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Abstract

We study the two-player game where Maker and Breaker alternately color the
edges of a given graph G with k colors such that adjacent edges never get the same
color. Maker’s goal is to play such that at the end of the game, all edges are colored.
Vice-versa, Breaker wins as soon as there is an uncolored edge where every color is
blocked. The game chromatic index χ′g(G) denotes the smallest k for which Maker
has a winning strategy.

The trivial bounds ∆(G) 6 χ′g(G) 6 2∆(G) − 1 hold for every graph G, where
∆(G) is the maximum degree of G. Beveridge, Bohman, Frieze, and Pikhurko con-
jectured that there exists a constant c > 0 such that for any graph G it holds
χ′g(G) 6 (2 − c)∆(G) [Theoretical Computer Science 2008], and verified the state-

ment for all δ > 0 and all graphs with ∆(G) > (1
2 + δ)|V (G)|. In this paper, we

show that χ′g(G) 6 (2− c)∆(G) is true for all graphs G with ∆(G) > C log |V (G)|.
In addition, we consider a biased version of the game where Breaker is allowed to
color b edges per turn and give bounds on the number of colors needed for Maker
to win this biased game.

Mathematics Subject Classifications: 05C57, 91A43, 05C15

1 Introduction

Let G = (V,E) be a graph and let k be a positive integer. We study the game where
two players, called Maker and Breaker, take turns in which they alternately assign a color
i ∈ {1, . . . , k} to a previously uncolored edge e ∈ E such that the partial coloring stays
proper, i.e., no two adjacent edges get the same color. Maker’s goal is that at the end
of the game, every edge is colored. Meanwhile, Breaker plays against Maker and aims
to produce a partial coloring such that for at least one uncolored edge, all colors are
forbidden and thus the partial coloring can not be extended to a proper edge-coloring of
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G. The game chromatic index χ′g(G) is defined as the smallest integer k for which Maker
has a winning strategy.

This game is a natural variation of the analogous Maker-Breaker game where the
players color vertices instead of edges. There, the game chromatic number χg(G) denotes
the smallest number of colors for which Maker has a winning strategy. The vertex coloring
game is one of the classic Maker-Breaker games and well-understood by now, see [4] for
an introduction. Recent results include forests [10], planar graphs [14, 17], and random
graphs [6, 11, 13].

The game chromatic index of graphs was first studied by Lam, Shiu, and Xu in 1999
[15]. For any graph G we have the two trivial bounds

∆(G) 6 χ′g(G) 6 2∆(G)− 1, (1)

where ∆(G) denotes the maximum degree of G. Clearly, the lower bound is tight for star
graphs. On the other hand, the upper bound is tight for K4 (the complete graph on four
vertices) or for cycles of odd length. Cai and Zhu [7] proved that χ′g(G) 6 ∆+3k−1 holds
for every k-degenerate graph G, implying in particular an upper bound of ∆(G) + 14 for
every planar graph G. Erdős, Faigle, Hochstättler, and Kern [9] showed that for forests
T of maximum degree ∆(T ) > 6 it holds χ′g(T ) 6 ∆(T ) + 1, and that there are forests for
which this bound is tight. Afterwards, Andres [1] extended this result to the case ∆ = 5.
Bartnicki and Grytczuk [3] obtained an upper bound of ∆(G) + 3k − 1 for graphs G of
arboricity k, further results include wheels [15, 2]. The question arised whether there
exists a global constant C such that χ′g(G) 6 ∆(G) + C holds for any graph G. The
answer was given by Beveridge, Bohman, Frieze, and Pikhurko [5] who proved that for
every sufficiently large d there exists a graph G with ∆(G) 6 d and χ′g(G) > 1.008d.

Unfortunately, it is believed that in general the game is hard to analyze. It seems
challenging to find powerful strategies even for only one of the two players. For example,
a player’s move that looks clever at the start of the game can easily hurt the same player
later on. That is why accurate bounds on the game chromatic index are only known for
very few specific and sparse graph classes, and in general, knowledge on the game is rather
scarce. For instance, still no reasonable strategies are known for the complete graph Kn.
Although it is desirable to determine χ′g(G) precisely, Beveridge et al. proposed that one
should first decide whether χ′g(G) is bounded away by a constant factor from ∆(G), from
2∆(G), or from both [5]. In 2008, Beveridge, Bohman, Frieze, and Pikhurko [5] proved
that for every δ > 0 there exists c > 0 such that every graph G of maximum degree at
least (1/2 + δ)|V (G)| satisfies χ′g(G) 6 (2− c)∆(G). Furthermore, they conjectured that
the same is true for every graph G.

Conjecture 1 (Conjecture 2 in [5]). There exists c > 0 such that for every graph G it
holds

χ′g(G) 6 (2− c)∆(G).

Contribution of the paper. Our main result provides a non-trivial upper bound on
the game chromatic index for all graphs G of maximum degree at least C log |V (G)|. This
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extends the previous result of Beveridge et al. [5] and can be seen as a first step towards
a proof of Conjecture 1.

Theorem 2. There exist C, c > 0 such that any graph G with ∆(G) > C · log |V (G)|
satisfies

χ′g(G) 6 (2− c)∆(G).

Note that in particular for complete bipartite graphs or random graphs G(n, p) with
C logn
n

6 p 6 c′n for c′ < 1
2
, Theorem 2 yields the first non-trivial bound on the game

chromatic index. The result also generalizes to the variant of the game where Breaker is
allowed to sit out during his turns. Consequently, the identity of the starting player does
not matter.

In the context of Maker-Breaker games, it is natural to also consider biased games
where one player is allowed to claim not only one but multiple elements per round. Let
b > 1. We introduce the edge coloring game with bias b as follows. Maker still colors a
single edge per round as before, but Breaker is now allowed to color any number of edges
that is at most b in each of his turns. The winning conditions for the two players remain
the same. For this biased variant of the game, we define χ′g(G, b) as the smallest number
of colors such that Maker has a winning strategy. Clearly, the bounds of (1) are also valid
for χ′g(G, b). We show that Theorem 2 can be generalized to the biased edge coloring
game.

Theorem 3. There exists c > 0 such that for any bias b > 1, every graph G with
∆(G) > C(b) · log |V (G)| satisfies

χ′g(G, b) 6 (2− cb−4)∆(G),

where C(b) > 0 only depends on b.

Vice-versa, our last result verifies that there are graphs G where a bias b > 2 results
in Breaker winning the game even with 2∆(G) − 2 colors, and Maker effectively needs
2∆(G)− 1 colors. Hence, an analogue of Conjecture 1 can not hold for the biased variant
of the game. In particular, for regular graphs it follows that the precondition of Theorem 3
is almost optimal and that the value of χ′g(G, b) depends not only on the maximum degree
but also on the number of vertices.

Theorem 4. Let b > 2 and ∆ > 2. Then for every ∆-regular graph G with at least
2 ·∆3 · exp(2∆−2

b−1
) vertices it holds

χ′g(G, b) = 2∆(G)− 1.

Organization. After introducing some notations in Section 2.1, we present in Sec-
tion 2.2 a randomized strategy for Maker which we then analyze in Section 2.3 in order
to prove Theorem 2 and Theorem 3. Afterwards, in Section 3 we give a short proof of
Theorem 4 by constructing a reduction of the biased edge coloring game to so-called Box
games. We conclude with a brief discussion of several open problems in Section 4.
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2 Upper bounds

2.1 Notations

We start with some notations. We consider the game as a process that evolves in rounds.
In the first round, only Breaker is allowed to play. Afterwards, in every round r it is first
Maker’s and then Breaker’s turn. When proving upper bounds, we allow Breaker to sit
out and not color any edge in his turns. This setting was first studied by Andres [1] and
makes the identity of the starting player irrelevant. Clearly, any upper bound on χ′g(G)
that holds for this modified variant also serves as an upper bound for the original game.
We abbreviate ∆ = ∆(G), denote by Γ(v) the set of neighbors of a vertex v, and by
v-edge an edge that is incident to v. Γ′r(v) is defined as the set of all neighbors of v in the
subgraph of uncolored edges after round r. Furthermore, the load `r(v) := deg(v)−|Γ′r(v)|
counts the total number of colored v-edges after round r. Finally, let Ar(e) be the set of
available colors at an edge e after round r, and let Ur(v) be the set of colors that have
been used at v-edges during the first r rounds.

2.2 Maker’s strategy

We prove Theorem 2 and Theorem 3 by using a random strategy for Maker. Note that
as we study a complete information game without chance moves, there exists a winning
strategy for exactly one of the two players. Hence, it is sufficient to prove that with
the proposed random strategy, Maker wins with strictly positive probability against any
fixed, deterministic strategy of Breaker. Then Breaker can not have a winning strategy,
implying that there exists a deterministic winning strategy for Maker. This application
of the probabilistic method was first used by Spencer [16].

Let G = (V,E) be a given graph. We fix λ and c globally such that

1� λ� c� 0,

i.e., λ is sufficiently small and c is sufficiently small compared to λ. For the sake of
readability, we always ignore roundings and assume that all considered quantities are
integers. We do the proofs of Theorem 2 and Theorem 3 at once and therefore assume
that there exists a fixed integer b > 1 such that in each of his turns, Breaker colors at
least 0 and at most b edges. Note that λ and c do not depend on b. Given this set of
constants, we assume that the game is played with a set of k := (2− cb−4)∆ colors.

Before defining the strategy, we make some further preparations. Suppose an uncolored
edge e = {u, v} satisfies |Ur(u) ∩ Ur(v)| > 2∆− k = cb−4∆ after some round r. Then the
edge e will never run out of available colors. For every vertex v ∈ V with deg(v) > 2λb−1∆,
Maker uses this observation as follows. After the first round r where `r(v) > 2λb−1∆ holds,
he looks at the set of uncolored v-edges, and defines a set D(v) ⊆ Γ(v) of dangerous
neighbors, containing all vertices u ∈ Γ(v) that fulfill the following four conditions:

(i) the edge {u, v} is still uncolored, i.e., u ∈ Γ′r(v),

(ii) deg(u) + deg(v) > k = (2− cb−4)∆,
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(iii) |Ur(u) ∩ Ur(v)| 6 2∆− k = cb−4∆, and

(iv) `r(u) > λb−1∆ and u reached load λb−1∆ not after its neighbor v, i.e., for all r′ such
that `r′(v) > λb−1∆ it also holds `r′(u) > λb−1∆.

Clearly, an edge {u, v} can run out of available colors only if (i)-(iii) are fulfilled.
Intuitively speaking, with condition (iv) we decide which vertex is responsible for such
an edge. In case u and v reach load λb−1∆ at the same round, the construction yields
u ∈ D(v) and v ∈ D(u). Once we are at a round r such that v satisfies `r(v) > 2λb−1∆,
the set D(v) is defined and Maker’s local goal for the remaining game process will be to
color all edges between v and D(v) before v reaches load 3λb−1∆. Note that as long as
`r(v) 6 3λb−1∆, there are still colors available for these edges.

We now start describing Maker’s strategy at an arbitrary round r where there are
still uncolored edges left. Let f0 be the edge colored by Maker at round r − 1. (If it is
Maker’s first move of the game, take an arbitrary edge for f0.) Furthermore, let F be the
set of edges that Breaker colored in his turn at round r − 1. In the special case where
Breaker didn’t color any edge in his last move, choose instead any uncolored edge f1 and
put F := {f1}. Let q := 6c

λ
. We then propose Maker to play at random in the following

way.

1. Choose f ∈ {f0} ∪ F at random such that Pr[f = f0] = 1
2

and Pr[f = fi] = 1
2|F | for

all fi ∈ F .

2. Let v be one of the two vertices incident to f chosen uniformly at random. If Γ′r−1(v)
is empty, discard this first choice of v and replace it by an arbitrary vertex v such
that Γ′r−1(v) is non-empty.

3. Choose a neighbor u ∈ Γ′r−1(v) uniformly at random. In case `r−1(v) > 2λb−1∆ and
D(v) ∩ Γ′r−1(v) 6= ∅, with probability q discard the first choice of u and replace it
by u ∈ D(v) ∩ Γ′r−1(v) chosen uniformly at random.

4. Let e = {u, v} and color e with a color i ∈ Ar−1(e) chosen uniformly at random.
We call e a good v-edge.

Note that the strategy is well-defined, i.e., it always yields an uncolored edge e for
Maker to color. For every edge fi ∈ {f0} ∪ F , the probability that it is chosen by Maker
in the first step is at least 1

2b
, as we have |F | 6 b by assumption.

Suppose Maker applies the proposed strategy. In case the strategy tells Maker to color
an edge e ∈ E at round r but Ar−1(e) is empty, Maker loses the game by definition. Then,
we don’t yet abort the game. Instead, we let Maker play a color i chosen uniformly at
random among all colors and create a non-proper coloring, whereas Breaker is still forced
to color edges properly. Consequently, if there is a left-over of uncolored edges where all
colors are blocked, Breaker has no other option than sitting out for the remainder of the
game (which is indeed possible for him). This yields a slightly different coloring process
that always terminates with a full but not necessarily proper edge coloring. Observe that
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as long as Maker doesn’t need to use forbidden colors in the modified process, the original
and the modified process coincide. If Maker is never forced to use forbidden colors, then
in both processes we obtain a proper edge coloring of G and Maker wins the game.

2.3 Main proof

Since Theorem 2 is a special case of Theorem 3, it suffices to prove the latter. By the
precondition of Theorem 3, the maximum degree ∆ is larger than C(b), so we can always
assume that ∆ is sufficiently large.

We start the analysis by collecting several auxiliary results. Let v ∈ V be any vertex.
Recall the definitions of v-edges and good v-edges. Our first goal is to verify that while
the load `r(v) increases during the game process, always a constant fraction of the colored
v-edges are good v-edges. We specify this with the following lemma.

Lemma 5. Let j ∈ {1, 2, 3} and let v ∈ V be a vertex of degree at least jλb−1∆. Denote
by Bj(v) the bad event that among the v-edges that have been colored at rounds r where
`r−1(v) > (j − 1)λb−1∆ and `r(v) < jλb−1∆, less than 1

5b2
λ∆ edges are good v-edges.

Then
Pr[Bj(v)] = exp(−Ω(∆)).

We defer the proof of Lemma 5 together with the proofs of the two subsequent lemmas
to Section 2.4. Note that here and in the following, whenever we use the Landau-notation
for estimating the probability of some events, we hide constant factors that may depend
on λ, c, or b.

Next, we study how fast the load of a vertex of large degree grows compared to the
average load of its neighbors. We show that it is unlikely that the average load among
vertices in Γ′r(v) deviates by too much.

Lemma 6. Let v ∈ V such that deg(v) > k−∆ = (1− cb−4)∆. Denote by B4(v) the bad
event that there exists a round r where `r(v) < 2λb−1∆ but 1

|Γ′r(v)|
∑

u∈Γ′r(v) `r(u) > 9λ∆.
Then

Pr[B4(v)] = exp(−Ω(∆)).

As a next step, we also take colors into consideration. Let v be a vertex of degree
at least λb−1∆. Then we know that unless the bad event B1(v) occurs, among the first
λb−1∆ colors used at v-edges there are at least 1

5b2
λ∆ colors that were assigned by Maker

to good v-edges. As long as `r(v) < λb−1∆, for all v-edges the set Ar(e) is non-empty,
Maker is not forced to color v-edges non-properly, and indeed all colored v-edges use
distinct colors.

For any vertex v, let I ′(v) be a subset of colors assigned to good v-edges and defined as
follows. If Maker colors less than 1

5b2
λ∆ good v-edges before the load of v reaches λb−1∆

(i.e., at rounds r such that `r(v) < λb−1∆), then I ′(v) is the set of colors that Maker
used for these good v-edges. If there are at least 1

5b2
λ∆ such edges, I ′(v) only contains

the first 1
5b2
λ∆ colors that Maker used at such moves. For a vertex v, we hope that colors

are distributed rather randomly inside the sets {I ′(u) | u ∈ Γ(v)}. We formalize such a
distribution with the following lemma.
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Lemma 7. Let v ∈ V be any vertex. Denote by B5(v) the event that there exists a subset
of neighbors W ⊆ Γ(v) of size cb−2∆ and a set I− of cb−2∆ colors such that for all i ∈ I ′,
we have |{u ∈ W | i ∈ I ′(u)}| > 1

4b4
cλ∆. Then

Pr[B5(v)] = exp(−Ω(∆2)).

We now start proving the main theorem.

Proof of Theorem 3. By definition of the sets D(v), it is sufficient to verify for all vertices
v of degree at least k − ∆ = (1 − cb−4)∆ that Maker is fast enough to color all edges
between v and D(v) before v reaches load 3λb−1∆. If this is possible for Maker, then the
process yields a proper edge coloring of G and Maker wins the game.

Let v ∈ V be a fixed vertex of degree at least (1 − cb−4)∆. Further, denote by
D′(v) ⊆ Γ(v) the set of all neighbors of v that reach load λb−1∆ not after v. More
precisely, D′(v) contains all neighbors u ∈ Γ(v) such that `r(v) > λb−1∆ always implies
`r(u) > λb−1∆. In the following we assume that for all u ∈ D′(v) the bad event B1(u)
and for v itself the bad event B5(v) do not occur. By Lemma 5, Lemma 7, and a union
bound, this happens with probability 1− exp(−Ω(∆)).

Suppose |D′(v)| > cb−2∆ and define W := {W ⊆ D′(v) | |W | = cb−2∆}. Let us first
consider a fixed set W ∈ W . As we are excluding the events {B1(u) | u ∈ W} and B5(v),
for every vertex u ∈ W there exists a set I ′(u) of exactly 1

5b2
λ∆ colors with the property

that at most cb−2∆ colors i satisfy |{u ∈ W | i ∈ I ′(u)}| > 1
4b4
cλ∆. Next, let us define

IW as the set of all colors i that fulfill |{u ∈ W | i ∈ I ′(u)}| > 1
24b4

cλ∆.
We claim that |IW | > ∆

2
. Indeed, suppose by contradiction that this is not true. Then

there are at least k − ∆
2

= (3
2
− cb−4)∆ colors that are contained in at most 1

24b4
cλ∆ of

the sets {I ′(u) | u ∈ W}. On the other hand, except a small set of at most cb−2∆ heavy
colors, all colors i ∈ IW are contained in at most 1

4b4
cλ∆ of the sets {I ′(u) | u ∈ W}. If c

is sufficiently small compared to λ, this yields

k∑
i=1

|{u ∈ W | i ∈ I ′(u)}

6
(3

2
− cb−4

)
∆ · 1

24b4
cλ∆ +

(1

2
− cb−2

)
∆ · 1

4b4
cλ∆ + cb−2∆ · cb−2∆

6
3

16b4
cλ∆2 +

1

b4
c2∆2 <

1

5b4
cλ∆2 =

∑
u∈W

|I ′(u)|,

which is clearly a contradiction as the first and last term of the inequality chain are equal.
Now let us look at the period of the game process that contains all rounds r where

the load of v fulfills `r−1(v) > λb−1∆ and `r(v) < 2λb−1∆. Denote by Iv the set of
colors assigned to good v-edges within this period and by B6(v) the bad event that there
exists a set W ∈ W such that |Iv ∩ IW | < 1

100b2
λ∆. In the following, we show that

Pr[B6(v)] = exp(−Ω(∆)).
Consider a single round r within this period and condition on that at round r, Maker

colors a good v-edge. Then the color i that Maker picks at random is added to the set
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Iv. Suppose that we have∑
u∈Γ′r−1(v)

`r−1(u) 6 9λ∆ · |Γ′r−1(v)| 6 9λ∆2.

In this case, we infer from Markov’s inequality that there exist at most 9
14

∆ vertices
u ∈ Γ′r−1(v) with the property `r−1(u) > 14λ∆. Moreover,

|Γ′r−1(v)| > deg(v)− 2λb−1∆ > (1− cb−4 − 2λb−1)∆ >
27

28
∆,

if c and λ are chosen sufficiently small. Hence at round r, the vertex w that Maker chooses
for his edge e = {v, w} uniformly at random in Γ′r−1(v) satisfies `r−1(w) 6 14λ∆ with
probability at least 1

3
. If the random choice yields such a neighbor w, it also follows

|Ar−1(e)| > k − `r−1(v)− `r−1(w) > (2− cb−4 − 16λ)∆.

Since Maker takes i ∈ A(e) uniformly at random and λ is chosen sufficiently small, we
have

Pr[i ∈ IW ] > 1− k − IW
|Ar−1(e)|

> 1− 3/2− cb−4

2− cb−4 − 16λ
=

1− 32λ

4− 2cb−4 − 32λ
>

1

5
.

We summarize that as long as we have
∑

u∈Γ′r−1(v) `r−1(u) 6 9λ∆ · |Γ′r−1(v)|, a color i that

is added to Iv at round r is also contained in IW with probability at least 1
3
· 1

5
= 1

15
,

independently of the success in previous rounds as we do not yet condition on any good
or bad events concerning the actual time period.

Letm := 1
5b2
λ∆ and let (XW

1 , XW
2 , . . .) be an infinite 0/1-sequence where each entry is 1

independently with probability 1
15

. We use the sequence (XW
i )i>1 for a coupling as follows.

Whenever Maker adds a color to Iv at a round r and
∑

u∈Γ′r−1(v) `r−1(u) 6 |Γ′r−1(v)| ·9λ∆,

we read the next bit XW
i of (XW

i )i>1. Then the coupling is such that XW
i = 1 implies

i ∈ IW . Clearly µ := E
[∑m

i=1X
W
i

]
= m

15
= 1

75b2
λ∆, and by a Chernoff bound we deduce

Pr
[ m∑
i=1

XW
i 6

1

100b2
λ∆
]
6 Pr

[ m∑
i=1

XW
i 6

3

4
µ
]

= exp
(
− µ

42 · 2

)
= exp

(
− λ∆

16 · 2 · 75b2

)
.

Next, we do a union bound over all sets W ∈ W . Using the inequality
(
n
k

)
6 (ne

k
)k we

obtain

Pr
[ ∧
W∈W

{ m∑
i=1

XW
i 6

1

100b2
λ∆
}]

6

(
∆

cb−2∆

)
· exp

(
− λ∆

16 · 2 · 75b2

)
6
( e

cb−2

)cb−2∆

· exp
(
− λ∆

2400b2

)
= exp(−Ω(∆)),
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where the last step follows if c is chosen sufficiently small compared to λ.
By Lemma 5 and Lemma 6 we have Pr[B2(v) ∪ B4(v)] = exp(−Ω(∆)). Hence with

probability 1− exp(−Ω(∆)) it holds |Iv| > 1
5b2
λ∆, and as long as `r(v) < 2λb−1∆, we also

have ∑
u∈Γ′r(v)

`r(u) < 9λ∆ · |Γ′r(v)|.

In this case, for all W ∈ W the size of the set Iv ∩ IW is lower-bounded by
∑m

i=1 X
W
i . By

a union bound over all bad events, it follows that with probability 1 − exp(−Ω(∆)), all
W ∈ W satisfy

|Iv ∩ IW | >
1

100b2
λ∆.

Therefore,
Pr[B6(v)] = exp(−Ω(∆)).

Suppose now that the bad event B6(v) does not happen. Then for every set W ∈ W
we have∑

u∈W

|I ′(u) ∩ Iv| >
∑
u∈W

|I ′(u) ∩ Iv ∩ IW | >
1

100b2
λ∆ · 1

24b4
cλ∆ =

1

2400b6
cλ2∆2.

Let s := min{r | `r(v) > 2λb−1∆}. By an averaging argument, we see that for every
W ∈ W there exists a vertex uW ∈ W such that

|Us(uW ) ∩ Us(v)| > |I ′(uW ) ∩ Iv| >
1

2400b4
λ2∆ > cb−4∆,

given that c is sufficiently small compared to λ. Hence, for every set W ∈ W there exists
at least one vertex that does not belong to D(v), implying

|D(v)| 6 cb−2∆. (2)

Note that in the case |D′(v)| < cb−2∆, (2) holds as well since D(v) ⊆ D′(v).
Once having derived (2), we proceed by considering the rounds r where it holds

`r−1(v) > 2λb−1∆ and `r(v) < 3λb−1∆. We want to show that within this period, Maker
is fast enough to color all uncolored edges between v and D(v). Recall from Maker’s
strategy that whenever he colors a good v-edge at a round r and D(v) ∩ Γ′r−1(v) is non-
empty, with probability at least q = 6c

λ
Maker chooses a vertex w ∈ D(v) and colors

the edge {v, w}. Again, we couple the process with an infinite 0/1-sequence (X1, X2, . . .)
where each entry is 1 independently with probability q. Whenever D(v) ∩ Γ′r−1(v) is
non-empty and Maker is about to color a good v-edge at round r, we read the next bit
Xi of (Xi)i>1. If Xi = 1, we require that w ∈ D(v). Recall that m = 1

5b2
λ∆. Clearly

µ′ := E[
∑m

i=1 Xi] = m·q > 6
5
cb−2∆. Denote by B7(v) the bad event that

∑m
i=1Xi 6 cb−2∆.

By a Chernoff bound it holds

Pr[B7(v)] 6 Pr
[ m∑
i=1

Xi 6
5

6
µ′
]

= exp(−Ω(µ′)) = exp(−Ω(∆)).
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Assume B3(v) and B7(v) do not occur. Then in the considered period of the process
where `r(v) increases from 2λ∆ to 3λ∆, Maker colors at least m′ good v-edges, implying
that either |D(v)| > cb−2∆ (which contradicts (2)) or Maker is fast enough and colors all
edges between v and D(v) before the load of v is above 3λb−1∆. Hence, for all rounds r
such that `r(v) > 3λb−1∆ we have D(v) ∩ Γ′r−1(v) = ∅, implying that indeed all v-edges
can be colored properly.

We see that as long as for all v ∈ V no bad event Bj(v) happens, Maker is never forced
to use forbidden colors, meaning that the process yields a proper coloring of the complete
edge set E. Finally, recall that we are assuming that the maximum degree ∆(G) is at
least C(b) log n. Then by a union bound we have

Pr
[ ∨
v∈V

7∨
j=1

Bj(v)
]
6 |V (G)| · exp(−Ω(∆)) = exp(−Ω(∆)) < 1

for C sufficiently large. We conclude that (a) Maker wins with probability 1−exp(−Ω(∆))
when applying the proposed strategy and (b) Maker has a deterministic winning strategy.
This finishes the main proof.

2.4 Missing proofs

Proof of Lemma 5. Let j ∈ {1, 2, 3} and let v ∈ V be a vertex of degree at least jλ∆. We
define R = {r1, . . . , r|R|} as the set of rounds satisfying

`r−1(v) > (j − 1)λb−1∆ and `r(v) < jλb−1∆− (b+ 1)

in which v-edges get colored by any of the two players. Maker’s strategy is such that after
every round ri ∈ R, with non-zero probability Maker colors a good v-edge at round ri+1.
Let X(i) be the indicator random variable for this event. Furthermore, for 1 6 i 6 |R|
let e(i) ∈ {1, . . . , b + 1} be the number of v-edges that have been colored by Maker and
Breaker at round ri. Note that the values e(i) depend on Breaker’s strategy, which may
itself heavily depend on Maker’s random answers in previous moves as Breaker might
apply an adaptive strategy. By definition of Maker’s strategy, for all 1 6 i 6 |R| we
independently have

Pr[X(i) = 1] >
e(i)

4b
. (3)

For all 1 6 b′ 6 b + 1 let (Y b′
1 , Y

b′
2 , . . .) be an infinite 0/1-sequence where each entry

is 1 independently with probability b′

4b
. We use this set of 0/1-sequences for a coupling

as follows. Whenever there is a new round ri ∈ R, we read the next entry Y
e(i)
j of the

sequence (Y
e(i)
j )j>1. We require that Y

e(i)
j = 1 implies X(i) = 1, i.e., Maker plays a

good v-edge at round ri + 1. By (3), this is a valid coupling. Let 1 6 b′ 6 b + 1 and
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1 6 m 6 λb−1∆. We have E[
∑m

j=1 Y
b′
j ] = b′m

4b
, and by a Chernoff bound,

Pr
[ m∑
j=1

Y b′

j <
b′m

4b
− λ∆

25b2(b+ 1)

]
6 Pr

[ m∑
j=1

Y b′

j <
(

1− 4λ∆

25(b′m)b(b+ 1)

)b′m
4b

]
6 exp

(
− Ω

(∆2

m

))
6 exp(−Ω(∆)).

By a union bound, with probability 1− exp(−Ω(∆)), for all choices of b′ and m it simul-
taneously holds

m∑
j=1

Y b′

j >
b′m

4b
− λ∆

25b2(b+ 1)
.

Suppose this good event happens. For all 1 6 b′ 6 b + 1, denote by α(b′) the total
number of rounds ri ∈ R such that e(i) = b′. Clearly, the random variables α(b′) are
upper-bounded by λb−1∆. Moreover, we have `r1(v) 6 (j − 1)λb−1∆ + (b + 1) and
`r|R|(v) > jλb−1∆− 2(b+ 1), so

b+1∑
b′=1

b′ · α(b′) > λb−1∆− 3(b+ 1).

No matter how Breaker plays, it follows

|R|∑
i=1

X(i) >
b+1∑
b′=1

α(b′)∑
j=1

Y b′

j >
b+1∑
b′=1

(b′α(b′)

4b
− λ∆

25b2(b+ 1)

)
>
λ∆

4b2
− 2− λ∆

25b2
>
λ∆

5b2
.

However, by construction `ri+1(v) < jλb−1∆ holds for all ri ∈ R. Hence, the sum∑|R|
i=1 X(i) lower-bounds the total number of good v-edges in the considered period of

the process, and with probability 1 − exp(−Ω(∆)), Maker is sufficiently fast in coloring
good v-edges.

Proof of Lemma 6. Let v ∈ V be a vertex of degree at least (1− cb−4)∆. We study how
fast `r(v) grows compared to Lr :=

∑
u∈Γ′r(v) `r(u) over time. First, note that whenever

a player colors an edge {u, v} at round r, we have u /∈ Γ′r(v), and thus the edge {u, v}
does not contribute to Lr. Therefore, an edge e = {u,w} that is played at round r and
contributes to Lr is either (1) such that u ∈ Γ′r(v) and w /∈ Γ′r(v) ∪ {v}, or (2) such
that u,w ∈ Γ′r(v). For a single edge e of type (1), due to the proposed strategy, with
probability at least 1

4b
Maker answers by coloring a good u-edge in his next move at round

r+1, no matter whether e was colored by Maker or Breaker. In this case, with probability
at least 1−q

∆
he colors the edge {u, v}. All together, for an edge of type (1) the probability

that Maker’s next edge at round r+ 1 increases the load of v is at least 1−q
4b∆

. For an edge

of type (2), the same argument yields that with probability at least 1−q
2b∆

, Maker answers
by coloring a v-edge at round r + 1.

the electronic journal of combinatorics 25(2) (2018), #P2.33 11



Let R = {r1, . . . , r|R|} be the set of rounds in which at least one edge of type (1) or
(2) is played. Note that |R| 6 ∆2 is a random variable. For all 1 6 i 6 |R| let e1(i) be
the number of edges of type (1) played at round ri, let e2(i) be the same for edges of type
(2), and put e(i) := e1(i) + 2e2(i) ∈ {1, . . . , 2b + 2}. Let X(i) be the indicator random
variable for the event that at round ri+1, Maker colors a v-edge. Then for all 1 6 j 6 |R|
the sum

∑j
i=1 X(i) lower-bounds `rj+1, and by the previous observations we know that

Pr[X(i) = 1] = E[X(i)] >
(1− q)e(i)

4b∆
. (4)

For all 1 6 b′ 6 2b + 2 let (Y b′
1 , Y

b′
2 , . . .) be an infinite 0/1-sequence where each entry

is 1 independently with probability (1−q)b′
4b∆

. We build a coupling by using this set of 0/1-

sequences. After every round ri ∈ R, we read the next bit Y
e(i)
j of the sequence (Y

e(i)
j )j>1

and require that whenever Y
e(i)
j equals one, then at the next round ri + 1, Maker plays a

v-edge, implying X(i) = 1. By (4), indeed this coupling is possible. Let 1 6 b′ 6 2b + 2

and 1 6 m 6 17
2
λ∆2. We have E[

∑m
j=1 Y

b′
j ] = (1−q)b′m

4b∆
, and by a Chernoff bound

Pr
[ m∑
j=1

Y b′

j <
(1− q)b′m

4b∆
− λ∆

32b(b+ 1)

]
6 Pr

[ m∑
j=1

Y b′

j <
(

1− λ∆2

8(1− q)(b′m)(b+ 1)

)(1− q)b′m
4b∆

]
6 exp

(
− Ω

(∆3

m

))
6 exp(−Ω(∆)).

By a union bound, with probability 1 − exp(−Ω(∆)) the same holds for all choices of b′

and m simultaneously.
We now always assume that this good event occurs. Let s 6 |R| be maximal such that

s∑
i=1

e(i) <
17

2
λ∆2. (5)

We distinguish two cases. If s = |R|, then for all rounds r of the game process we have

Lr =
∑

u∈Γ′r(v)

`r(u) 6
r∑
i=1

e(i) <
17

2
λ∆2. (6)

In the case s < |R| we want to show that (6) holds at least for all rounds r where
`r(v) < 2λb−1∆. For all 1 6 b′ 6 2b+ 2 let α(b′) count the number of rounds ri ∈ R such
that i 6 s and e(i) = b′. Since e(s) 6 2b+ 2, inequality (5) implies

2b+2∑
b′=1

b′ · α(b′) >
17

2
λ∆2 − (2b+ 2).
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Therefore,

s∑
i=1

X(i) >
2b+2∑
b′=1

α(b′)∑
j=1

Y b′

j >
2b+2∑
b′=1

(
(1− q)b

′α(b)

4b∆
− λ∆

32b(b+ 1)

)
(7)

> (1− q)17λ∆

8b
− 1− q

∆
− λ∆

16b
.

Recall that q = 6c
λ

and note that the v-edge that Maker eventually plays at round rs + 1
does not contribute to `rs(v). Then for c sufficiently small and ∆ sufficiently large, (7)
yields

`rs(v) >
s∑
i=1

X(i)− 1 > 2λb−1∆.

On the other hand, by definition of s for all rounds r 6 rs we have

Lr =
∑

u∈Γ′r(v)

`r(u) 6
r∑
i=1

α(i) <
17

2
λ∆2.

We summarize that in both cases, for all r such that Lr > 17
2
λ∆2 we also have

`r(v) > 2λb−1∆. However, for all rounds r satisfying `r(v) < 2λb−1∆, the assumption
deg(v) > (1− cb−4)∆ implies

1

|Γ′r(v)|
∑

u∈Γ′r(v)

`r(u) 6
1

(1− 2λb−1 − cb−4)∆
Lr <

17λ∆

2(1− 2λb−1 − cb−4)
< 9λ∆,

given that λ and c are sufficiently small.
Hence, indeed with probability 1 − exp(−Ω(∆)) the load `r(v) grows fast enough

compared to the average load of the vertices in Γ′r(v).

Proof of Lemma 7. Let v ∈ V be fixed and consider the color sets {I ′(u) | u ∈ Γ(v)}.
By definition, the sets I ′(u) only contain colors that were chosen by Maker uniformly at
random when coloring a good u-edge e at a round r such that `r(u) < λb−1∆. Thus, when
Maker is about to color such an edge e, the set Ur−1(u) has size less than λb−1∆. Then

|Ar−1(e)| > k −∆− λb−1∆ = (1− cb−4 − λb−1)∆. (8)

Let W ⊆ Γ(v) be a fixed subset of size |W | = cb−2∆. For every color i we define
ηi := |{u ∈ W | i ∈ I ′(u)}|. Moreover, let I− be any fixed set of cb−2∆ colors. Our
plan is to show that it is unlikely that ηi is large for every color i ∈ I−. Let u ∈ W .
Whenever Maker is about to color a good u-edge e at a round r and the corresponding
color will be added to I ′(u), the probability that Maker chooses a color i ∈ I− is maximal
in a situation where I− ⊆ Ar−1(e) but |Ar−1(e)| is as small as possible, i.e. the number
of forbidden colors is as large as possible. If I− ∩ Ar−1(e) = ∅, clearly the probability is
zero. In general, by (8) the probability to hit a color of I− is at most

|I− ∩ Ar−1(e)|
|Ar−1(e)|

6
cb−2∆

(1− cb−4 − λb−1)∆
=

cb−2

(1− cb−4 − λb−1)
.
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We now want to upper-bound ηI− :=
∑

i∈I− ηi. We do a worst-case analysis and use
a coupling where we assume that whenever Maker colors an edge e with some color i and
the corresponding color will be contained in I ′(u) for some u ∈ W , the probability that
i ∈ I− is exactly cb−2(1− cb−4 − λb−1)−1. We even allow that two neighboring edges get
the same color i ∈ I−, which is fine regarding an upper bound of ηI− . The advantage of
this coupling is that the probabilities for Maker choosing color of the set I− in such rounds
become independent, which simplifies the analysis as we get rid of nasty dependencies and
case distinctions. For a single vertex u ∈ W there are at most 1

5b2
λ∆ rounds in which

Maker colors a good u-edge and adds a color to I ′(u). Recall that |W | = cb−2∆. Hence in
total, at most 1

5b4
cλ∆2 rounds have to be considered. It follows that ηI− is upper-bounded

by a random variable X with binomial distribution

X ∼ Bin
(cλ∆2

5b4
,

cb−2

(1− cb−4 − λb−1)

)
.

Clearly, the expected value of X is

E[X] =
c2λ∆2

5b6(1− cb−4 − λb−1)
6

2

9b6
c2λ∆2,

and by a Chernoff bound we have

Pr
[
X >

1

4b6
c2λ∆2

]
6 Pr

[
X >

(
1 +

1

8

)
E[X]

]
= exp(−Ω(∆2)).

Thus, with probability 1− exp(−Ω(∆2)) it holds ηI− 6 1
4b6
c2λ∆2.

Regarding the values of the random variables ηi, we observe that the event∧
i∈I−

{
ηi >

1

4b4
cλ∆

}
can only occur when ηI− > 1

4b6
c2λ∆2. Hence

Pr
[ ∧
i∈I−

{
ηi >

1

4b4
cλ∆

}]
6 Pr

[
ηI− >

1

4b6
c2λ∆2

]
6 exp(−Ω(∆2)).

It remains to union bound over all choices of vertex sets W and color sets I−. We can
assume that deg(v) > cb−2∆, otherwise the statement is trivial. Using the inequality(
n
k

)
6 (ne

k
)k we deduce

Pr
[
B5(v)

]
6

(
deg(v)

cb−2∆

)(
k

cb−2∆

)
exp(−Ω(∆2))

6
(b2e

c

)cb−2∆(2b2e

c

)cb−2∆

exp(−Ω(∆2)) = exp(−Ω(∆2)).
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3 Lower bound for the biased game

The main idea for proving the lower bound of Theorem 4 is to use a reduction to so-called
Box games. Box games have been introduced by Chvátal and Erdős [8] and are played
as follows. There are pairwise disjoint sets A1, . . . , As such that |Ai| and |Aj| differ by at
most 1 for all choices of i and j. Then Alice and Bob take turns (with Alice being the
first player) in which they claim previously unclaimed elements of the sets Ai. Alice takes
one element per round while Bob is allowed to claim up to b elements per turn. Alice
wins if she gets at least one element from each set Ai, whereas Bob’s goal is to claim all
elements of at least one set Ai. The following result determines a criterion for Bob to win
the Box game.

Theorem 8 (Theorem 2.1 in [8], Corollary 5.4 in [12]). If Alice and Bob play a Box game
with bias b > 1 and sets A1, . . . , As such that

∑s
i=1 |Ai| 6 (b − 1)s

∑s−1
i=1

1
i
, then Bob has

a winning strategy.

Let b > 2 be a bias for the game. We want to verify that there are graphs G = (V,E)
that attain χ′g(G, b) = 2∆(G)− 1. In the following, we denote by dG(e, f) the distance of
two edges e, f in the graph G (i.e., the number of edges in the shortest path that connects
e and f). A set F ⊆ E is called good if (i) for every edge f ∈ F its two endpoints have
degree ∆(G) in G, and (ii) if for all fi, fj ∈ F , dG(fi, fj) > 4. We prove the following
statement which is slightly stronger than Theorem 4.

Lemma 9. Let b > 2 and let G = (V,E) be graph with a good set F ⊆ E such that

2∆(G)− 2

b− 1
6
|F |−1∑
i=1

1

i
. (9)

Then χ′g(G, b) = 2∆(G)− 1.

Let G = (V,E) be a ∆-regular graph with at least 2∆3 exp(2∆−2
b−1

) vertices. We then
greedily find a good set F ⊆ E as follows: choose an edge f whose endpoints have both
degree ∆, put f into F , delete every edge of e ∈ E with dG(e, f) 6 2, and iterate as
long as possible. Note that whenever we add an edge f to F , so far no edge incident to
f has been removed because the endpoints of f still have degree ∆. So, for all edges f ′

that are already included in F we have dG(f, f ′) > 4, and by induction, F is a good set.
Furthermore, whenever an edge f is added to F and edges of E are deleted, we reduce
the degree of at most 2∆3 vertices in V . In particular the number of vertices of degree
∆ shrinks by at most 2∆3 per iteration and we obtain a set F of size at least exp(2∆−2

b−1
).

This implies

2∆− 2

b− 1
6 log |F | 6

|F |−1∑
i=1

1

i
,

where the last inequality holds for all integers |F | > 0. We see that indeed, Theorem 4 is
a corollary of Lemma 9.
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Proof of Lemma 9. Let F = {f1, . . . , fs} ⊆ E be a good set of a graph G that satisfies (9),
and consider the edge coloring game played with colors {1, . . . , k}, where k < 2∆(G)− 1.
We want to show that Breaker has a strategy such that at least one edge fi ∈ F runs out
of available colors before it gets colored. Let F ′ := ∪si=1Γ(fi), where Γ(fi) denotes the set
of neighboring edges of fi, i.e., the set of edges that share an endpoint with fi. In the
following we require Breaker to only color edges of F ′, as long as possible. Moreover, we
assume that whenever Breaker colors a neighbor of some fi ∈ F , he uses a color that was
so far not used at any neighboring edge of fi, if possible.

The reduction from the coloring game to Box games now works as follows: for every
edge fi ∈ F we introduce a box Ai, containing precisely k elements. Whenever Breaker
colors an edge of F ′ that is a neighbor of some edge fi ∈ F , in the Box game we model
this by Bob claiming an element of Ai. Breaker’s right to color at most b edges per turn
is mapped to the rule that in the Box game, Bob is allowed to claim up to b elements
per turn. Furthermore, whenever Maker colors an edge e ∈ E, we couple this by Alice
playing an element of a box Ai, where we choose i such that

dG(fi, e) = min
16j6s

{dG(fj, e)}. (10)

Hence, as long as Breaker colors edges of F ′, for any strategy of Maker we can interpret
the game process as Alice and Bob playing the Box game with sets A1, . . . , As and bias
b. Since F fulfills (9), we have

s∑
i=1

|Ai| 6 s(2∆(G)− 2) 6 s(b− 1)
s−1∑
i=1

1

i

By Theorem 8 Bob has a winning strategy for this Box game, meaning that he is able
to claim all k elements of at least one box Ai before Alice can claim one element of Ai.
Then our coupling implies that in the coloring game, Breaker has a strategy such that
for at least one fi ∈ F , he can color k neighbors of fi before Maker colors any edge e
fulfilling (10) for fi. As F is a good set, this means that Maker colored no neighboring
edge of fi, i.e., he never blocked a color for a neighboring edge of fi. But then, due to
the applied strategy, Breaker was able to use all k colors exactly once when coloring the
k neighbors of fi. Afterwards, for fi clearly all colors are forbidden and Breaker wins the
edge coloring game with bias b on the graph G.

4 Open problems

With Theorem 2 we made a first step towards a proof of Conjecture 1. We verified the
statement for all graphs G that satisfy ∆(G) > C log n by applying a random strategy
for Maker. Our attempts to prove the full conjecture were not successful, neither by
using the same strategy nor by analyzing more advanced and refined strategies. It is
reasonable to believe that from Maker’s perspective, the game is harder to win in the case
∆(G) 6 C log n, as indicated by Theorem 3 and Theorem 4 for the biased version of the
game where the behavior of χ′g(G, b) significantly changes around ∆(G) ≈ log n.
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In [5] it is also conjectured that there exist c, d0 > 0 such that every graph G with
minimum degree δ(G) > d0 satisfies χ′g(G) > (1 + c)∆(G). The interesting case of this
statement is when G is almost regular, i.e., ∆(G) 6 (1 + c)δ(G). Note that so far, this
conjecture is not even solved for examples like complete graphs. Another open question
is to decide whether there exist c,∆0 such that for any ∆ > ∆0, there are two ∆-regular
graphs G1 and G2 with |χ′g(G1) − χ′g(G2)| > c∆. Finally, in order to gain a better
understanding of the game process it would be desirable to determine the asymptotic
expression of the game chromatic index at least for complete graphs, random graphs, or
complete bipartite graphs.
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