C in G. Observe
that

there are at most
√
k vertices v in C with dB(v) > k2/3, (6)

where dB(v) denotes the number of neighbors that v has in B. Moreover,

|A ∪ C| > k − 5 log k, (7)

otherwise every vertex in C has at least 5 log k neighbors in B contradicting our assump-
tion.

Next, we suppose that there exists a set A′ ⊆ A with at least
√
k many vertices having

at least k
2
3 many neighbors in B. Observe that for any vertex v ∈ A (and so any in A′)

the probability that v has an edge in Gp2 that connects v with C is at least 2/3. Thus

with probability 1 − o(1), there exists a set A′′⊆ A′ of size at least |A
′|
2

such that every
vertex in A′′ is adjacent to C in Gp2 . By a similar argument as before, with probability
1− o(1), there are log k vertices in B such that each of them has a neighbor in A′′ in Gp2 .
Again, with probability 1− o(1), there is a path in Gp3 [B] of length at least εk starting in
one of these vertices in B and this leads to a path of length at least k in Gp1 ∪Gp2 ∪Gp3

with probability 1− o(1).

Therefore, we may assume that there are at most
√
k vertices v ∈ A with dB(v) > k

2
3 .

Together with (6), we conclude that there are at most 2
√
k vertices v in A ∪ C with

dB(v) > k
2
3 . Let Z be obtained from A ∪ C by deleting all these vertices. Using (7),

this implies |Z| > k − 3
√
k. As |Z| 6 (1 + 10ε)k, the set Z is a set as in (5), which is a

contradiction.
Thus from now on, we may assume that |A| > 10εk. Let A1 ⊆ A with |A1| = 10εk.

We partition C into 1
10ε

cycle segments S1, S2, . . . each of length almost 10εk. As every
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vertex in A1 has at least (1 − 20ε)k neighbors in C, by a simple average argument,
there is a segment, say S1, such that the number of edges between S1 and A1 is at least
(1− 20ε)|A1||S1|. Let H be the bipartite subgraph of G which is induced by A1 and S1.
This implies that the bipartite complement of H has at most 20ε · (10εk)2 = 2000ε3k2

edges. Of course, this graph contains at most 100ε
3
2k vertices of degree at least 100ε

3
2k.

Let H ′ be the graph obtained by deleting these vertices from H. Thus H ′ has minimum
degree at least (1− 20

√
ε) · 10εk.

For some orientation of C, let L and R be the first and last εk vertices on C in S1.
Moreover, remove an arbitrary subset of A1 to obtain from the graph H ′ \ (R ∪ L) a
balanced bipartite graph H ′′. Thus H ′′ has minimum degree at least (1− 25

√
ε) · 8εk.

By Lemma 9, H ′′ contains a path P of length 15εk in Gp2 with probability 1−o(1). Let
P1 and P2 be the subpaths at the beginning and at the end of P of length εk, respectively.
With probability at least 1− (1− p3)ε

2k2/2 > 1− o(1), there exists an edge e1 in Gp3 that
joins a vertex in L and V (P1) ∩A1 and an edge e2 joining a vertex in R and V (P2) ∩A1.

Combining the subpath of C between the endpoints of e1 and e2 that contains the
segment S2, the subpath of P between the endpoints of e1 and e2, and the edges e1 and
e2 results in a cycle in Gp1 ∪Gp2 ∪Gp3 of length at least (1− 11ε)k + 13εk > k and this
completes the proof.
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