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Abstract

The Colin de Verdière parameter µ(G) is a minor-monotone graph parameter
with connections to differential geometry. We study the conjecture that for every
integer t, if G is a graph with at least t vertices and µ(G) 6 t, then |E(G)| 6
t|V (G)| −

(
t+1
2

)
. We observe a relation to the graph complement conjecture for

the Colin de Verdière parameter and prove the conjectured edge upper bound for
graphs G such that either µ(G) 6 7, or µ(G) > |V (G)| − 6, or the complement of
G is chordal, or G is chordal.

Mathematics Subject Classifications: 05C35, 05C83, 05C10, 05C50

1 Introduction

We consider only finite, simple graphs without loops. Let µ(G) denote the Colin de
Verdière parameter of a graph G introduced in [7] (cf. [8]). We give a formal definition
of µ(G) in Section 2. The Colin de Verdière parameter is minor-monotone; that is, if H
is a minor of G, then µ(H) 6 µ(G). Particular interest in this parameter stems from the
following characterizations:

Theorem 1. For every graph G:

1. µ(G) 6 1 if and only if G is a subgraph of a path.

2. µ(G) 6 2 if and only if G is outerplanar.

3. µ(G) 6 3 if and only if G is planar.

∗Partially supported by NSF under Grant No. DMS-1202640.
†Now at the Department of Combinatorics and Optimization, University of Waterloo.
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4. µ(G) 6 4 if and only if G is linklessly embeddable.

Items 1, 2, and 3 were shown by Colin de Verdière in [7]. Robertson, Seymour, and
Thomas noted in [25] that µ(G) 6 4 implies that G has a linkless embedding due to their
theorem that the Petersen family is the forbidden minor family for linkless embeddings
[26]. The other direction for 4 is due to Lovász and Schrijver [18]. See the survey of van
der Holst, Lovász, and Schrijver for a thorough introduction to the parameter [13].

There is also a relation between the Colin de Verdière parameter and Hadwiger’s
conjecture that for every non-negative integer t, every graph with no Kt+1 minor is t-
colorable. Let χ(G) denote the chromatic number of a graph G and let h(G) denote the
Hadwiger number of G. That is, h(G) is the largest integer so that G has the complete
graph Kh(G) as a minor. Then µ(Kh(G)) = h(G)− 1, and so µ(G) > µ(Kh(G)) = h(G)− 1
[13]. So if Hadwiger’s conjecture is true, then for every graph G, χ(G) 6 µ(G) + 1. Colin
de Verdière conjectured that every graph satisfies χ(G) 6 µ(G) + 1 in [7]. For graphs
with µ(G) 6 3, this statement is exactly the 4-Color Theorem [2,24].

One way to look for evidence for Hadwiger’s conjecture is through considerations of
average degree. In particular Mader showed that for every family of graphs F , there is an
integer c so that if G is a graph with no graph in F as a minor, then |E(G)| 6 c|V (G)| [19].
It follows by induction on the number of vertices that every graph G with no graph in F
as a minor is 2c+ 1-colorable. In fact Mader showed that:

Theorem 2. [20] For t 6 5, if G is a graph with h(G) 6 t + 1 and |V (G)| > t, then
|E(G)| 6 t|V (G)| −

(
t+1
2

)
.

However asymptotically, as noted by Kostochka [16] and Thomason [31], based on
Bollobás et al. [5]:

Theorem 3. [16,31] There exists a constant c ∈ R+ such that for every positive integer
t there exists a graph G with h(G) 6 t+ 1 and |E(G)| > ct

√
log t|V (G)|.

Furthermore, Kostochka showed that the lower bound in Theorem 1.3 also serves as an
upper bound [16]. This gives the best known bound on Hadwiger’s conjecture, that graphs
G with no Kt minor have χ(G) 6 O(t

√
log t). We will study the following conjecture,

that is an analog of Theorem 2 for the Colin de Verdière parameter:

Conjecture 4. For every integer t, if G is a graph with µ(G) 6 t and |V (G)| > t, then
|E(G)| 6 t|V (G)| −

(
t+1
2

)
.

Nevo asked if this is true and showed that his Conjecture 1.5 in [22] implies Conjecture
4. Tait also asked this question as Problem 1 in [29] in relation to studying graphs with
maximum spectral radius of their adjacency matrix, subject to having Colin de Verdière
parameter at most t. Butler and Young showed the following weakening of Conjecture 4:

Theorem 5. [6] For every integer t, if G is a graph on at least t vertices with zero
forcing number no more than t, then |E(G)| 6 t|V (G)| −

(
t+1
2

)
. This bound is tight.
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The zero forcing number is a graph parameter that is always at least the Colin de
Verdière parameter of a graph [1, 3]. We observe that since the zero forcing number of a
graph is also always at least the pathwidth of the graph [3], grids have unbounded zero
forcing number and Colin de Verdière parameter at most three.

There are no known explicit constructions of graphs satisfying Theorem 3. The essen-
tial observation is instead that the Hadwiger number of Erdős-Rényi random graphs is
too small. So it would be very interesting to know if random graphs are a counterexample
to Conjecture 4, and in particular to answer the following.

Problem 6. What is the Colin de Verdière parameter of the Erdős-Rényi random graph?

Hall et al. studied this problem for some parameters related to the Colin de Verdière
parameter [10]. These related parameters are at least the vertex connectivity of a graph
[Theorem 4, 12]. So random graphs do not give counterexamples to the analog of Con-
jecture 4 for these other parameters. Thus it seems that new techniques particular to the
Colin de Verdière parameter will be needed to solve this problem.

We also observe that there is a relation between Conjecture 4 and the graph comple-
ment conjecture for the Colin de Verdière parameter. Let G denote the complement of
G. The graph complement conjecture for the Colin de Verdière parameter is as follows:

Conjecture 7. For every graph G, µ(G) + µ(G) > |V (G)| − 2.

This conjecture was introduced by Kotlov, Lovász, and Vempala, who showed that
the conjecture is true if G is planar [17]. Their result is used in this paper and will be
stated formally in Section 4. Conjecture 7 is also an instance of a Nordhaus-Gaddum sum
problem. See the recent paper by Hogben for a survey of Nordhaus-Gaddum problems for
the Colin de Verdière and related parameters, including Conjecture 7 [11]. We observe
that:

Observation 8. If there exists a constant c ∈ R+ so that for every graph G, |E(G)| 6
cµ(G)|V (G)|, then there exists a constant p ∈ R+ so that for every graph G, µ(G)+µ(G) >
p|V (G)|.

This follows from noting that we would have cµ(G)|V (G)|+ cµ(G)|V (G)| > |E(G)|+
|E(G)| =

(|V (G)|
2

)
. So Conjecture 4 would imply an asymptotic version of the graph com-

plement conjecture for the Colin de Verdière parameter. This weaker version is currently
not known. In the other direction we will show in Section 2 that:

Observation 9. If for every graph G, µ(G) + µ(G) > |V (G)| − 2, then every graph G
has |E(G)| 6 (µ(G) + 1)|V (G)| −

(
µ(G)+2

2

)
.

Then in particular the graph complement conjecture for Colin de Verdière parameter
would imply that all graphs G are 2µ(G)+2-colorable. We next comment on the tightness
of Conjecture 4. We say that a graph G is the join of non-empty graphs H1 and H2 if
the vertex set of G is the disjoint union of V (H1) and V (H2), and for i = 1, 2 the induced
subgraph ofG on vertex set V (Hi) is the graphHi, and for every pair of vertices u ∈ V (H1)
and v ∈ V (H2), uv ∈ E(G). We will show in Section 2 that:
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Observation 10. Let H be any edge-maximal planar graph on at least four vertices and
let t > 3 be an integer. Let G denote the join of H and Kt−3. Then µ(G) = t and
|E(G)| = t|V (G)| −

(
t+1
2

)
.

So for every positive integer t, Conjecture 4 is tight for infinitely many graphs. We
say a graph G is chordal if for every cycle C of G of length greater than 3, the induced
subgraph of G with vertex set V (C) has some edge that is not in E(C). The main result
we prove is Theorem 11:

Theorem 11. Suppose G is a graph such that either:

• G is chordal, or

• G is chordal, or

• µ(G) 6 7, or

• µ(G) > |V (G)| − 6.

Then |E(G)| 6 µ(G)|V (G)| −
(
µ(G)+1

2

)
.

Note that it is equivalent to say that for such graphs, for every integer t with µ(G) 6
t 6 |V (G)|, |E(G)| 6 t|V (G)| −

(
t+1
2

)
.

The proof of Theorem 11 for graphs with µ(G) 6 7 relies on difficult results of Mader
[20], Jørgensen [15], and Song and Thomas [28] on the extremal function of graphs with
Hadwiger number no more than eight. A conjecture of Thomas and Zhu on the extremal
function of graphs with no K10 minor would similarly imply the theorem for µ(G) 6 8
[Conjecture 1.4, 30].

The proof of Theorem 11 for graphs with µ(G) > |V (G)| − 6 relies on work of Kotlov,
Lovász, and Vempala [17] on the graph complement conjecture for the Colin de Verdière
parameter, and on forbidden topological minor characterizations for graphs with µ(G) 6
3. The main difficulty in extending this result to graphs with µ(G) > |V (G)| − 7 is that
the graph complement conjecture for the Colin de Verdière parameter is not currently
known for graphs with µ(G) 6 4.

We also note that the analog of Theorem 11 for the Hadwiger number is false. For
n1, n2, . . . , nk ∈ Z+, let Kn1,n2,...,nk

denote the complete multipartite graph with indepen-
dent sets of size n1, n2, . . . , nk. The complement of every complete multipartite graph
is chordal. Furthermore, as observed in the literature (see [20] and [27]), K2,2,2,2,2 has
h(K2,2,2,2,2) = 7, yet |E(K2,2,2,2,2)| > 6|V (K2,2,2,2,2)| −

(
6+1
2

)
.

Another way of generalizing the example of complete multipartite graphs would be to
study the join operation. In particular it would be nice to know if Conjecture 4 is tight
for the join of two graphs H1 and H2 for which the conjecture is tight. This is true if
H1 or H2 is a clique, as in Observation 3. The join of a path and a clique also appears
as an extremal graph in Tait’s work on the Colin de Verière parameter and spectral
radius [Theorem 1, 29]. Barioli et al study the effect of the join operation on the graph
complement conjecture for Colin de Verdière type-parameters [Theorem 3.8, 4]. It would
be interesting to see if something similar can be shown for the extremal function:

Problem 12. Show that if G is the join of non-empty graphs H1 and H2 so that for
i = 1, 2, |E(Hi)| 6 µ(Hi)|V (Hi)| −

(
µ(Hi)+1

2

)
, then |E(G)| 6 µ(G)|V (G)| −

(
µ(G)+1

2

)
.
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2 Definitions and Preliminaries

In this section we begin by briefly introducing our notation. Then we state the definition
and some basic facts on the Colin de Verdière parameter, prove the observations from the
introduction, and prove two lemmas that will be used in both of the next sections. In
Section 3 we prove our main theorem, Theorem 11, for chordal graphs and the complement
of chordal graphs. Finally, in Section 4 we prove Theorem 11 for graphs G with µ(G) 6 7
or µ(G) > |V (G)| − 6.

Let G be a graph. We will write an edge connecting vertices u and v as uv. We write
δ(G) for the minimum degree, ∆(G) for the maximum degree, and ω(G) for the clique
number of G. The set of vertices adjacent to a vertex v is denoted N(v). The degree
of a vertex v in G is written dG(v), or simply d(v) if the graph is understood from the
context. For S ⊆ V (G), we write G[S] for the induced subgraph of G with vertex set S,
and G − S for the induced subgraph of G with vertex set V (G) − V (S). For a vertex v
we will write G− v for G−{v}. If e is an edge of G, we write G/e for the graph obtained
from G by contracting e and deleting all parallel edges. We will use A := B to mean that
A is defined to be B.

Next we give the definition of the Colin de Verdière parameter. Let n be the number
of vertices of G. It will be convenient to assume that V (G) = {1, 2, . . . , n} and that G
is connected. If G is not connected, then define µ(G) to be the maximum among all
connected components H of G of µ(H). We denote I := {ii : i ∈ {1, 2, . . . , n}}.

Definition 13. The Colin de Verdière parameter µ(G) is the maximum corank of any
real, symmetric n× n matrix M such that:

1. Mi,j = 0 if ij /∈ E(G) ∪ I, and Mij < 0 if ij ∈ E(G).

2. M has exactly one negative eigenvalue.

3. If X is a symmetric n × n matrix such that MX = 0 and Xij = 0 for ij ∈ E ∪ I,
then X = 0.

From the survey of van der Holst, Lovász, and Schrijver, we have:

Theorem 14. [13] Let G be a graph, let H be a minor of G, and let v ∈ V (G). Then

(i) µ(H) 6 µ(G)

(ii) For every positive integer t, µ(Kt) = t− 1.

(iii) µ(G) 6 µ(G−v)+1. If N(v) = V (G)−{v} and E(G) 6= ∅ then µ(G) = µ(G−v)+1.

Then Observation 10, which we restate below, follows from induction on t by (iii) above
and noting that for any positive integers t > 3 and n, (t−1)(n−1)−

(
t
2

)
+n−1 = tn−

(
t+1
2

)
.

Observation 10. Let H be any edge-maximal planar graph on at least 4 vertices and
let t > 3 be an integer. Let G denote the join of H and Kt−3. Then µ(G) = t and
|E(G)| = t|V (G)| −

(
t+1
2

)
.
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To relate the extremal problem to the graph complement conjecture for Colin de
Verdière parameter, we will need the following lemma.

Lemma 15. Let G be a graph on n vertices and let t be an integer with n > t. Then
|E(G)| 6 tn−

(
t+1
2

)
if and only if |E(G)| >

(
n−t
2

)
.

Proof. Observe that
(
n−t
2

)
+ tn−

(
t+1
2

)
=
(
n
2

)
= |E(G)|+ |E(G)|.

We will also need the following theorem of Pendavingh.

Theorem 16. [Theorem 5, 23] If G is a connected graph, then either |E(G)| >
(
µ(G)+1

2

)
or |E(G)| >

(
µG+1

2

)
− 1 and G is isomorphic to K3,3.

Now we are ready to prove:

Observation 9. If for every graph G, µ(G) + µ(G) > |V (G)| − 2, then every graph G has
|E(G)| 6 (µ(G) + 1)|V (G)| −

(
µ(G)+2

2

)
.

Proof. Let G be a graph on n vertices. Since µ(G) is the maximum Colin de Verdière
parameter of any connected component of G, by Theorem 16 either G is isomorphic to

the disjoint union of K3,3 and an independent set of vertices, or |E(G)| >
(
µ(G)+1

2

)
. In the

latter case, |E(G)| >
(
µ(G)+1

2

)
>
(
n−1−µ(G)

2

)
. So by Lemma 15, we are done.

If G is isomorphic to the disjoint union of K3,3 and a set of k independent vertices,
then µ(G) = 3 and by (iii) of Theorem 14 and since µ(K3,3) = 2, µ(G) = k + 2. So then
µ(G) + µ(G) = n− 1. So

|E(G)| >
(
µ(G) + 1

2

)
− 1 =

(
n− µ(G)

2

)
− 1 >

(
n− 1− µ(G)

2

)
and again we are done by Lemma 15.

We finish this section by proving some basic facts about a counterexample to the main
Conjecture 4 such that every induced subgraph on one less vertex satisfies the conjecture.
This lemma will be used in Sections 3 and 4 to help prove our main Theorem 11.

Lemma 17. Let G be an n-vertex graph with |E(G)| > µ(G)n −
(
µ(G)+1

2

)
. Suppose also

that for every x ∈ V (G), |E(G−x)| 6 µ(G−x)(n−1)−
(
µ(G−x)+1

2

)
. Then µ(G) < δ(G) 6

∆(G) < n− 1.

Proof. Suppose v is a vertex of G with d(v) 6 µ(G). Then by Theorem 14, we have
µ(G− v) ∈ {µ(G), µ(G)− 1} and µ(G) 6 n− 1. Then

|E(G)| = |E(G− v)|+ d(v) 6 µ(G− v)(n− 1)−
(
µ(G− v) + 1

2

)
+ µ(G)

6 µ(G)(n− 1)−
(
µ(G) + 1

2

)
+ µ(G) = µ(G)n−

(
µ(G) + 1

2

)
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a contradiction.
If u is a vertex with d(u) = n− 1, first note that E(G) 6= ∅. Then by (iii) of Theorem

14, µ(G− u) = µ(G)− 1, and so

|E(G)| = |E(G−u)|+n−1 6 (µ(G)−1)(n−1)−
(
µ(G)

2

)
+n−1 = µ(G)n−

(
µ(G) + 1

2

)
a contradiction.

3 Chordal Graphs and Complements of Chordal Graphs

In this section we will show that if G is a graph such that G is chordal or G is chordal,
then |E(G)| 6 µ(G)|V (G)| −

(
µ(G)+1

2

)
. Define a simplicial vertex of a graph G to be a

vertex v such that G[N(v)] is a complete graph. We will use the fact that every chordal
graph has a simplicial vertex.

Lemma 18. If G is a chordal graph then |E(G)| 6 µ(G)|V (G)| −
(
µ(G)+1

2

)
.

Proof. Let G be a vertex-minimal counterexample. Let u be a simplicial vertex of G.
Then d(u) 6 ω(G)− 1 6 µ(G). This is a contradiction to Lemma 17 since every induced
subgraph of a chordal graph is chordal and G is a vertex-minimal counterexample.

For graphs G so that the complement of G is chordal, we need to introduce the
following two theorems. Mitchell and Yengulalp showed that:

Theorem 19. [21] If G is a chordal graph, then µ(G) + µ(G) > |V (G)| − 2.

For an integer t > 3, let Kt −∆ denote the graph obtained from Kt by deleting the
edges of a triangle. Fallat and Mitchell proved that:

Theorem 20. [9] Let G be a chordal graph. Then µ(G) = ω(G) if and only if G has
Kω(G)+2 −∆ as an induced subgraph. Otherwise µ(G) = ω(G)− 1.

This theorem is related to a result of van der Holst, Lovász, and Schrijver on the
behavior of the Colin de Verdiére parameter under clique sums [14]. Indeed, a direct
combinatorial proof of Theorem 20 is possible using the result of van der Holst, Lovász,
and Schrijver, but we omit it for the sake of concision. We are now ready to prove the
final lemma of this section.

Lemma 21. If G is a graph so that G is chordal, then |E(G)| 6 µ(G)|V (G)| −
(
µ(G)+1

2

)
.

Proof. Let G be a vertex-minimal counterexample, and set n := |V (G)|. First we show
two claims:

Claim 22. ω(G) > 2

Proof. Otherwise G is a complete graph and by (ii) of Theorem 14, µ(G) = n− 1. Then
|E(G)| =

(
n
2

)
= µ(G)n−

(
µ(G)+1

2

)
, a contradiction.
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Claim 23. ∆(G) < µ(G) + 1

Proof. Otherwise by Theorem 19, ∆(G) > µ(G) + 1 > n − 1 − µ(G). Then δ(G) 6
µ(G), a contradiction to Lemma 17 since G is a vertex-minimal counterexample and the
complement of every induced subgraph of G is chordal.

Now, suppose µ(G) = ω(G). Then by Theorem 20, G has an induced subgraph that
is isomorphic to Kω(G)+2 − ∆. Since ω(G) > 2, we have ∆(G) > ∆(Kω(G)+2 − ∆) =

ω(G) + 1 = µ(G) + 1, a contradiction to Claim 2.
So µ(G) = ω(G)− 1. Let S ⊆ V (G) be the set of vertices of a maximum clique of G.

Write T := V (G) − S. First we will show that if x ∈ S and y ∈ T , then xy /∈ E(G). If
xy ∈ E(G), then dG(x) > ω(G) = µ(G) + 1, a contradiction to Claim 2.

If T = ∅, then E(G) = ∅ and G would satisfy the lemma. So T 6= ∅. Then let
u ∈ S and v ∈ T . We have uv ∈ E(G). Let uv also denote the new vertex of G/uv.
Since in G the vertex u is adjacent to no vertices in T and v is adjacent to no vertices
in S, the vertex uv is adjacent to every other vertex in G/uv. Also, since |S| > 2,
G/uv contains an edge. So by (iii) of Theorem 14, µ(G/uv) = µ(G − {u, v}) + 1. Then
|E(G− {u, v})| 6 (µ(G)− 1)(n− 2)−

(
µ(G)
2

)
.

Also, dG(u) = ω(G)− 1, so dG(u) = n−ω(G) = n− 1−µ(G) 6 µ(G) + 1 by Theorem
19. By Lemma 17, dG(y) < n− 1. Then

|E(G)| = |E(G−{u, v})|+dG(u)+dG(v)−1 6 (µ(G)−1)(n−2)−
(
µ(G)

2

)
+µ(G)+n−2

= µ(G)n−
(
µ(G) + 1

2

)
a contradiction.

4 Graphs with Small or Large Parameter

In this section we will show that graphs G such that either µ(G) 6 7 or µ(G) > |V (G)|−6
have |E(G)| 6 µ(G)|V (G)| −

(
µ(G)+1

2

)
. First we give some definitions related to clique

sums.
Let k be a non-negative integer and let G1 and G2 be two vertex-disjoint graphs. For

i = 1, 2 let Ci ⊆ V (Gi) be a clique of size k of Gi. Then let G denote the graph obtained
from G1 and G2 by identifying the vertices in cliques C1 and C2 by some bijection. We
say G is a pure k-clique sum of G1 and G2.

Let H be some fixed graph and let k be a non-negative integer. We say a graph G is
built by pure k-sums of H if either G is isomorphic to H, or if G is a pure k-clique sum
of graphs H1 and H2, where H1 and H2 are built by pure k-sums of H. The following
generalization of Theorem 2 is due to Jørgensen.

Theorem 24. [15] Let G be a graph with h(G) 6 7, |V (G)| > 6, and |E(G)| > 6|V (G)|−
21. Then |E(G)| = 6|V (G)| − 20, and G can be built by pure 5-sums of K2,2,2,2,2.
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Figure 1: The graph P3,2

For graphs with no K9 minor, Song and Thomas proved:

Theorem 25. [28] Let G be a graph with h(G) 6 8, |V (G)| > 7, and |E(G)| > 7|V (G)|−
28. Then |E(G)| = 7|V (G)| − 27, and either G is isomorphic to K2,2,2,3,3, or G can be
built by pure 6-sums of K1,2,2,2,2,2.

We will also make use of the following theorem due to Kotlov, Lovász, and Vempala.

Theorem 26. [17] If G is a graph with µ(G) 6 3, then µ(G) + µ(G) > |V (G)| − 2.

Kotlov, Lovász, and Vempala also characterized exactly which graphs G have µ(G) >
|V (G)| − 3 [Theorems 3.3 and 5.2, 17]. Let P3,2 denote the graph formed from three
disjoint paths of length two by identifying one end from each path. That is, P3,2 is the
graph in Figure 1. We will make use of the following corollary of these theorems:

Corollary 27. [17] If G is a graph such that G contains no P3,2 subgraph and no cycle,
then µ(G) > |V (G)| − 3.

Now we are ready to prove the following lemma.

Lemma 28. Let G be a graph with µ(G) 6 7. Then |E(G)| 6 µ(G)|V (G)| −
(
µ(G)+1

2

)
.

Proof. First note that µ(K2,2,2,2,2) > 7, µ(K1,2,2,2,2,2) > 8, and µ(K2,2,2,3,3) > 8 by Theorem
26, since µ(K2,2,2,2,2) = 1, µ(K1,2,2,2,2,2) = 1, and µ(K2,2,2,3,3) = 2.

Let G be a graph with µ(G) 6 7, and write n := |V (G)|. If µ(G) 6 5, then since
h(G) 6 µ(G) + 1, the lemma follows from Theorem 2. If µ(G) = 6, then G does not
contain K2,2,2,2,2 as a subgraph. So we are done by Theorem 24. If µ(G) = 7, then G does
not contain K1,2,2,2,2,2 or K2,2,2,3,3 as a subgraph, and we are done by Theorem 25.

For the next lemma we need to give some definitions related to subdivisions. Fix a
graph H ′. We say a graph H is a subdivision of H ′ if H can be formed from H ′ by
replacing edges of H ′ with internally-disjoint paths with the same ends. Then we say
v ∈ V (H) is a branch vertex of H if also v ∈ V (H ′). Suppose H ′ is a bipartite graph
with bipartition (A,B). That is, (A,B) is a partition of the vertex set of H ′ such that
every edge of H ′ has one end in A and one end in B. Then if H is a subdivision of H ′,
we will say that branch vertices u and v of H are in the same part of H if either u, v ∈ A
or u, v ∈ B. Now we are ready to prove the final lemma:

Lemma 29. Let G be an n-vertex graph with µ(G) > n − 6. Then |E(G)| 6 µ(G)n −(
µ(G)+1

2

)
.
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Proof. Let G be a vertex-minimal counterexample. Write n := |V (G)| and c := n−µ(G).
First we will show that δ(G) > 1. Let v ∈ V (G). Then by part (iii) of Theorem 14,
µ(G− v) > µ(G)− 1 > |V (G− v)| − 6. So by Lemma 17, ∆(G) < n− 1. So δ(G) > 1.

Next we find upper and lower bounds for n. By Lemma 28, we may assume µ(G) > 8,
so n = µ(G) + c > 8 + c. By Lemma 15, |E(G)| 6

(
n−µ(G)

2

)
− 1 =

(
c
2

)
− 1. Then since

δ(G) > 1, we have n 6 2|E(G)| 6 2(
(
c
2

)
− 1). In total, we have 8 + c 6 n 6 2(

(
c
2

)
− 1).

This implies that c > 5.
Now we will show that µ(G) > c−2. Otherwise, µ(G) 6 c−3 6 3. Then by Theorem

26, n− 2 6 µ(G) + µ(G) 6 n− 3, a contradiction. Now we proceed by cases.

Case 1: c = 5.

Then since µ(G) > c− 2 = 3, G is not outerplanar. So G has a subgraph H that is either
a subdivision of K4 or a subdivision of K2,3. Let D ⊆ V (H) be the set of branch vertices
of H. Remember that by Lemma 15, we have |E(G)| 6

(
c
2

)
− 1. Then since δ(G) > 1 and

n > 8 + c = 13,

(
5

2

)
− 1 > |E(G)| > 1

2

∑
x∈D

dH(x) +
∑

y∈V (G)−D

dG(y)

 >
1

2

(∑
x∈D

dH(x) + 13− |D|

)

In either case we get a contradiction.

Case 2: c = 6.

Then µ(G) > 4 and so G is not planar. So G has a subgraph H that is either a subdivision
of K5 or a subdivision of K3,3. If H is a subdivision of K5 then similarly to before, since
δ(G) > 1 and n > 8+c = 14, we have

(
6
2

)
−1 > |E(G)| > 1

2
(5∗4+9) = 29

2
, a contradiction.

So H is a subdivision of K3,3. Let u, v ∈ V (H) be distinct branch vertices of H that
are in the same part of H such that dG(u) + dG(v) is maximum. We will show that

G− {u, v} contains no P3,2 subgraph and no cycle. Write k := dG(u) + dG(v)− 6. Then
k > 0. Since u and v are not adjacent in H and vertices adjacent to u or v in H have
degree at least 1 in G− {u, v}, the graph G− {u, v} has at most k vertices of degree 0.

Suppose G− {u, v} has a P3,2 subgraph. If u and v are not adjacent in G− {u, v},
then(

6

2

)
−1 > |E(G)| = k+6+|E(G− {u, v})| > k+6+|E(P3,2)|+

1

2
(12−|V (P3,2)|−k) >

29

2

a contradiction. If u and v are adjacent in G− {u, v}, then since they are not adjacent
in H, we have k > 2. So similarly we have(

6

2

)
−1 > |E(G)| = k+5+|E(G− {u, v})| > k+5+|E(P3,2)|+

1

2
(12−|V (P3,2)|−k) >

29

2

again a contradiction. So G contains no P3,2 subgraph.
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Now we will show that G− {u, v} has no cycle. Write S := V (G) − V (H). Let
S1 be the set of vertices in S with degree strictly greater than 1 in G. Write d :=∑

z∈V (H) dG(z)− dH(z). Then since δ(G) > 1 and n > 14, we have:

(
6

2

)
− 1 > |E(G)| = 1

2

 ∑
x∈V (H)

dH(x) + d+
∑
y∈S

dG(y)


>

1

2

 ∑
x∈V (H)

dH(x) + d+ 14− |V (H)|+ |S1|

 =
1

2
(|V (H)|+ d+ |S1|+ 20)

So |V (H)|+ d+ |S1| 6 8. Since |V (H)| > 6, we have that d+ |S1| 6 2.
Suppose G− {u, v} contains a cycle C. If |V (C)∩S| > 3, then |S1| > |V (C)∩S| > 3,

a contradiction. If |V (C) ∩ S| ∈ {1, 2}, then G− {u, v} has at least two edges with one
end in V (H) and the other in S. Then d > 2, and |S1| > |V (C)∩S| > 1, a contradiction.

Finally, suppose |V (C) ∩ S| = 0. Since u and v are in the same part of H, the graph
H −{u, v} contains no cycle. So there exist distinct vertices a, b ∈ V (H)−{u, v} so that
a and b are adjacent in G− {u, v} but not in H. Then we have dG(a) − dH(a), dG(b) −
dH(b) > 0, so d > 2. Then since |V (H)| + d 6 8, we have |V (H)| = 6 and H is
isomorphic to K3,3. Then since a and b are not adjacent in H, they are in the same part
of H. So by the choice of u and v, we have dG(u) + dG(v) > dG(a) + dG(b) > 8. Then
d > dG(u) + dG(v)− 6 + dG(a) + dG(b)− 6 > 4, a contradiction.

We have shown that G− {u, v} has no cycle and no P3,2 subgraph. Then by Corollary
27, we have n− 6 = µ(G) > µ(G−{u, v}) > |V (G−{u, v})|− 3 = n− 5, a contradiction.
This completes the proof.
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