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Abstract

The Sauer-Shelah lemma provides an exact upper bound on the size of set fam-
ilies with bounded Vapnik-Chervonekis dimension. When applied to lattices repre-
sented as closure systems, this lemma outlines a class of extremal lattices obtaining
this bound. Here we show that the Sauer-Shelah bound can be easily generalized
to arbitrary antichains, and extremal objects for this generalized bound are exactly
convex geometries. We also show that the problem of classification of antichains
admitting such extremal objects is NP-complete.

Mathematics Subject Classifications: 05D05

1 Introduction

The Sauer-Shelah lemma is a renowned result from extremal set theory, establishing an
exact bound on the number of sets in a family not shattering any k-set.

Lemma 1 (Sauer-Shelah). If F is a family of subsets of U , |U | = n, and |F| > H(n, k),
where H(n, k) is a sum of first k binomial coefficients of n, that is,

H(n, k) :=
k−1∑
i=0

(
n

i

)
,

then F shatters some k-set.

This bound is trivially reached by the family of all subsets of the base set of size at
most k− 1. If we restrict ourselves to some specific set families, the upper bound remains
intact. However, its sharpness may be lost or difficult to prove. In [1] and its extended
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version [2] A.Albano and the author, although in lattice-theoretic terms, have proved the
sharpness of this bound for families of closed sets, and characterized families reaching this
bound.

Another natural generalization of the Sauer-Shelah lemma is to change constraints
and seek for families that do not shatter any set from some fixed antichain A, the original
bound corresponding to the antichain Ak of all k-sets. For arbitrary set families such
generalization is straightforward. In this paper we make similar generalization for families
of closed sets. Extremal objects for this generalized case turn out to be exactly convex
geometries.

The structure of the paper is as follows. In Section 2 we introduce basic terminology.
In Section 3 we give a generalized version of the Sauer-Shelah lemma and define extremal
families of closed sets. In Section 4 we define extremal lattices, argue about their relation
to extremal closure systems, and give some examples. In Section 5 we explore some
degenerate cases of extremal families and ways to deal with them. In Section 6 we
characterize extremal closure families as convex geometries and extremal lattices as meet-
distributive lattices. In Section 7 we reformulate circuit characterization of antimatroids in
order to obtain characterization of extremal families of closed sets in terms of implications.
Finally, in Section 8 we consider a problem of characterization of antichains yielding
extremal closure families. As we show, this problem turns out to be NP-complete.

2 Preliminary definitions

If not stated otherwise, all objects in our paper are finite. Typically, we are dealing
with subsets of a base set U , |U | = n. A k-set is a set with k elements. At times, we
denote by k some fixed k-set. For a set X ⊆ U and a set family F , a trace of F on X,
denoted TF(X), is defined as:

TF(X) = {F ∩X | F ∈ F} .

The power set of X is denoted by P(X). The set family F shatters X if TF(X) = P(X).
The Vapnik-Chervonekis (VC) dimension of F is the maximal size of a set shattered by F .

A family I is hereditary if it contains every subset of A, for all A in I. A family C is
a closure system if it contains U and is closed under set intersection. Interchangeably, we
call closure systems families of closed sets. When dealing with closure systems we denote
by X the least closed subset containing X.

Closure systems are of special interest to us because of their intimate connection with
lattices. Every closure system C, partially ordered by set inclusion, is a lattice, which we
denote by L(C), or simply LC. On the other hand, if for a lattice L and an element x ∈ L
we denote by J(L) the set of join irreducible elements of L, and J(x) = (x] ∩ J(L), then
we can define closure system C(L), or CL, over J(L) as:

CL =
{

J(x) | x ∈ L
}
.

With this notation it holds:
L(C(L)) ∼= L

the electronic journal of combinatorics 25(2) (2018), #P2.35 2



and
C(L(CL)) ∼= CL.

Notice, however, that for an arbitrary C in general C(L(C)) 6∼= C, due to the fact that non-
isomorphic set families may be isomorphic as posets. We call CL the canonical closure
system for L.

We denote a boolean lattice with k atoms by B(k). We say that a lattice L is B(k)-free
if it does not have an order-embedding of B(k). As we show later in Lemma 8, a lattice L
is B(k)-free if and only if C does not shatter a k-set, for any C such that L = L(C).
Notice that we can use here any closure system, not only the canonical one. Using this
correspondence, we can define VC-dimension of a lattice L as a smallest k such that L
is B(k + 1)-free, and this definition trivially agrees with the one for set families.

In [1] it was shown that it is possible to construct a closure system C of size H(n, k)
not shattering any k-set, or alternatively, to construct a B(k)-free lattice with H(n, k) el-
ements. Lattices obtained that way were called (n, k)-extremal and were completely char-
acterized as lattices obtained by recursive application of a specific doubling construction.
Now we proceed to characterize corresponding objects for the generalized Sauer-Shelah
bound.

3 Generalized Sauer-Shelah lemma and extremality

In order to pave the road for the generalization of the Sauer-Shelah lemma to arbitrary
antichains, we will introduce some simple notation.

Let A be an antichain of sets over U . We say that F does not shatter A if it does
not shatter any set A from A. By I(A) we denote the family of all subsets of U not
containing any set from A as a subset, that is,

I(A) = {X | X 6⊇ A, for all A in A} ,

and by s(A) we denote the size of I(A). Trivially, I(A) is hereditary and does not
shatter A.

As a technical tool, we need the following lemma, used implicitly in [6], and formulated
in its present state as [10, Theorem 10.2]. The sketch of the proof follows the latter.

Lemma 2 (Frankl). For an arbitrary set family F there is a hereditary family I of equal
size, such that |TS(I)| 6 |TS(F)|, for any S ⊆ U .

Proof. For a non-hereditary F , let us pick a “bad coordinate”, that is, a point x in U ,
for which there is A ∈ F , such that A − x /∈ F . With x and F fixed, let us define an
injective transformation Tx : F → P(U) in the following way:

Tx(A) =


A, x /∈ A;

A, x ∈ A,A− x ∈ F ;

A− x, x ∈ A,A− x /∈ F .
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It is now easy to check that for Fx = Tx(F), it holds: |Fx| = |F| and |TS(Fx)| 6 |TS(F)|,
for any S ⊆ U . Moreover, Fx has same bad coordinates as F , except for x. The statement
of the lemma now follows by induction on the number of bad coordinates.

Theorem 3 (Sauer-Shelah, generalized). If A is an antichain of sets in U and F is a
family with |F| > s(A) then F shatters A.

Proof. Obviously, a hereditary family shattersA if and only if it contains some set fromA.
Thus, I(A) is the maximal hereditary family not shattering A. Now, let F be a family
not shattering A. By Lemma 2 there is a hereditary family F ′ with |F ′| = |F|, not
shattering A. But then F ′ ⊆ I, and thus |F| 6 |I| = s(A).

We say that a set family F is extremal for an antichain A if |F| = s(A) and if F does
not shatter A. We say that F is extremal if it is extremal for some antichain. For any
family F in U , not necessarily extremal, we define a blocking antichain AF of F as the
family of all subsets of U , minimal with respect to being not shattered by F . Trivially, AF
is an antichain. Note also, that I(AF) is the family of all subsets shattered by F .

An easy example of extremal families is the hereditary families.

Lemma 4. Every hereditary family is extremal.

Proof. Let J be a hereditary family. We claim that in this case J is extremal for AJ .
Indeed, J does not shatter any set from AJ , and suppose that |J | < s(AJ ) = |I|, where
I = I(AJ ). As I is maximal of all hereditary sets not shattering AJ , we have J ( I,
and we can take a minimal set B in I − J . But from minimality of B it follows that
B − x ∈ J , for all x ∈ J . Thus, J does not shatter B, but shatters B − x, for any
x ∈ B, which means that B ∈ AJ . But, as B ∈ I, it follows that I shatters AJ , a
contradiction.

Our next goal is to show that, given a family F , in order to check its extremality we
do not need to go through all possible antichains. In fact, the only antichain for which F
can be extremal is AF .

For two antichains A and B we say that A refines B, denoted A � B, if for each b ∈ B
there is a ∈ A such that a 6 b. In particular, A � B whenever B ⊆ A. The refinement
relation is a partial order on antichains, see for example [8, Lemma 1.15]. The following
proposition is straightforward:

Proposition 5. If A � B and A 6= B then s(A) < s(B).

Lemma 6. If F is extremal for an antichain B then B = AF .

Proof. From the definition of AF it follows that for any B ∈ B there is A ∈ AF with
A ⊆ B, that is, AF refines B. From Proposition 5 it follows that |F| 6 s(AF) < s(B)
whenever B 6= AF , which contradicts extremality.

We say that F almost shatters A ⊆ U if |P(A)| − |TF(A)| = 1, that is, if there is a
unique X in P(A)− TF(A).
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Lemma 7. If F is extremal then F almost shatters every set in AF .

Proof. By Lemma 2 there is a hereditary family I of size |F| such that |TrI(A)| 6
|TrF(A)| for all A ∈ AF , in particular I does not shatter AF . Due to extremality of
F , there is exactly one such hereditary family, namely I(AF). Thus, 2|A| > |TrF(A)| >
|TrI(A)| = 2|A| − 1, implying |P(A)| − |TF(A)| = 1.

The converse of Lemma 7 does not hold, that is, there are families which almost shatter
all sets from its blocking antichain, yet are not extremal. For example, let F be a family
of sets in U = {1, 2, 3, 4} not covering 123 and intersecting 234, that is,

F = {2, 3, 4, 12, 13, 14, 23, 24, 34, 124, 134, 234}.

Then AF = {123, 234}, F almost shatters both sets from AF , and it is easy to see that
s(AF) = 13 > |F| = 12.

As a conclusion to this section we also note that extremal set families are also studied
under the name shattering-extremal families, see [13] for a comprehensive survey on the
topic.

4 Extremal lattices

Apart from describing extremal closure systems we also want to describe extremal lattices.
We start with proving the result announced in Section 2, which relates shattered sets in
closure systems and boolean suborders in lattices. This result implicitly appears in [2]
as an easy corollary (although not stated explicitly) of Lemmas 1 and 4. However, this
approach requires introducing a large bulk of terminology from Formal Concept Analysis,
so instead we will now prove it directly.

Lemma 8. Let us fix a lattice L and a closure system C, such that L = L(C). Then L
has an order-embedding of B(k) if and only if C shatters some k-set.

Proof. (⇒) : Let us fix an order-embedding B(k) in L, we denote its elements by eZ ,
Z ⊆ k, in a straightforward way. We also associate elements of L with corresponding
subsets in U , where U is a base set for C. Thus, eZ ⊆ U , for all Z ⊆ k. Now, for all
x ∈ k let us fix ax ∈ e{x} such that ax /∈ ek−x, this could be done as e{x} and ek−x are
incomparable as elements in L, and thus as subsets in U .

We argue that C shatters the k-set A = {ax | x ∈ k}. Indeed, let B be a subset of A,
then it can be represented as B = {ax | x ∈ W}, for some W ⊆ k. Then B = A ∩ eW .
Indeed, for x ∈ W we get ax ∈ e{x} ⊆ eW , and for x /∈ W we get ax /∈ ek−x ⊇ eW .

(⇐) : Let C shatter A ⊆ U . We argue that all the sets {X | X ⊆ A} are different,
from which it is immediate that in L(C) they form an order-embedding of B(k).

Indeed, let X and Y be different subsets of A, and suppose there is y ∈ Y − X
(otherwise switch X and Y ). But then, as C shatters A, there is some C ∈ C such that
C ∩ A = X. Then X ⊆ C = C, implying y /∈ X. But as y ∈ Y ⊆ Y , then Y 6= X,
finishing the proof.
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Now, let us define extremal lattices. We say that a lattice L shatters A ⊆ J(L) if FL

shatters A. We say that L is extremal if FL is extremal, in which case we denote A(FL)
by AL.

There are two problems with this definition. First, let us consider the closure system
C = {∅, 12} over U = {1, 2}. It is easy to see that C is not extremal. The corresponding
lattice LC is a two-element lattice and C ′ = C(LC) may be represented as C ′ = {∅, 1} over
U ′ = {1}. Now, C ′ is extremal, and consequently so is LC. Thus, non-extremal closure
systems may give rise to extremal lattices. Of course, this can happen only when C is not
canonical, but still it is unfortunate.

For the second example let us consider C = {1, 12} over U = {1, 2}, which is extremal.
However, C is not canonical for any lattice, as every canonical closure system contains the
empty set. Thus, there are extremal non-canonical closure systems.

Luckily, in the next section we show that both these situations can be easily handled
and make no substantial difference. We end this section with several easy examples of
extremal lattices.

Example 9. A lattice with a single element is extremal with FL being an empty family
over an empty set of join irreducible elements, AL = {∅}.

Example 10. Let L be a distributive lattice represented as a family of order-ideals over
a poset P . Then L is extremal and AL is an antichain over P given by

AL =
{
{x, y} | x < y

}
Example 11. Every (n, k)-extremal lattice L defined in [1] is extremal over U , |U | = n,
and AL is the antichain of all k-sets.

5 Reduction of antichains and closure systems

In this section we deal with some trivial cases of extremal families and the way to surpass
them. This part is rather boring, but we need it for the sake of generality.

We call an antichain A redundant if in A there is a one-point set, and irredundant
otherwise. For an antichain A we define a reduction of A, denoted R(A), as an antichain

R(A) = A−
{
{x} | {x} ∈ A

}
over a set

UR = U − {x | {x} ∈ A}.
We say that a set family F over X is redundant if there is x ∈ X such that |TrF(x)| = 1.
We define a reduction of F , denoted R(F) as a family

R(F) =
{
F ∩X − {x | |TrF(x)| = 1}

}
over a set UR of irredundant elements of C

UR = X − {x | |TrF(x)| = 1}.
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For closure systems we introduce additional notation. We say that a closure system C
over U is ambiguous if x = X for some x ∈ UR and X ⊆ UR − x, otherwise we call C
unambiguous. In terms of lattices, if we fix L = LC, then irredundant elements of C
are those mapped to 0L by closure operator, and C is ambiguous if either two distinct
irredundant elements in U are mapped to the same element in L, or some irredundant
element in U is mapped to a join reducible element in L.

The following easy proposition establishes a correspondence between reduction of an-
tichains and reduction of set families.

Proposition 12. If a set family F is extremal for an antichain A, then:

• R(F) is extremal for R(A);

• F is redundant if and only if A is redundant;

• if A = R(A′) for some A′, then there is F ′ extremal for A′ such that F = R(F ′).
Moreover, F ′ can be chosen hereditary (closure system) whenever F is hereditary
(closure system).

Proposition 13. An element x is redundant for a closure system C if and only if x ∈ ∅.

Proposition 12, in particular, implies that an extremal closure family can be redundant,
as we already saw in the example in Section 4. On the other hand, it cannot be ambiguous.

Lemma 14. If closure family C is extremal then C is unambiguous.

Proof. Suppose C is ambiguous and let a = A for some a ∈ UR and A ⊆ UR − a. Let us
define an extended closure system CA as

CA = C ∪ {A′ ∩X | X ∈ C} ,

where A′ = A − a. Trivially, CA is a closure system and it is a proper extension of C, as
A′ ∈ CA − C.

We claim that C and CA shatter the same sets. Indeed, if X is shattered by C then it is
shattered by CA as C ⊂ CA. On the other hand, let CA shatter X, and let us take Y ⊆ X
and V ∈ CA such that Y = X ∩ V . If V ∈ C then Y ∈ TrCA(X). Now let V = W ∩ A′,
for W ∈ C. If a 6∈ X then

Y = X ∩ V = X ∩W ∩ A′ = X ∩W ∩ (A− a) = X ∩
(
W ∩ A

)
,

and again Y ∈ TrCA(X).
Finally, let a ∈ X and denote a closure operator in CA by ϕCA . If b ∈ X for any b ∈ A′,

then ϕCA(b) ⊆ A′ ⊂ ϕCA(a) and CA does not shatter X as X − b 6∈ TrCA(X), which is
impossible. Thus, X ∩A′ = ∅, and consequently Y = X ∩V = X ∩W ∩A′ = ∅. However,
in this case Y = X ∩ b, for every b ∈ A′, and again Y ∈ TrCA(X), finishing the proof.

Lemma 15. A closure family C is irredundant and unambiguous if and only if C = CL
for a lattice L.
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Proof. (⇒) : Let L be a lattice of closed sets of C over U and let us denote by ϕ : C → L
the bijection between L and C. As C is irredundant, |TrC(x)| = 2, for every x ∈ U . Thus,
there is Xx ∈ C such that x 6∈ Xx, and consequently ∅ =

⋂
{Xx | x ∈ U} ∈ C. Thus,

0L = ϕ(∅) < ϕ(x), for any x ∈ U .
On the other hand, as C is unambiguous, ϕ(x) 6= ϕ(Y ) =

∨
{ϕ(y) | y ∈ Y }, for

all x ∈ U and Y ⊆ U − x. Thus, ϕ(x) is join irreducible and ϕ(x) 6= ϕ(y), for all
x, y ∈ U, x 6= y. Thus, mapping x 7→ ϕ(x) is a bijection between U and J(L), and
C ∼= J(L).

(⇐) : If C = CL is not irredundant, there is some x ∈ J(L) such that tx(CL) = 1, that
is, x either belongs to J(y) for every y ∈ L, which is impossible because x 6∈ J(0) or x
does not belong to any J(y), which is impossible because x ∈ J(x).

Similarly, if C is ambiguous, then there is x ∈ J(L) such that x = J(x) = X, for X ⊆
J(L)−x. But then X = J (

∨
(X)), which is only possible if

∨
X = x, a contradiction.

6 Characterization of extremal lattices

In our definition of meet-distributive lattices we follow [7], namely, a lattice L is meet-
distributive if an interval [x, y] is a boolean lattice whenever x is a meet of elements
covered by y, for any y ∈ L.

A set X ∈ J(L) is called an irredundant join representation of a =
∨
X, if an inequality∨

(X − x) < a holds, for every x ∈ X. We denote by JIR the family over J(L) of all
irredundant join representations in L.

In a finite lattice every element has at least one (possibly more) irredundant join
representations. On the other hand, no two distinct elements share an irredundant join
representation. Thus, |L| 6 |JIR(L)|.

For the following fact we refer to [9, Theorem 44], however, as was noted by the
anonymous referee, it goes back to the paper of Dilworth [5]:

Lemma 16. A finite lattice L is meet-distributive if and only if every element of L has
a unique irredundant join representation.

The following two lemmas are straightforward and relate irredundant join representa-
tions with extremality.

Lemma 17. For every lattice L, the family JIR(L) is hereditary.

Proof. Let X be an irredundant join representation and suppose X − x 6∈ JIR(L), for
some x ∈ X. This means that

∨
(X − x) =

∨
(X − {x, y}), for some y ∈ X, y 6= x. But

then ∨
X = x ∨

∨
(X − x) = x ∨

∨
(X − {x, y}) =

∨
(X − y),

a contradiction.

Lemma 18. A lattice L shatters A ∈ J(L) if and only if JIR(L) shatters A.
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Proof. (⇒) : Let x =
∨
A. As L shatters A, for every a ∈ A, let us take xa ∈ L such

that J(xa) ∩ A = A − a, in particular, xa < x. Thus, for every a ∈ A,
∨

(A − a) ⊆∨
J(xa) = xa < x. Thus, A is an irredundant join representation of x, in particular,

JIR(L) shatters A.
(⇐) : If JIR(L) shatters A then A ∈ JIR(L). For any X ⊆ A let us take X ∈ CL.

If X ′ = X ∩ A ) X then
∨
X ′ =

∨
X, and thus X ′ 6∈ JIR(L), which is impossible as

X ′ ⊂ A ∈ JIR(L) and JIR(L) is hereditary. Thus, for every X ⊆ A holds X ∩ A = X
and CL shatters A.

A convex geometry is a base set U endowed with a closure operator ϕ : X 7→ X
satisfying the anti-exchange property :

x ∈ A ∪ y implies y 6∈ A ∪ x,

for all closed A, x, y 6∈ A, x 6= y. Trivially, every convex geometry is a closure system.
As it was shown by Edelman, convex geometries are closely related to meet-distributive
lattices, see [7, Theorem 3.3]. A good modern survey of the state of affairs with convex
geometries can be found in [3].

Lemma 19. A lattice L is a lattice of closed sets of convex geometry if and only if L is
meet-distributive.

Notice that Lemma 19 works only in one direction, that is, if a lattice of a closure
system C is meet-distributive, it does not imply that C is a convex geometry, for example
let C = {∅, 12} over U = {1, 2} (we considered this example in Section 4), then LC ∼= B(1),
which is meet-distributive. On the other hand 1, 2 6∈ ∅, but 2 ∈ 1 and 1 ∈ 2.

We use the notions of reduction and unambiguity, introduced before, to draw a more
detailed connection between convex geometries and meet-distributive lattices.

Lemma 20. A closure system C is a convex geometry if and only if R(C) is.

Proof. By Proposition 13, an element x is redundant if and only if x ∈ ∅. Thus, in anti-
exchange property we can consider only irredundant elements x and y, and the statement
of the lemma follows.

Lemma 21. If C is a convex geometry then it is unambiguous.

Proof. Suppose otherwise and take x ∈ UR and X ⊆ (UR − x) such that x = X. Let
Y = X − x, then Y = X, in particular, Y is not closed. Let A be any maximal closed set
in Y . As Y is not closed, it follows that A ( Y and we can chose y ∈ Y − A.

As A is maximal closed in Y , A ∪ y 6⊆ Y , but A ∪ y ⊆ Y = Y ∪ x, thus, x ∈ A ∪ y.
On the other hand, y ∈ X = x, hence y ∈ A ∪ x, a contradiction.

As a consequence we might formulate the following characterization of the extremal
lattices.

Theorem 22. For a finite lattice L and a finite closure system C, it holds:
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1. L is extremal if and only if it is meet-distributive;

2. C is extremal if and only if it is a convex geometry.

Proof. (1) : By Lemma 18, the family JIR(L) is hereditary, and so by Lemma 4 it is
extremal. Let A = A(JIR(L)), implying JIR(L) = I(A). By Lemma 18, L shatters
same sets as JIR(L), and thus L is extremal if and only if it is extremal for A. This
means that L is extremal if and only if |L| = |I(A)| = |JIR(L)|, however this holds if and
only if every element of L has a unique irredundant join representation. By Lemma 16,
this happens if and only if L is meet-distributive.

(2) : By Lemma 20 and Proposition 12 it is sufficient to establish this correspondence
only for irredundant C, and by Lemma 21 and Lemma 14 we can also consider only
unambiguous C. By Lemma 15, irredundant and unambiguous C corresponds to CL,
for some lattice L. Lemma 19 and the definition of extremality of lattices show that
convex geometries and extremal closure systems correspond to meet-distributivity and
extremality of corresponding lattices, and their equivalence was proven in part (1).

It is an interesting fact that for convex geometries VC-dimension was studied in its
own right under the name of Erdős-Szekeres number, see for example Section 3.4 in [12].
To be more accurate, this number is introduced for antimatroids, however this does not
play a crucial role as convex geometries and antimatroids are dual notions.

7 Convex geometries and implications

We now aim at a characterization of extremal closure systems in terms of implications.
The following notation is from [9].

A set T ⊆ U respects an implication A → B if A 6⊆ T or B ⊆ T . An implication
holds in a family F if every set of F respects it. Given a family of implications I, we
denote by C(I) a family of sets respecting all implications in I. It is evident that in this
case C(I) is a closure system.

Lemma 23. For an extremal closure system C and any A ∈ AC there is unique element
a ∈ A such that implication (A− a)→ a holds in C.

Proof. By Lemma 7, there is exactly one set X in P(A)−TC(A). Notice also that TC(A) is
a closure system, and thus |X| = |A−1|, otherwise X can be represented as an intersection
of two subsets of size |X|+ 1. Thus, X = A− a for some a ∈ A.

Now, from the definition of trace it follows that for any C ∈ C, a ∈ C whenever
(A− a) ⊆ C, that is, C respects implication (A− a)→ a.

Following [11], we define a rooted set as a pair (X, x), x ∈ X, where x is called the
root. We also define a rooted antichain as a family of rooted sets AR = {(Ai, ai)} such
that family A = {Ai} is an antichain. In this case we call A and ARcorresponding. For
simplicity, we distinguish corresponding antichain and rooted antichain by upper index
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R. In what follows we identify a rooted set (A, a) with an implication (A− a) → a. We
say that a rooted antichain AR is extremal if C(AR) is.

Using Lemma 23, for a given extremal closure system C we may uniquely construct a
rooted antichain AR

C such that AC is the extremal set of C and such that C respects AR
C .

We call AR
C a rooted blocking antichain of C.

Lemma 24. For an extremal closure family C, it holds C = C(AR
C ).

Proof. Obviously, C respects AR
C , thus C ⊆ C(AR

C ). On the other hand, C(AR
C ) does not

shatter any A ∈ A, thus |C| > |C(AR
C )|.

It turns out that rooted antichains which give rise to extremal closure families may be
easily described using characterization of circuits of antimatroids from [4].

Theorem 25. A rooted antichain AR is extremal if and only if the following condition
holds

if a ∈ B − b then there is (C, b) ∈ AR such that C ⊆ A ∪B − a,

for any rooted sets (A, a) and (B, b) in AR.

Proof. Theorem 22 reveals extremal closure systems to be convex geometries, which are
turned into antimatroids by complementation. In the same time, rooted sets from the
rooted blocking antichain of an extremal closure family C correspond to rooted circuits of
complemented antimatroid C∗, see [11, Lemma 4.4].

Now, the statement of the theorem follows directly from the characterization of rooted
families yielding antimatroids given in [4, Theorem 7].

8 Deciding the extremality of an antichain is NP-complete

We say that an antichain A is extremal, if it is extremal for some closure family C, or,
equivalently, if it is a corresponding antichain for some extremal rooted antichain. Notice
that the family I(A) is extremal for any A, thus the condition for C to be a closure family
is essential.

As we mentioned before, in [1] it was shown that it is possible to construct an extremal
closure system for the antichain Ak of all k-sets of U , for any k, thus all antichains Ak are
extremal. In general, however, it is not easy to say whether a given antichain is extremal.
In fact, below we show that this problem is NP-complete.

Lemma 26. For a given antichain A there is an NP algorithm deciding whether A is
extremal.

Proof. Given an antichain A, the described algorithm first nondeterministically guesses a
rooted antichain AR, corresponding to A, and then checks whether AR is extremal using
characterization from Theorem 25, which demands time cubic with respect to the number
of sets in A.
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Thus, providing nondeterministic polynomial algorithm for checking extremality of the
chain is an easy part. In order to prove NP-completeness we now have to design specific
terminology.

We call a (rooted) antichain A intransitive if for any distinct A and B and for any
point x ∈ A ∩ B there is no C ⊆ A ∪ B − x. We say that a rooted antichain AR is
accordant if every point from its base set is either the root for all sets from AR containing
it, or for none of them.

Lemma 27. An intransitive rooted antichain is extremal if and only if it is accordant.

Proof. If a rooted antichain is accordant, then a 6∈ B − b, for any rooted sets (A, a)
and (B, b) and by Theorem 25 it is rooted, proving one side of the statement.

Now, let AR be extremal intransitive rooted antichain. Suppose AR is not accordant,
that is, there is a point a and two rooted sets (A, a) and (B, b) in AR, a ∈ B − b. Then
by Theorem 25 there is (C, b) ∈ AR such that C ∈ A ∪ B − a, but this contradicts the
intransitivity of AR.

We denote by R(AR) the set of roots of AR, that is, R(AR) = {a | (a,A) ∈ AR}. For
an antichain A over the base set U , we say that S ⊆ U is a root set, if |S ∩ A| = 1 for
every A ∈ A, and such that every x ∈ S lies in some set of A. For such A and S we
can define an accordant corresponding rooted antichain AR(S) by setting the root of A
to a = A ∩ S, for every A ∈ A. Then S = R(AR(S)). On the other hand, R(AR) is a
root set for every accordant rooted antichain AR.

Lemma 28. An intransitive antichain is extremal if and only it has a root set.

Proof. By Lemma 27, an intransitive antichain is extremal if and only if it has correspond-
ing accordant rooted antichain. The statement of the lemma now follows by observing
that accordant rooted antichains trivially correspond to root sets.

We will prove NP-hardness of antichain extremality by polynomial reduction of 3-SAT
to this problem. Let us recall that 3-SAT is a problem of determining whether a given
boolean formula F in conjunctive normal form (CNF) with each clause containing exactly
three literals is satisfiable. Also, a boolean formula in CNF is a conjunction of clauses,
each clause is a disjunction of literals and each literal is either a variable or its negation.

We utilize simplified notation for partial valuations on the set of variables, for example
we write abc for a partial valuation that assigns True to a and c, and False to b. For a
clause cl (partial valuation α) we denote by V (cl) (by V (α)) the set of variables of cl
(of α). Thus, for a 3-SAT formula F , |V (cl)| = 3 for each clause cl of F .

For a partial valuation α and a variable x ∈ V (α) we denote by α(x) the value of α
on x, and we denote by x : α(x) the partial valuation that assigns value α(x) to variable x.
Thus, abc(b) = False and b : abc(b) = b. We say that a partial valuation α is compliant
with a complete valuation ϕ if α(x) = ϕ(x) for every x ∈ V (α).

Theorem 29. The problem of determining whether a given antichain is extremal is NP-
hard.
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Proof. Let F be a 3-CNF formula, V the set of its variables and C the set of its clauses,
each consisting of three literals. We are going to construct an antichain which is extremal
if and only if F is satisfiable.

For a clause cl let T (cl) be all 2|cl|−1 partial valuations of variables V (cl) that satisfy cl.
For example,

T (a ∨ ¬b ∨ c) = {abc, abc, abc, abc, abc, abc, abc}.

Let us construct the antichain AF . We use partial valuations, sometimes with indexes,
as elements of the base set U of AF , U = Uvar ∪ Ucl ∪ Ulink, where

Uvar = {x, x | x ∈ L};
Ucl = {α | α ∈ T (c), c ∈ C};

Ulink = {αv,i | i ∈ {1, 2}; v ∈ V (c), α ∈ T (c), c ∈ C}.

Intuitively, points in Uvar describe valuations of variables of F , and points in Ucl describe
values of clauses under given valuations.

The antichain AF consists of four parts, AF = Avar ∪ Acl ∪ A1
link ∪ A2

link where

Avar =
{
{x, x} | x ∈ L

}
;

Acl =
{
T (c) | c ∈ C

}
;

A1
link =

{
{α, αv,1, αv,2} | α ∈ T (c), v ∈ V (c)} | c ∈ C

}
;

A2
link =

{
{αv,2, v : α(v)} | c ∈ C, α ∈ T (c), v ∈ V (c)

}
.

For example, for the formula F ∗ = x ∨ y with two variables and a single clause,
corresponding base set U∗ and antichain A∗F look as follows:

U∗ = {x, x, y, y,xy, xyx,1, xyx,2, xyy,1, xyy,2, xy, xyx,1, xyx,2, xyy,1, xyy,2,
xy, xyx,1, xyx,2, xyy,1, xyy,2};

and

A∗var =
{
{x, x}, {y, y}

}
;

A∗cl =
{
{xy, xy, xy}};

A∗,1link =
{
{xy, xyx,1, xyx,2}, {xy, xyy,1, xyy,2},
{xy, xyx,1, xyx,2}, {xy, xyy,1, xyy,2},
{xy, xyx,1, xyx,2}, {xy, xyy,1, xyy,2}

}
;

A∗,2link =
{
{xyx,2, x}, {xyy,2, y}, {xyx,2, x}, {xyy,2, y}, {xyx,2, x}, {xyy,2, y}

}
.

Figure 1 below shows this exemplary antichain.
Thus constructed, antichain AF is polynomial with respect to the size of F , also, AF

is intransitive. We claim that AF is extremal if and only if F is satisfiable. By Lemma 28,
the latter is true if and only if there is a root set for A.
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Figure 1: Example of the antichain A∗F for F ∗ = x ∨ ¬y.

Suppose F is satisfiable, then there is some valuation ϕ, satisfying F . Let us define
set S ⊆ U as:

S ={α | α ∈ Uvar ∪ Ucl, α is compliant with ϕ}∪
{αv,2 | α ∈ Ulink, α(v) 6= ϕ(x)}∪
{αv,1 | α ∈ Ulink, α(v) = ϕ(x), α is not compliant with ϕ }.

We claim that S is a root set of AF . Obviously, for any {x, x} ∈ Avar, ϕ is compliant
with exactly one of x and x, thus S ∩ {x, x} = 1, for any variable x. For any clause c
of F , ϕ satisfies c, thus there is exactly one α ∈ T (c), compliant with ϕ and a unique
intersection of S with A = T (c), for any A ∈ Acl.

For any A = {α, αv,1, αv,2} ∈ A1
link, either α is compliant with ϕ and α ∈ S, or α is

not compliant with ϕ but α(v) = ϕ(x), in which case αv,1 ∈ S, or α(v) 6= ϕ(x), in which
case α is automatically not compliant with ϕ, and αv,2 ∈ S. Thus, there is a unique
intersection of S with A.

Finally, for any A = {αv,2, v : α(v)} ∈ A2
link, either ϕ(v) = α(v) and v : α(v) ∈ S, or

ϕ(v) 6= α(v), in which case αv,2 ∈ S.
Figure 2 below shows the rooted extremal antichain corresponding to our exemplary

formula F ∗ = x ∨ ¬y with root set S∗ constructed for valuation ϕ∗ = xy.
Conversely, let F be unsatisfiable, and let S be a root set for AF . Then for every

x ∈ V exactly one of x and x lies in S. Let us now define a complete valuation ϕ by
ϕ(x) = True if x ∈ S and ϕ(x) = False otherwise. As F is unsatisfiable, there is a clause
c ∈ C such that ϕ(c) = False.

Let α be a complete valuation of V (c), which is the root of T (c) ∈ A1
link. Then α

satisfies c and, consequently, α is not compatible with ϕ. Then there is a variable x ∈ V (c)
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Figure 2: Example of the rooted extremal antichain, corresponding to a valuation ϕ∗ = xy
for the formula F ∗ = x ∨ ¬y.

such that x : α(x) 6= ϕ(x), by the definition of ϕ this means that x : α(x) 6∈ S. But as S
has a common point with {αx,2, x : α(x)} ∈ A2

link, it follows αx,2 ∈ S. But then both αx,2

and α lie in S ∩ A for A = {α, αx,2, αx,2} ∈ A1
link, a contradiction.

Figure 3 below shows that a root set cannot be chosen for a valuation that falsifies
the only clause of F ∗.

Theorem 29 together with Lemma 26 prove NP-completeness of determining extremality
of an antichain.
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