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Abstract

In 1966, Gallai asked whether all longest paths in a connected graph share a
common vertex. Counterexamples indicate that this is not true in general. However,
Gallai’s question is positive for certain well-known classes of connected graphs, such
as split graphs, interval graphs, circular arc graphs, outerplanar graphs, and series-
parallel graphs. A graph is 2K2-free if it does not contain two independent edges
as an induced subgraph. In this short note, we show that, in nonempty 2K2-free
graphs, every vertex of maximum degree is common to all longest paths. Our
result implies that all longest paths in a nonempty 2K2-free graph have a nonempty
intersection. In particular, it strengthens the result on split graphs, as split graphs
are 2K2-free.

Mathematics Subject Classifications: 05C38

1 Introduction

All graphs considered in this paper are finite and simple. A path P in a graph G is a longest
path in G if there is no path in G strictly longer than P . In 1966 Gallai asked [5] whether
all longest paths in a connected graph have a vertex in common. In 1974, Walther [12]
gave a counterexample to the problem. As every hypo-traceable graph (i.e., a graph with
no Hamiltonian path where all vertex-deleted subgraphs admit a Hamiltonian path) is
clearly a counterexample, there are infinitely many counterexamples to the problem (see
Thomassen [11]).

In spite of the negative answer for general graphs, the answer to Gallai’s problem
when restricted to many classes of graphs is positive. Klavžar and Petkovšek [7] gave
an affirmative answer to Gallai’s question for connected split graphs and for cacti. An
affirmative answer for the class of connected circular-arc graphs was given by Balister
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Figure 1: A 3K2-free graph with a vertex of maximum degree not
belonging to every longest path.

et al. [1] (see also Joos [6]). A positive answer for connected outerplanar graphs and
2-trees was given by de Rezende et al. [4]. Recently, the second author with Chen et
al. [2] extended this result, giving a positive solution to Gallai’s problem for the class of
connected series-parallel graphs. For more information about Gallai’s problem and several
variations, see [10].

In this paper, we investigate the intersection of all longest paths in connected 2K2-
free graphs. A graph is 2K2-free if it contains no two independent edges as an induced
subgraph. The class of 2K2-free graphs is well studied, for instance, see [3, 8, 9]. It
contains the class of split graphs , where vertices can be partitioned into a clique and an
independent set. One can also easily check that every cochordal graph (i.e., a graph that
is the complement of a chordal graph) is 2K2-free and so the class of 2K2-free graphs is
at least as rich as the class of chordal graphs. In this note we prove the following.

Theorem 1. In a nonempty 2K2-free graph, every vertex of maximum degree is common
to all longest paths.

In particular, the answer to Gallai’s problem is positive for 2K2-free graphs. Theorem 1
also strengthens Klavžar and Petkovšek’s result for split graphs [7].

Corollary 2. If G is a nonempty split graph or cochordal graph, then every vertex of
maximum degree is common to all longest paths.

We note that Theorem 1 is best possible in terms of the number of copies of K2 in the
forbidden subgraph. Indeed, in connected 3K2-free graphs a vertex of maximum degree
does not necessarily belong to the intersection of all longest paths. For example, consider
the graph in Figure 1. It is 3K2-free; the top vertex is of maximum degree but does not
belong to the longest path passing through all the remaining vertices.

For a graph G we will denote by V (G) and E(G) the vertex set and edge set of G,
respectively. If uv ∈ E(G), we write u ∼ v to denote the adjacency of u and v. For two
disjoint subsets S, T ⊆ V (G), we denote by EG(S, T ) the set of edges of G with one end
in S and the other in T . If u ∈ V (G), we denote by NG(u) the set of neighbors of u in G.
If G is clear from the context, we omit the subscript G and write E(S, T ) and N(u).
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2 Proof of Theorem 1

In this section we prove Theorem 1. We will need the following three lemmas. A path P
in a graph G is dominating if G− V (P ) is edgeless.

Lemma 3. Let G be a 2K2-free graph. Then every longest path in G is dominating.

Proof. Let P = v0v1 · · · v` be a longest path in G. Assume by contradiction that P is
not dominating. Then there exists an edge uv ∈ E(G) such that u, v /∈ V (P ). Since G
is 2K2-free, there must be an edge e′ in G which connects the edge uv to the edge v0v1.
Without loss of generality, we can assume that e′ connects v to either v0 or v1. If e′ = vv0
then uvv0v1 · · · v` is a path in G longer than P . If e′ = vv1 then uvv1 · · · v` is a path in G
longer than P .

The proof of the following lemma follows from standard arguments.

Lemma 4. Let G be a graph. Let P = v0v1 · · · v` be a longest path in G and let x be a
vertex of G which does not belong to P . Then the following assertions hold.

(1) The vertex x is not adjacent to the endpoints v0 and v` of P .

(2) The vertex x does not have two neighbors which are consecutive vertices vi, vi+1

on P .

(3) If va is a neighbor of x then v0 is not adjacent to va+1.

(4) If va and vb are distinct neighbors of x then va+1 is not adjacent to vb+1.

The following lemma was proved in [3, Theorem 1].

Lemma 5. Let G be a nonempty 2K2-free graph and let S ⊆ V (G) be an independent set.
Let T ⊆ V (G)− S. Then there exists y ∈ T such that N(y) meets all edges in E(S, T ).

Proof of Theorem 1. Let G be a nonempty 2K2-free graph and let P = v0v1 · · · v` be a
longest path in G. Assume that x ∈ V (G) is a vertex of maximum degree in G which
does not belong to P . Let k = d(x) = ∆(G). By Lemma 3, N(x) ⊆ V (P ). Let

S = {v0, va+1 | va ∈ N(x)} ⊆ V (P ).

By (3) and (4) of Lemma 4, S is an independent set. Let T = V (P )− S. By (1) and (2)
of Lemma 4, V (P ) contains at least 2k + 1 vertices. The set {vava+1 | va ∈ N(x)} is a set
of k independent edges in E(S, T ) (i.e., k edges which pairwise do not share an endpoint).

We claim that if |V (P )| > 2k + 2 then there are k + 1 independent edges in E(S, T ).
Indeed, the k neighbors of x separate P into k+1 non-trivial subpaths (see Lemma 4(1)).
By the pigeonhole principle one of these subpaths contains at least two vertices in V (P )−
N(x). If v0 is an endpoint of this subpath, then v0, v1 /∈ N(x) and

{v0v1, vava+1 | va ∈ N(x)} ⊆ E(S, T )
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is an independent subset of k + 1 edges. If v` is an endpoint of this subpath then

{v0v1, va+1va+2 | va ∈ N(x)} ⊆ E(S, T )

is an independent subset of size k + 1. Thus, we can assume that the endpoints of this
subpath are vp, vq ∈ N(x) for some p < q in {1, . . . , `− 1}. Then

{v0v1} ∪ {va+1va+2 | a 6 p, va ∈ N(x)} ∪ {vbvb+1 | b > q, vb ∈ N(x)} ⊆ E(S, T )

is a set of k + 1 independent edges.
Now, by Lemma 5, there is a vertex y ∈ T such that N(y) meets all edges in E(S, T ). If

|V (P )| > 2k+2, then y has at least k+1 neighbors in V (P ) = S∪T since E(S, T ) contains
an independent set of k + 1 edges. Then d(y) > k + 1 > k = ∆(G), a contradiction. If
|V (P )| = 2k + 1 then T = N(x). Indeed, the disjoint union S ∪ N(x) ⊆ V (P ) and
|S| = k + 1, |N(x)| = k. Hence N(x) = V (P ) − S = T . In particular, in that case,
y ∈ N(x). Since N(y) meets all edges in E(S, T ) and E(S, T ) contains an independent
set of k edges, y has at least k neighbors in V (P ). Since x is also a neighbor of y we have
d(y) > k + 1 > k = ∆(G), a contradiction.
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[12] H. Walther. Über die Nichtexistenz eines Knotenpunktes, durch den alle längsten
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