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Abstract

Gessel conjectured that the two-sided Eulerian polynomial, recording the com-
mon distribution of the descent number of a permutation and that of its inverse,
has non-negative integer coefficients when expanded in terms of the gamma basis.
This conjecture has been proved recently by Lin.

We conjecture that an analogous statement holds for simple permutations, and
use the substitution decomposition tree of a permutation (by repeated inflation) to
show that this would imply the Gessel-Lin result. We provide supporting evidence
for this stronger conjecture.

Mathematics Subject Classifications: 05A05, 05A15

1 Introduction

Eulerian numbers enumerate permutations according to their descent numbers. The two-
sided Eulerian numbers, studied by Carlitz, Roselle, and Scoville [6] constitute a natural
generalization. These numbers count permutations according to their number of descents
as well as the number of descents of the inverse permutation.

Explicitly, the descent set of a permutation π ∈ Sn is defined as:

Des(π) = {i ∈ [n− 1] | π(i) > π(i+ 1)}.
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Denote des(π) = |Des(π)| and ides(π) = des(π−1), the descent numbers of π and π−1.
For example, if π = 246135 then Des(π) = {3}, des(π) = 1, Des(π−1) = {1, 3, 5} and
ides(π) = 3.

A polynomial f(q) is palindromic if its coefficients are the same when read from left to
right as from right to left. Explicitly, if f(q) = arq

r + ar+1q
r+1 + · · ·+ asq

s with ar, as 6= 0
and r 6 s, then we require ar+i = as−i (∀i); equivalently, f(q) = qr+sf(1/q). Following
Zeilberger [17], we define the darga of f(q) as above to be r+s; the zero polynomial is con-
sidered to be palindromic of each nonnegative darga. The set of palindromic polynomials
of darga n− 1 is a vector space of dimension b(n+ 1)/2c, with gamma basis

{qj(1 + q)n−1−2j | 0 6 j 6 b(n− 1)/2c}.

The (one-sided) Eulerian polynomial

An(q) =
∑
π∈Sn

qdes(π)

is palindromic of darga n− 1, and thus there are real numbers γn,j such that

An(q) =
∑

06j6b(n−1)/2c

γn,jq
j(1 + q)n−1−2j.

See [12, pp. 72, 78] for details. Foata and Schützenberger [7] proved that the coeffi-
cients γn,j are actually non-negative integers. The result of Foata and Schützenberger
was reproved combinatorially, using an action of the group Zn2 on Sn which leads to an
interpretation of each coefficient γn,j as the number of orbits of a certain type. This
method, called “valley hopping”, is described in [8, 4]. A nice exposition appears in [11].

Now let An(s, t) be the two-sided Eulerian polynomial

An(s, t) =
∑
π∈Sn

sdes(π)tides(π).

It is well known (see, e.g., [11, p. 167]) that the bivariate polynomial An(s, t) satisfies

An(s, t) = (st)n−1An(1/s, 1/t) (1)

as well as
An(s, t) = An(t, s). (2)

In fact, (1) follows from the bijection from Sn onto itself taking a permutation to its
reverse, while (2) follows from the bijection taking each permutation to its inverse.

A bivariate polynomial satisfying Equations (1) and (2) will be called (bivariate) palin-
dromic of darga n− 1. Note that if we arrange the coefficients of a bivariate palindromic
polynomial in a matrix, then this matrix is symmetric with respect to both diagonals.
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Example 1. The two-sided Eulerian polynomial for S4 is:

A4(s, t) = 1 + 10st+ 10(st)2 + (st)3 + st2 + s2t.

Its matrix of coefficients is 
1 0 0 0
0 10 1 0
0 1 10 0
0 0 0 1

 ,

and is clearly symmetric with respect to both diagonals.

It can be proved (see [12, p. 78]) that the set of bivariate palindromic polynomials of
darga n− 1 is a vector space of dimension b(n+ 1)/2c · b(n+ 2)/2c, with bivariate gamma
basis

{(st)i(s+ t)j(1 + st)n−1−j−2i | i, j > 0, 2i+ j 6 n− 1}.

A bivariate palindromic polynomial is called gamma-positive if all the coefficients in its
expression in terms of the bivariate gamma basis are nonnegative. Gessel (see [4, Conjec-
ture 10.2]) conjectured that the two-sided Eulerian polynomial An(s, t) is gamma-positive.
This has recently been proved by Lin [10]. Explicitly:

Theorem 2. (Gessel’s conjecture, Lin’s theorem) For each n > 1 there exist nonnegative
integers γn,i,j (i, j > 0, 2i+ j 6 n− 1) such that

An(s, t) =
∑
i,j

γn,i,j(st)
i(s+ t)j(1 + st)n−1−j−2i.

An explicit recurrence for the coefficients γn,i,j was described by Visontai [15]. This
recurrence does not directly imply the positivity of the coefficients, but Lin [10] man-
aged to use it to eventually prove Gessel’s conjecture. Unlike the univariate case, no
combinatorial proof of Gessel’s conjecture is known.

Simple permutations (for their definition see Section 2) serve as building blocks of all
permutations. We propose here a strengthening of Gessel’s conjecture, for the class of
simple permutations.

Conjecture 3. For each positive n, the bivariate polynomial

simpn(s, t) =
∑

σ∈Simpn

sdes(σ)tides(σ)

is gamma-positive, where Simpn is the set of simple permutations of length n.

Using the substitution decomposition tree of a permutation (by repeated inflation), we
show how this cojecture implies the Gessel-Lin result. A combinatorial proof of the conjec-
ture will give a combinatorial proof of the Gessel-Lin result. We also provide supporting
evidence for this stronger conjecture.
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The rest of the paper is organized as follows. Section 2 contains background material
concerning simple permutations, inflation, and the substitution decomposition tree of a
permutation. In Section 3 we introduce combinatorial involutions on the tree, and use
them to give a combinatorial proof of Gessel’s conjecture for a certain class of permu-
tations, H(5) ∩ Sn. In Section 4 we show how, more generally, Lin’s theorem (Gessel’s
conjecture) follows combinatorially from Conjecture 3. Finally, in Section 5, we give a
formula for simpn(s, t) which may have independent value.

2 Simple permutations and inflation

We start by presenting some preliminaries concerning simple permutations, inflation and
the substitution decomposition tree. Original papers will be mentioned occasionally, but
terminology and notation will follow (with a few convenient exceptions) the recent sur-
vey [14].

Definition 4. Let π = a1 . . . an ∈ Sn. A block (or interval) of π is a nonempty contiguous
sequence of entries aiai+1 . . . ai+k whose values also form a contiguous sequence of integers.

Example 5. If π = 2647513 then 6475 is a block but 64751 is not.

Each permutation can be decomposed into singleton blocks, and also forms a single
block by itself; these are the trivial blocks of the permutation. All other blocks are called
proper.

Definition 6. A permutation is simple if it has no proper blocks.

Example 7. The permutation 3517246 is simple.

The simple permutations of length n 6 2 are 1, 12 and 21. There are no simple
permutations of length n = 3. Those of length n = 4 are 2413 and its inverse (which is
also its reverse). For length n = 5 they are 24153, 41352, their reverses and their inverses
(altogether 6 permutations).

Definition 8. A block decomposition of a permutation is a partition of it into disjoint
blocks.

For example, the permutation σ = 67183524 can be decomposed as 67 1 8 3524. In
this example, the relative order between the blocks forms the permutation 3142, i.e., if
we take for each block one of its digits as a representative then the set of representatives
is order-isomorphic to 3142. Moreover, the block 67 is order-isomorphic to 12, and the
block 3524 is order-isomorphic to 2413. These are instances of the concept of inflation,
defined as follows.

Definition 9. Let n1, . . . , nk be positive integers with n1 + . . . + nk = n. The inflation
of a permutation π ∈ Sk by permutations αi ∈ Sni

(1 6 i 6 k) is the permutation
π[α1, . . . , αk] ∈ Sn obtained by replacing the i-th entry of π by a block which is order-
isomorphic to the permutation αi on the numbers {si+1, . . . , si+ni} instead of {1, . . . , ni},
where si = n1 + . . .+ ni−1 (1 6 i 6 k).
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Example 10. The inflation of 2413 by 213, 21, 132 and 1 is

2413[213, 21, 132, 1] = 546 98 132 7.

A very important fact is that inflation is additive on both des and ides.

Observation 11. Let σ = π[α1, . . . , αk]. Then

des(σ) = des(π) +
n∑
i=1

des(αi)

and

ides(σ) = ides(π) +
n∑
i=1

ides(αi).

Two special cases of inflation, deserving special attention, are the direct sum and skew
sum operations, defined as follows.

Definition 12. Let π ∈ Sm and σ ∈ Sn. The direct sum of π and σ is the permutation
π ⊕ σ ∈ Sm+n defined by

(π ⊕ σ)i =

{
πi, if i 6 m;

σi−m +m, if i > m,

and their skew sum is the permutation π 	 σ ∈ Sm+n defined by

(π 	 σ)i =

{
πi + n, if i 6 m;

σi−m, if i > m.

Example 13. If π = 132 and σ = 4231 then π ⊕ σ = 1327564 and π 	 σ = 5764231

Note that π ⊕ σ = 12[π, σ] and π 	 σ = 21[π, σ].

Definition 14. A permutation is sum-indecomposable (respectively, skew-indecomposable)
if it cannot be written as a direct (respectively, skew) sum.

The following proposition shows that every permutation has a canonical representation
as an inflation of a simple permutation.

Proposition 15. [2, Theorem 1][14, Proposition 3.10] Let σ ∈ Sn (n > 2). Then there
exist a unique integer k > 2, a unique simple permutation π ∈ Sk, and a sequence of
permutations α1, . . . , αk such that

σ = π[α1, . . . , αk].

If π /∈ {12, 21} then α1, . . . , αk are also unique.
If π = 12 (π = 21) then α1, α2 are unique as long as we require, in addition, that α2

is sum-indecomposable (respectively, skew-indecomposable).
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Example 16. The permutation σ = 452398167 can be written as an inflation of the
simple permutation 2413:

σ = 2413[3412, 21, 1, 12].

Remark 17. The additional requirements for π = 12 and π = 21 are needed for uniqueness
of the expression. To see that, note that the permutation 123 can be written as 12[12, 1] =
12 3 but also as 12[1, 12] = 1 23. The first expression is the one preferred above (with α2

sum-indecomposable).

One can continue the process of decomposition by inflation for the constituent permu-
tations αi, recursively, until all the resulting permutations have length 1. In the example
above, 3412 can be further decomposed as 3412 = 21[12, 12], so that

σ = 2413[21[12, 12], 21, 1, 12]

and, eventually,
σ = 2413[21[12[1, 1], 12[1, 1]], 21[1, 1], 1, 12[1, 1]].

This information can be encoded by a tree, as follows.

Definition 18. Represent each permutation σ by a corresponding substitution decompo-
sition tree Tσ, recursively, as follows.

• If σ = 1 ∈ S1, represent it by a tree with one node.

• Otherwise, write σ = π[α1, . . . , αk] as in Proposition 15, and represent σ by a tree
with a root node, labeled π, having k ordered children corresponding to α1, . . . , αk.
Replace each child αi by the corresponding tree Tαi

.

Example 19. Figure 1 depicts the substitution decomposition tree Tσ for σ = 452398167.
For clarity, the leaves are labeled by the corresponding values of the permutation σ, instead
of simply 1.

Inflation can be extended to sets of permutations (an operation called wreath product
in [3]).

Definition 20. Let A and B be sets of permutations. Define

A[B] = {α[β1, . . . , βk] | α ∈ A, β1, . . . , βk ∈ B}.

Example 21. Let A = {12} and B = {21, 132}. Then

A[B] = {2143, 21354, 13254, 132465}.

Definition 22. A set C of permutations is substitution-closed if C = C[C]. The sub-
stitution closure 〈C〉 of a set C of permutations is the smallest substitution-closed set of
permutations which contains C.
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Figure 1: The tree Tσ for σ = 452398167

The inflation operation is associative. Defining C1 = C and Cn+1 = C[Cn], we clearly
have

〈C〉 =
∞⋃
n=1

Cn.

Definition 23. For a positive integer n, let Simpn (Simp6n) be the set of all simple
permutations of length n (respectively, of length at most n). Let H(n) = 〈Simp6n〉, the
substitution closure of Simp6n.

Example 24. H(2) = 〈Simp62〉 = 〈{1, 12, 21}〉 is the set of all permutations that can be
obtained from the trivial permutation 1 by direct sums and skew sums. These are exactly
the separable permutations, counted by the large Schröder numbers; see [16]. Separable
permutations can also be described via pattern avoidance, namely

H(2) = Av(3142, 2413).

For more details see [5, following Proposition 3.2].

3 Gamma-positivity for H(5)

In this section we present a combinatorial proof of Gessel’s conjecture (Lin’s theorem) for
the subset H(5) ∩ Sn of Sn (for any positive n).

Fu, Lin and Zeng [9] proved the following (univariate) gamma-positivity result.

Proposition 25. For each n there exist nonnegative integers γn,k (0 6 k 6 b(n− 1)/2c)
such that ∑

π∈H(2)∩Sn

tdes(π) =

b(n−1)/2c∑
k=0

γn,kt
k(1 + t)n−1−2k
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By Observation 11, if π ∈ H(2) then des(π) = ides(π). Hence, one can conclude the
following restricted version of Gessel’s conjecture for the set of separable permutations.

Theorem 26. For each n there exist non-negative integers γn,k (0 6 k 6 b(n − 1)/2c)
such that:

∑
π∈H(2)∩Sn

sdes(π)tides(π) =
∑

π∈H(2)∩Sn

(st)des(π) =

b(n−1)/2c∑
k=0

γn,k(st)
k(1 + st)n−1−2k.

In order to extend Theorem 26 further, let us introduce some more definitions.

Definition 27. Let T be a tree with all internal nodes labeled by simple permutations.
A binary right chain (BRC) is a maximal nonempty chain composed of consecutive right
descendants, all of which are from the set {12, 21}. The length of a BRC is the number
of nodes in it. Denote by rodd(T ) the number of BRC of odd length in T .

Example 28. The tree Tσ in Figure 1 has 4 BRC, and rodd(Tσ) = 3.

Definition 29. A tree T is called a G-tree if it satisfies:

1. Each leaf is labeled by 1.

2. Each internal node is labeled by a simple permutation (6= 1), and the number of its
children is equal to the length of the permutation.

3. The labels in each BRC alternate between 12 and 21.

Denote by GT n the set of all G-trees with n leaves.

Lemma 30. The map fn : Sn → GT n sending each permutation σ to its substitution
decomposition tree Tσ, as in Definition 18, is a bijection.

Proof. Follows immediately from Proposition 15. The last condition in Definition 29
reflects the extra restrictions for the cases π ∈ {12, 21} in Proposition 15.

Let T = Tπ be a G-tree, and let {Ci | 1 6 i 6 rodd(T )} be the set of all BRC of
odd length in T . For each i, let φi(T ) be the tree obtained from T by switching 12 and
21 in each of the nodes of Ci. (A similar action was introduced in [9] for univariate
polynomials.) Clearly, each operator φi is an involution, and the various φi commute. By
Observation 11, each φi changes both des(π) and ides(π) by ±1.

Example 31. Consider π = 6713254. The corresponding tree T = Tπ appears on the
left side of Figure 2, and has rodd(T ) = 2. If C1 is the unique BRC of length 3 in T , then
φ1(T ) is the tree on the right side of the figure. The permutation corresponding to φ1(T )
is 1257634. Note that φ1 decreased both des(π) and ides(π) by 1.
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12 12

12 21

21

12

12 21

12 12

21

Figure 2: Left: the tree T . Right: The tree φ1(T ).

Let T = Tπ be a G-tree, and let l1, . . . , lk be the labels of nodes in T that belong to
the set Simp4 = {2413, 3142}. Define ψj(T ) (1 6 j 6 k) to be the tree obtained from T
by switching the label lj from 2413 to 3142, or vice versa. Again, it is easy to see that
the ψj are commuting involutions, and each ψj commutes with each φi. Switching from
2413 to 3142 increases des(π) by 1 while decreasing ides(π) by 1.

Remark 32. Each of the 6 simple permutations π ∈ Simp5 has des(π) = ides(π) = 2, and
we don’t need to define involutions for them.

Definition 33. For any two G-trees T1 and T2, write T1 ∼ T2 if T2 can be obtained from
T1 by a sequence of applications of the involutions φi and ψj.

Clearly ∼ is an equivalence relation, partitioning the set GT n (equivalently, the group
Sn) into equivalence classes.

Definition 34. For each equivalence class in GT n, let T0 be the unique tree in this class
in which each odd BRC begins with 12 and each node representing a simple permutation
of length 4 is labeled 2413. The corresponding permutation π0 has the minimal number
of descents in its class. The tree T0 and the permutation π0 are called the minimal
representatives of their equivalence class.

Lemma 35. Let A be an equivalence class of permutations in H(5) ∩ Sn. There exist
nonnegative integers i and j such that∑

σ∈A

sdes(σ)tides(σ) = (st)i(s+ t)j(1 + st)n−1−2i−j.

Proof. Let π0 be the minimal representative of A, and let T0 = Tπ0 . For i ∈ {2, 4, 5}, let
vi be the number of nodes of T0 having labels of length i. Since T0 has exactly n leaves,
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its total number of nodes (including leaves) is

v = n+ v2 + v4 + v5.

On the other hand, counting the children of each node gives

v − 1 =
∑

i∈{2,4,5}

ivi.

It follows that
n− 1 = v2 + 3v4 + 4v5.

Let r = rodd(T0) be the number of odd BRC in T0, and let d2 be the number of nodes
labeled 21. By definition, each BRC alternates between 12 and 21 and each odd BRC in
T0 starts with 12. It follows that

v2 = 2d2 + r,

so that
n− 1 = r + 2d2 + 3v4 + 4v5. (3)

Now recall that des(12) = ides(21) = 0, des(21) = ides(21) = 1, des(2413) = 1,
ides(2413) = 2, des(3142) = 2, ides(3142) = 1, and for each simple permutation σ of
length 5 we have des(σ) = ides(σ) = 2. it follows from Observation 11 that

des(π0) = d2 + v4 + 2v5

and
ides(π0) = d2 + 2v4 + 2v5,

so that the bivariate monomial corresponding to π0 is

sdes(π0)tides(π0) = (st)d2+v4+2v5tv4 .

Consider now the whole equivalence class A, whose elements are obtained from π0 by
applications of the commuting involutions φ1, . . . , φr and ψ1, . . . , ψk, where r = rodd(T0)
is the number of BRC in T0 and k = v4. Each application of φi multiplies the monomial
by st, and each application of ψj multiplies it by st−1. It follows that∑

σ∈A

sdes(σ)tides(σ) = (st)d2+v4+2v5tv4(1 + st)r(1 + st−1)v4

= (st)d2+v4+2v5(s+ t)v4(1 + st)r.

Denoting i = d2 + v4 + 2v5 and j = v4 will complete the proof, once we show that

2(d2 + v4 + 2v5) + v4 + r = n− 1;

but this follows immediately from equation (3) above.

Lemma 35 immediately implies one of the main results of this paper:

Theorem 36. For each n > 1, the polynomial∑
σ∈H(5)∩Sn

sdes(σ)tides(σ)

is gamma-positive.
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4 Gamma-positivity for simple permutations

For each positive integer n, the set Simpn of simple permutations of length n is invariant
under taking inverses and reverses. It follows that the bivariate polynomial

simpn(s, t) =
∑

σ∈Simpn

sdes(σ)tides(σ)

is palindromic, and can be expanded in the gamma basis. Conjecture 3, presented in the
Introduction, states that this polynomial is, in fact, gamma-positive. The main result of
this section is the following.

Theorem 37. Conjecture 3 implies Gessel’s conjecture (Lin’s theorem), Theorem 2.

Proof. For each permutation σ of length n > 2, consider its substitution decomposition
tree Tσ. Each internal node of Tπ is labeled by some simple permutation π of length
` = `(π) > 2. Replace π by `, to obtain a simplified tree T ′σ (with internal nodes labeled
by numbers). For permutations σ1, σ2 ∈ Sn define σ1 ∼ σ2 if T ′σ1 = T ′σ2 . Clearly ∼
is an equivalence relation on Sn, with each equivalence class corresponding to a unique
simplified tree T ′. Denote such a class by A(T ′).

Define a BRC of T ′ (in analogy to Definition 27) to be a maximal nonempty chain of
consecutive right descendants, all labeled 2. How can we recover a permutation σ ∈ A(T ′)
from the tree T ′? Each internal node, labeled by a number `, can be relabeled by any
simple permutation of length `, with the single restriction that the labels in each BRC
must alternate between 12 and 21, starting with either of them. It thus follows, by
Observation 11, that for each simplified tree T ′, the polynomial∑

σ∈A(T ′)

sdes(σ)tides(σ)

is a product of factors, as follows:

• Each internal node with label ` > 4 contributes a factor simp`(s, t).

• Each BRC of even length 2k contributes a factor 2(st)k.

• Each BRC of odd length 2k + 1 contributes a factor (st)k(1 + st).

By Conjecture 3, all those factors are gamma-positive, and so is their product. Sum-
ming over all equivalence classes in Sn completes the proof.

It is clear from the arguments above that a combinatorial proof of Conjecture 3
will immediately yield a combinatorial proof of Theorem 2. In fact, the preceding sec-
tion contains such a combinatorial proof assuming there are only labels ` 6 5, using
simp4(s, t) = st(s + t) and simp5(s, t) = 6(st)2. We were unable to extend the combina-
torial arguments to length 6, although the corresponding polynomial is indeed gamma-
positive:

simp6(s, t) = st(s+ t)2(1 + st) + 5(st)2(1 + st) + 14(st)2(s+ t).

In fact, Conjecture 3 has been verified by computer for all n 6 12.
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5 The bi-Eulerian polynomial for simple permutations

In [2], the ordinary generating function for the number of simple permutations was shown
to be very close to the functional inverse of the corresponding generating function for all
permutations. In this section we refine this result by considering also the parameters des
and ides, thus obtaining a formula for simpn(s, t).

Recall from Definition 14 the notions of sum-indecomposable and skew-indecomposable
permutations.

Definition 38. For each positive integer n, denote by I+n (respectively, I−n ) the set of all
sum-indecomposable (respectively, skew-indecomposable) permutations in Sn.

Definition 39. Let

F (x, s, t) :=
∞∑
n=1

(∑
π∈Sn

sdes(π)tides(π)

)
xn,

I+(x, s, t) :=
∞∑
n=1

∑
π∈I+n

sdes(π)tides(π)

xn,

I−(x, s, t) :=
∞∑
n=1

∑
π∈I−n

sdes(π)tides(π)

xn,

S(x, s, t) :=
∞∑
n=4

 ∑
π∈Simpn

sdes(π)tides(π)

xn.

Note that the summation in the definition of S(x, s, t) is only over n > 4. We want to
find relations between these generating functions.

From now on, we consider F (x, s, t) etc. as formal power series in x, with coefficients
in the field of rational functions Q(s, t). We therefore use the short notation F (x), or even
F . For example, the composition S ◦ F means that F is substituted as the x variable of
S(x, s, t). By Proposition 15 and Observation 11,

F = x+ I+F + stI−F +
∞∑
n=4

simpn F
n

= x+ I+F + stI−F + S ◦ F

and similarly
I+ = x+ stI−F + S ◦ F

and
I− = x+ I+F + S ◦ F.
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Rearranging, we have

FI+ + stFI− + (S ◦ F + x) = F

−I+ + stFI− + (S ◦ F + x) = 0

FI+ − I− + (S ◦ F + x) = 0

This is a system of linear equations in I+, I− and S ◦ F + x. Its unique solution is

I+ =
F

1 + F

I− =
F

1 + stF

S ◦ F + x =
F (1− stF 2)

(1 + F )(1 + stF )

(4)

Note that the reversal map π 7→ π′, defined by π′(i) = n − 1 − π(i) (1 6 i 6 n), is a
bijection from Sn onto itself (and also from I+n onto I−n ), satisfying des(π′) = n−1−des(π)
and ides(π′) = n− 1− ides(π). Therefore:

F (x, s, t) =
1

st
F (xst, 1/s, 1/t)

I−(x, s, t) =
1

st
I+(xst, 1/s, 1/t).

This agrees with the first two equations in (4). Denoting u = F (x), the third equation in
(4) gives an explicit expression for S(u, s, t):

S(u, s, t) = −F 〈−1〉(u) +
u(1− stu2)

(1 + u)(1 + stu)
,

where x = F 〈−1〉(u) is the functional inverse of u = F (x). Further manipulations with
partial fractions give the following.

Proposition 40.

S(u, s, t) = −F 〈−1〉(u) +
u

1 + stu
+

u

1 + u
− u. (5)

Using the expansions

S(u, s, t) =
∑
n>4

simpn(s, t)un

and
F 〈−1〉(u) =

∑
n>1

f 〈−1〉n (s, t)un,

we finally obtain a formula for simpn(s, t).

Corollary 41.

simpn(s, t) = −f 〈−1〉n (s, t) + (−1)n−1 + (−st)n−1 (n > 4).
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Lecture notes in Math., Vol. 138, Springer-Verlag, Berlin, (1970).

[8] D. Foata and V. Strehl, Rearrangements of the symmetric group and enumerative
properties of the tangent and secant numbers, Math. Z. 137 (1974), 257–264.

[9] S. Fu, Z. Lin and J. Zeng, Two new unimodal descent polynomials,
arXiv:1507.05184v1 [math.CO].

[10] Z. Lin, Proof of Gessel’s γ-positivity conjecture, Electron. J. Comb. 23(3) (2016),
#P3.15.

[11] T. K. Petersen, Two sided Eulerian Numbers via balls in boxes, Math. Mag. 86 (2013)
159–176.

[12] T. K. Petersen, Eulerian numbers, Birkhauser, Basel, (2015).

[13] L. Shapiro, W.-J. Woan and S. Getu, Runs, slides, and moments, SIAM J. Algebraic
Discrete Methods 4 (1983), 459–466.

[14] V. Vatter, Permutation classes, in: Handbook of Combinatorial Enumeration (M.
Bona, ed.), CRC Press (2015), pp. 753–833.

[15] M. Visontai, Some remarks on the joint distribution of descents and inverse descents,
Electron. J. Comb. 20(1) (2013), #P52.

[16] J. West, Generating trees and the Catalan and Schröder numbers, Discrete Math.
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