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Abstract

A (k1 + ko)-bispindle is the union of ki (x,y)-dipaths and ks (y, x)-dipaths, all
these dipaths being pairwise internally disjoint. Recently, Cohen et al. showed
that for every (1, 1)- bispindle B, there exists an integer k such that every strongly
connected digraph with chromatic number greater than k contains a subdivision
of B. We investigate generalizations of this result by first showing constructions
of strongly connected digraphs with large chromatic number without any (3,0)-
bispindle or (2,2)-bispindle. We then consider (2,1)-bispindles. Let B(ki, k2; k3)
denote the (2, 1)-bispindle formed by three internally disjoint dipaths between two
vertices x,y, two (z,y)-dipaths, one of length k; and the other of length k9, and one
(y, x)-dipath of length k3. We conjecture that for any positive integers ki, ko, k3,
there is an integer g(ki, k2, ks) such that every strongly connected digraph with
chromatic number greater than g(kq, ke, k3) contains a subdivision of B(k1, k2; k3).
As evidence, we prove this conjecture for ks = 1 (and kq, k3 arbitrary).

Mathematics Subject Classifications: 05C15, 05C20
1 Introduction

Throughout this paper, a proper colouring of a digraph is a proper colouring of its un-
derlying graph. Similarly, the chromatic number of a digraph D, denoted by x(D), is the
chromatic number of its underlying graph. In a digraph D, a dipath is an oriented path
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where all the arcs are oriented in the same direction, from the initial vertex towards the
terminal vertex.
A classical result due to Gallai, Hasse, Roy and Vitaver is the following.

Theorem 1 (Gallai [10], Hasse [11], Roy [13], Vitaver [14]). If x(D) > k, then D contains
a dipath of order k.

This raises the following question.

Question 2. Which digraphs are subdigraphs of all digraphs with large chromatic num-
ber?

A famous theorem by Erdés [9] states that there exist graphs with arbitrarily high girth
and arbitrarily large chromatic number. This means that if H is a digraph containing
an oriented (non necessarily directed) cycle, there exist digraphs with arbitrarily high
chromatic number with no subdigraph isomorphic to H. Thus the only possible candidates
to generalize Theorem 1 are the oriented trees that are orientations of trees. Burr [6]
proved that every (k — 1)2-chromatic digraph contains every oriented tree of order k and
made the following conjecture.

Conjecture 3 (Burr [6]). For a digraph D, if x(D) > (2k — 2), then D contains a copy
of any oriented tree T' of order k.

The best known upper bound, due to Addario-Berry et al. 2], is in (k/2)?. However, for
oriented paths with two blocks (blocks are maximal directed subpaths), the best possible
upper bound is known.

Theorem 4 (Addario-Berry et al. [1]). Let P be an oriented path with two blocks on
n > 3 vertices, then every digraph with chromatic number (at least) n contains P.

The following celebrated theorem of Bondy shows that the story does not stop here.

Theorem 5 (Bondy [4]). Every strongly connected digraph of chromatic number at least
k contains a directed cycle of length at least k.

The strong connectivity assumption is indeed necessary, as transitive tournaments
contain no directed cycle but can have arbitrarily high chromatic number.

Observe that a directed cycle of length at least k& can be seen as a subdivision of ék,
the directed cycle of length k. Recall that a subdivision of a digraph F'is a digraph that
can be obtained from F' by replacing each arc (u,v) by a dipath from u to v. Cohen et
al. [8] conjecture that Bondy’s theorem can be extended to all oriented cycles.

Conjecture 6 (Cohen et al. [8]). For every oriented cycle C|, there exists a constant
f(C) such that every strong digraph with chromatic number at least f(C) contains a
subdivision of C'.

The strongly connected connectivity assumption is also necessary in Conjecture 6 as
shown by Cohen et al. [8]. This follows from the following result.
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Theorem 7 (Cohen et al. [8]). For any positive integers b and k, there exists an acyclic
digraph Dy, such that any cycle in Dy has at least b blocks and x(Dyyp) > k.

On the other hand, Cohen et al. [8] proved Conjecture 6 for cycles with two blocks
and the antidirected cycle of length 4. More precisely, denoting by C'(k, ¢) the cycle with
two blocks, one of length k£ and the other of length ¢, they proved the following result.

Theorem 8 (Cohen et al. [8]). For every two positive integers k and {, every strongly
connected digraph with chromatic number at least O((k + £)*) contains a subdivision of

C(k, 0).

The bound has recently been improved to O((k + £)?) by Kim et al. [12].

A p-spindle is the union of p internally disjoint (x,y)-dipaths for some vertices = and
y. Vertex x is said to be the tail of the spindle and y its head. A (p + q)-bispindle is the
internally disjoint union of a p-spindle with tail x and head y and a g-spindle with tail y
and head z. In other words, it is the union of p (z,y)-dipaths and ¢ (y, x)-dipaths, all of
these dipaths being pairwise internally disjoint. Note that 2-spindles are the cycles with
two blocks and the (1 + 1)-bispindles are the directed cycles.

In this paper, we study the existence of spindles and bispindles in strongly connected
digraphs with large chromatic number. First, let us give a construction of digraphs with
arbitrarily large chromatic number that contain no 3-spindle and no (2 + 2)-bispindle.

Theorem 9. For every positive integer k, there exists a strongly connected digraph D
with x(D) > k that contains no 3-spindle and no (2 + 2)-bispindle.

Proof. Let Dy 4 be an acyclic digraph with chromatic number greater than £ in which
every cycle has at least four blocks. The existence of such a digraph is given by Theorem
7. Let S = {s1,..., s} be the set of vertices of Dy 4 with out-degree 0 and 7" = {t1, ...t}
the set of vertices with in-degree 0.

Consider the digraph D obtained from Dy 4 as follows. Add to Dy, a dipath P =
(1, %2, ..., X1, 2, Y1, Y2, - - -, Ym) and the arcs (s;, x;) for all ¢ € [I] and (y;, t;) for all j € [m].
It is easy to see that D is strongly connected. Moreover, in D, every directed cycle uses
the arc (z;, z). Therefore D does not contain a (2+2)-bispindle, which has two arc-disjoint
directed cycles.

Suppose now that D has a 3-spindle with tail u and head v, and let @)1, )2, @3 be its
three (u,v)-dipaths. Observe that u and v are not vertices of P, because all vertices of
this dipath have either in-degree at most 2 or out-degree at most 2. In D, each oriented
cycle with two blocks between vertices outside P must use the arc (x;, z). The union of
(21 and @ form a cycle on two blocks, which means that one of the two paths, say @1,
contains (z;, z). But Q2 and @3 also form a cycle on two blocks, but they cannot contain
(21, 2), a contradiction. O

By Theorem 9, the most we can expect in all strongly connected digraphs with large
chromatic number are (2 + 1)-bispindles. Let B(kq, ko; k3) denote the (2 + 1)-bispindle
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formed by three internally disjoint paths between two vertices x, y, two (x, y)-dipaths, one
of length k; and the other of length ks, and one (y, x)-dipath of length ks.

One can easily prove that every strongly connected digraph with chromatic number
at least 4 contains a subdivision of B(2,1;1).

Proposition 10. Let D be a strongly connected digraph. If x(D) > 4, then D contains a
subdivision of B(2,1;1).

Proof. Assume x(D) > 4. Since every strongly connected digraph contains a 2-connected
strongly connected subdigraph with the same chromatic number, we may assume that
D is 2-connected. Let C' be a shortest directed cycle in D. It must be induced, so
X(D[C]) = x(C) < 3. In particular, V(D) \ V(C) is not empty.

Thus, by Proposition 5.11 in [5], there is a dipath P in D whose ends lie in C' but
whose internal vertices do not. Necessarily, P has length at least 2 since C' is induced.
Thus the union of P and C' is a subdivision of B(2,1;1). O

The bound 4 in Proposition 10 is best possible because a directed odd cycle has
chromatic number 3 and contains no B(2, 1;1)-subdivision.

We conjecture that Proposition 10 can be extended to any (2 + 1)-bispindle.

Conjecture 11. There is a function g : N> — N such that every strongly connected
digraph with chromatic number at least g(ky, ko, k3) contains a subdivision of B(ky, ko; k3).

As an evidence, we prove this conjecture for ky = 1 and arbitrary k; and k3. In
Section 3, in order to present our method, we first investigate the case ko = k3 = 1 and
prove the following.

Theorem 12. Let k > 3 be an integer and let D be a strongly connected digraph. If
X(D) > (2k — 2)(2k — 3), then D contains a subdivision of B(k,1;1).

In Section 4, using the same approach but in a more complicated way, we prove our
main result:

Theorem 13. For every positive integer k, there is a constant vy, such that if D is a
strongly connected digraph with x(D) > 7, then D contains a subdvision of B(k,1;k).

We prove the above theorem for a huge constant ~,. It can easily be lowered. However,
we made no attempt to it here for two reasons: firstly, we would like to keep the proof as
simple as possible; secondly using our method, there is no hope to get an optimal or near
optimal value for .

Similar questions with x replaced by another graph parameter can be studied. We
refer the reader to [3] and [8] for more exhaustive discussions on such questions. Let us
just give one result proved by Aboulker et al. [3] which can be seen as an analogue to
Conjecture 11.

Theorem 14 (Theorem 28 in [3]). Let ky, ko, k3 be positive integers with ky > ko. Let
D be a digraph with 67 (D) > 3k + 2ko + k3 — 5. Then D contains a subdivision of
B(k’l, ]{32; ]{33)
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2 Definitions and preliminaries

We follow standard terminology as used in [5]. We denote by [k] the set of integers
{1,...,k}.

Let F be a digraph. An F-subdivision is a subdivision of F. A digraph D is said to
be F'-subdivision-free, if it contains no F-subdivision.

The union of two digraphs D; and D, is the digraph D; U Do defined by V(D; U
Dy) = V(D) UV(Dy) and A(Dy U Dy) = A(Dy) U A(D;). If D is a set of digraphs,
we denote by |JD the union of the digraphs in D, ie. V(UD) = Upep V(D) and
A(UD) =Upep AD).

Let P be a dipath. We denote by s(P) its initial vertex and by ¢(P) its terminal
vertex. For any two vertices, a (u,v)-dipath or dipath from u to v is a dipath P with
s(P) = u and t(P) = v. For two sets X,Y of vertices, an (X,Y")-dipath or dipath from X
to Y is a dipath P such that s(P) € X, t(P) € Y, and no internal vertex is in X UY".

If D is a dipath or a directed cycle, then we denote by D|a, b] the subdipath of D with
initial vertex a and terminal vertex b. We denote by D[a, b the dipath Dla,b] — b, by
Dia, b] the dipath Dla,b] — a, and by D]a, b] the dipath D[a,b] — {a,b}. If P and @Q are
two dipaths such that V(P)NV(Q) = {s(P)} = {t(Q)}, the concatenation of P and @,
denoted by P ® @, is the dipath P U Q).

A digraph is connected (resp. 2-connected) if its underlying graph is connected (resp.
2-connected). The connected components of a digraph are the connected components of
its underlying graph. A digraph D is strongly connected or strong if for any two vertices
x,y there is dipath from x to y. The strong components of a digraph are its maximal
strong subdigraphs.

Let G be a graph or a digraph. A proper k-colouring of G is a mapping ¢ : V(G) — [k]
such that ¢(u) # ¢(v) whenever u is adjacent to v. G is k-colourable if it admits a proper
k-colouring. The chromatic number of G, denoted by x(G), is the least integer k such
that G is k-colourable.

A (directed) graph G is k-degenerate if every subgraph H of G has a vertex of degree
at most k. The following three statements are well-known.

Proposition 15. Every k-degenerate (directed) graph is (k + 1)-colourable.

Theorem 16 (Brooks). Let G be a connected graph. Then x(G) < A(G) unless G is a
complete graph or an odd cycle.

Lemma 17. Let Dy and Do be two digraphs. Then x (D1 U D) < x(D1) x x(Ds).

Lemma 18. Let D be a digraph, Dq,...,D; be disjoint subdigraphs of D and D’ the
digraph obtained by contracting each D; into one vertex d;. Then x(D) < x(D’) -

max{x(D;) | i € [I]}.

Proof. Set k; = max{x(D;) | ¢ € [l]} and ky = x(D’). For each i, let ¢; be a proper
colouring of D; using colours in [k;] and let ¢’ be a proper colouring of D" using colours
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in [ky]. Define ¢ : V(D) — [k1] X [ko] as follows. If z is a vertex belonging to some D;,
then ¢(z) = (¢i(z), @' (d;)), else ¢(x) = (1,¢'(x)). Let x and y be adjacent vertices of D.
If they belong to the same subdigraph D;, then ¢;(z) # ¢;(y) and so ¢(x) # ¢(y). If they
do not belong to the same component, then the vertices corresponding to these vertices
in D’ are adjacent and so ¢(x) # ¢(y). Thus ¢ is a proper colouring of D using ky - ko
colours. O]

The rotative tournament on 2k — 1 vertices, denoted by Raoi_1, is the tournament with
vertex set {v1,...,v9_1} in which v; dominates v; if and only if j — ¢ modulo 2k — 1
belongs to {1,2,...,k — 1}.

Proposition 19. Let T be a strong tournament of order 2k — 1, then T contains a
B(k, 1; 1)-subdivision.

Proof. Let T be a strong tournament of order 2k — 1. By Camion’s Theorem, it has a
hamiltonian directed cycle C' = (v, vg, ..., vo5_1,v1). If there exists an arc (v;,v;) with
Jj — 1 = k (indices are modulo 2k — 1), then the union of C[v;, v;], (v;,v;) and Clv;, v;] is
a B(k,1;1)-subdivision. Henceforth, we may assume that 7' = Ro,_;. Then the union of
Clvr, ve—1] © (Vg—1, Vg41, Vkr2), (U1, Vk, Vkt2), and Clugye, v1] is a B(k, 1; 1)-subdivision. [

We will need the following lemmas:

Lemma 20. Let 0 = (u)icp) be a sequence of integers in [k|, and let | be a positive
integer. If p = 1, then there exists a set L of | indices such that for any i,j € L with
it < j the following holds : u; = u; and u; > u;, for alli <t < j.

Proof. By induction on k. The result holds trivially when k£ = 1. Assume now that & > 1.

Let L; be the elements of the sequence with value 1. If L; has at least [ elements, we are
k—(1-1)
I

{2,...,k —1}. Applying the induction hypothesis to ¢’ yields the result. ]

done. If not, then there is a subsequence o’ of { -‘ = [k~! consecutive elements in

Lemma 21. Let 0 = (u.)icpy) be a sequence of integers in [k]. If p > k(m —1), then there
exists a subsequence of m consecutive integers such that the last one is the largest.

Proof. By induction on k. The result holds trivially when k& = 1. Let ¢ be the smallest
integer such that u; < k—1for all ¢t > ¢. If © > m, then u;_; = k, and the subsequence
of the i — 1 first elements of ¢ is the desired sequence. If i < m, apply the induction on
o' = (ut)i<t<p Which is a sequence of more than (k — 1)(m — 1) integers in [k — 1], to get
the result. O

3 B(k,1;1)
In this section, we present a proof of Theorem 12.

Let C be a collection of directed cycles. It is nice if all cycles of C have length at least
2k — 2, and any two distinct cycles of C intersect on at most one vertex. A component
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of C is a connected component in the adjacency graph of C, where vertices correspond to
cycles in C and two vertices are adjacent if the corresponding cycles intersect. Note that if
S is a component of C, then [ J§ is both a connected component and a strong component
of [JC. Call D¢ the digraph obtained from D by contracting each component of C into
one vertex. For sake of simplicity, we denote by D[S] the digraph D[|JS]. Observe that
this digraph contains | JS but has more arcs.

We will prove that every B(k,1;1)-subdivision-free strong digraph D has bounded
chromatic number in the following way: We take a maximal nice collection C of directed
cycles. We will prove that for every component S of C, the digraph D[S] has bounded
chromatic number. Then we will prove that, since it contains no long directed cycle and
it is strong, D¢ has bounded chromatic number. Those two results allow us to conclude
by Lemma 18.

We will need the following lemma:

Lemma 22. Let C be a nice collection of directed cycles in a B(k,1;1)-subdivision-free
digraph D and let C, C' be two cycles of the same component S of C. There is no dipath
P from C to C" whose arcs are not in A(JS).

Proof. By the contrapositive. We suppose that there exists such a dipath P and show
that there is a B(k, 1; 1)-subdivision in D.

By definition of S, there exists a dipath @ from C to C’ in |JS. By choosing C' and
C’ such that @ is as small as possible, then s(Q)) # ¢(P) and t(Q) # s(P) (note that s(Q)
and t(Q) can be the same vertex).

Since C' has length at least 2k — 2, either C[t(Q), s(P)] has length at least k — 1 or
C[s(P),t(Q)] has length at least k.

o If C[t(Q), s(P)] has length at least k — 1, then the union of Q ® C[t(Q), s(P)] ® P,
C'[s(Q),t(P)] and C'[t(P), s(Q)] is a B(k, 1;1)-subdivision between s(Q) and t(P).

o If C[s(P),t(Q)] has length at least k, then the union of C[s(P),#(Q)], P ®
C'[t(P),s(Q)] ® Q and C[t(Q), s(P)] is a B(k,1;1)-subdivision between s(P) and
t(Q). O

Lemma 23. Let k > 3 be an integer, and let C be a nice collection of directed cycles in
a B(k, 1;1)-subdivision-free digraph D and S a component of C. Then x(D[S]) < 2k — 2.

Proof. By induction on the number of directed cycles in S. Let C be a cycle of §. There
is no chord (z,y) of C such that C[z,y| has length at least k, for otherwise there would
be a B(k, 1;1)-subdivision. Hence D[C] has maximum degree at most 2k — 2. Moreover,
by Proposition 19, D[C] is not a tournament of order 2k — 1. Thus, by Brooks” Theorem
(16), x(D[C]) < 2k — 2. Let ¢ be a proper colouring of C' with 2k — 2 colours. Let
51,8y, ..., S, be the components of S\ {C'}. Since S is the union of the S}, [ € [r], and
{C}, each & has less cycles than S. By the induction hypothesis, there exists a proper
colouring ¢; using 2k — 2 colours for each D[S)].
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Now, we claim that each D[S] intersects C' in exactly one vertex. It is easy to see that
C must intersect at least one cycle of each §;. Now suppose there exist two vertices of C,
x and y, in D[S;]. By definition of a nice collection, they cannot belong to the same cycle
of S}, so there exist two cycles C; and C; of S; such that € C; and y € C;. Now Clz, y]
is a dipath from C; to C; whose arcs are not in A(|JS;). This contradicts Lemma 22.

Consequently, free to permute the colours of ¢;, we may assume that each vertex of C'
receives the same colour in ¢ and in ¢;. In addition, by Lemma 22, there is no arc between
different D[S;] nor between D|[S;] and C'. Hence the union of ¢; and ¢ is a proper colouring
of D[S] using 2k — 2 colours. O

Lemma 24. Let C be a mazximal nice collection of directed cycles in a B(k,1;1)-
subdivision-free strong digraph D. Then x(Dc) < 2k — 3.

Proof. First note that since D is strong, then so is D¢. Suppose x(D¢) > 2k — 2. By
Bondy’s Theorem (5), there exists a directed cycle C' = (x1,...,2;,21) of length at least
2k — 2 in De. We derive a cycle C” in D the following way: Suppose the vertex x;
corresponds to a component S; of C: the arc (z;_1,x;) corresponds in D to an arc whose
head is a vertex p; of |JS;, and the arc (z;,x;,1) corresponds to an arc whose tail is a
vertex [; of | JS;. Let P; be a dipath from p; to [; in D[S;]. Note that P; intersects each
cycle of S; on a, possibly empty, subdipath of P;. Then C’ is the cycle obtained from C'
by replacing the vertices x; by the path P;.

(" is a cycle of D of length at least 2k — 2 because it is no shorter than C. Let C; be a
cycle of C. By construction of C' and D¢, C" and C can intersect only along a subdipath
of one P;. Suppose this dipath is more than just one vertex. Let x and y be the initial
and terminal vertex, respectively, of this dipath. Then the union of C’[x,y], Ci[z,y| and
Cily, z] is a B(k, 1;1)-subdivision, a contradiction.

So C" is a cycle of length at least 2k — 2, intersecting each cycle of C on at most one
vertex, and which does not belong to C, for otherwise it would be reduced to one vertex
in D¢. This contradicts the fact that C is maximal. ]

We can finally prove Theorem 12.

Proof of Theorem 12. Let C be a maximal nice collection of directed cycles in D. Lemmas
23, 24 and 18 give the result. [

4 B(k,1:k)

In this section, we present a proof of Theorem 13.
We prove the result by the contrapositive. We consider a B(k, 1; k)-subdivision-free
digraph D. We shall prove that x(D) < vz = 8k*(4k?+2)(2- (4k)* +1)(2- (6k%)3% +14k).
Our proof heavily uses the notion of k-suitable collection of directed cycles, which can
be seen as a generalization of the notion of nice collection of directed cycles used to prove
Theorem 12.
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A collection C of directed cycles is k-suitable if all cycles of C have length at least 8k,
and any two distinct directed cycles C;, C; € C intersect on a dipath P, ; of order at most
k. We denote by s;; (resp. t; ;) the initial (resp. terminal) vertex of P, ;.

The proof of Theorem 13 uses the same general idea as Theorem 12: take a maximal k-
suitable collection of directed cycles C; show that the digraph D¢ obtained by contracting
the components of C has bounded chromatic number, and that each component also has
bounded chromatic number; conclude using Lemma 18. However, because the intersection
of cycles in this collection are more complicated and because there might be arcs between
directed cycles of the same component, bounding the chromatic number of the components
is way more challenging. The next subsection is devoted to this.

4.1 k-suitable collections of directed cycles

Let ¢ be a colouring of a graph G. A subset of vertices or a subgraph S of G is rainbow-
coloured by ¢ if all vertices of S have distinct colours.
Set ay, = 2 - (6k%)3* + 14k. The first step of the proof is the following lemma.

Lemma 25. Let C be a k-suitable collection of directed cycles in a B(k, 1; k)-subdivision-
free digraph. There exists a proper colouring ¢ of |JC with oy, colours, such that, each
subdipath of length Tk of each directed cycle of C is rainbow-coloured.

In order to prove this lemma, we need some definitions and preliminary results.

Lemma 26. Let C be a k-suitable collection of directed cycles in a B(k, 1; k)-subdivision-

free digraph. Let Cy,Cy, C3 be three pairwise-intersecting directed cycles of C, and let v
belong to V(Cy) NV (C3) \ V(CY). Then exactly one of the following holds:

(1) Calty2,v] and Cslty 3,v] have both length less than 3k;

(i1) Cslv, s12] and Cs[v, s1 3] have both length less than 3k.

Proof. Observe first that since Cy has length at least 8k and P, 5 has length at most £ —1,
the sum of the lengths of Cy[ty 2, v] and Clv, s 9] is at least 7k 4 1. Similarly, the sum of
the lengths of Cy[ty 3,v] and Clv, sy 3] is at least 7Tk + 1. In particular, if (i) holds, then
(ii) does not hold and vice-versa.

Suppose for a contradiction that both (i) and (ii) do not hold. By symmetry and the
above inequalities, we may assume that both Cy[t; 2, v] and Csv, s1 3] have length more
than 3k. But v ¢ V(Cy), so v ¢ V(P 3). Thus Cs[v,t; 3] has also length at least 3k.

If there is a vertex in V(Cy) NV (Cy) NV(C), then Csfv,t; 3] would have length less
than 2k (since it would be contained in P, 3 U P 3 and each of those paths has length less
than k), a contradiction. Hence V(Cy) NV (Cy) NV (Cs) = 0. In particular, Py 5, P; 5, and
P, 3 are disjoint.

The dipath Cs[s; 2, 2 3] has length at least 3k because it contains Cy[ty 2, v]. Moreover,
the dipath Cs[ta 3, s1,3] has length at least 2k because Cs|v, s1 3] has length at least 3k and
Cs]v,ta 3] has length less than k. Thus Cs[ta s, s13] © C1[s13, 512] has length at least 2k.
Consequently, the union of Cs[s19,t23], Caltas, S12], and Csltas, s13] © Ci[s13,512] Is a
B(k, 1; k)-subdivision, a contradiction. O
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Let C be a k-suitable collection of directed cycles. For every set of vertices or digraph
S, we denote by C N S the set of directed cycles of C that intersect S.

Let ¢} € C. For each C; € C N, such that C; # C, let Q; be the subdipath
of C; containing all the vertices that are at distance at most 3%k from P, ; in the cycle
underlying C;. Then the dipaths C;[s(Q,), s1,;] and Cj[t1;,t(Q;)] have length 3k. Set
Q; =Cls(Q)), 51,5 and QF = Ct15,1(Q;)].

Set I(Cy) = Ch U UCjeCnCl Qj, IT(Ch) = UCjeCmcl Qj_ and [(C) = U(JjeCmCl Q-
Observe that Lemma 26 implies directly the following.

Corollary 27. Let C be a k-suitable collection of directed cycles and let Cy € C.
(i) IT(Cy) and I=(Cy) are vertex-disjoint digraphs.
(ZZ) I_(Cl) N Cj = Q; and [+(Cl) N Cj = Q;r, fOT’ all Cj eCn Cl-

Lemma 28. Let C be a k-suitable collection of directed cycles in a B(k,1; k)-subdivision-
free digraph D. Let C; be a directed cycle of C and let A be a connected component of
UC — I(CY). All vertices of | J(C N A) — A belong to a unique directed cycle Cy of C.

Proof. Suppose it is not the case. Then there are two distinct directed cycles Cs, C5 of
C N A that intersect with (. Observe that there is a sequence of distinct directed cycles
Cy = C1,03,...,C; = Cz of CN A such that C7 N CYy # () because A is a connected
component of JC — I(C}). Free to consider the first C # Cs in this sequence such that
V(C7) € A in place of (3, we may assume that all C7, 2 < j < ¢ — 1, have all their
vertices in A. In particular, there exists a (Cs, Cy)-dipath Q4 in D[A].

Let Ry = Ci[t12,t13) © Q3. Clearly, R3 has length at least 3k. Let v be the last
vertex in Q2 N R3 along Q2. (This vertex exists since t15 € Q2 N R3.) Since there is a
(C3, Cy)-dipath in D[A], by Corollary 27, C3[t(Q3),s(Q4)] is in D[A]. Thus there exists
a (t(Q3),Cy)-dipath R4 in D[A]. Let w be its terminal vertex. By definition of A, w is in
Cs[t(Q2), s(Q2)], therefore Cs[w, v] has length at least 3k since it contains Cs[s(Q2), S1.2].
Consequently, both Cs[v,#(Q2)] and Rs[v,t(Q3)] have length less than k for otherwise the
union of Cylw,v], Colv,w] and Rsv,t(Q3)] ©® Ra would be a B(k,1; k)-subdivision. In
particular, v # t(Q2). This implies that sy3 € V(Q2 N R3). Moreover, Qz[sa3,t(Q2)]
has length less than 2k because Q2[s23,v] is a subdipath of P53 and so has length less
than k. Therefore Cslty 2, S2.3] = Q2[t12, S2,3] has length at least k because ()2 has length
at least 3k. It follows that the union of Cs[sas,t12], Caltia, s23] and Rslty o, s23] is a
B(k, 1; k)-subdivision, a contradiction. ]

Lemma 29. Let C be a k-suitable collection of directed cycles in a B(k, 1; k)-subdivision-
free digraph. For any directed cycle Cy € C, the digraph IT(C1) has no directed cycle.

Proof. Suppose for a contradiction that I7(C}) contains a directed cycle C’. Clearly, it
must contain arcs from at least two Q;“.

Assume that C’ contains several vertices of Qj. Necessarily, there must be two vertices
z,y of @ NC” such that no vertex of C'|z, y[ is in C; and y is before 2 in Q. Therefore
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C'z,y] © QT [y, z] is also a directed cycle in I7(C}). Free to consider this cycle, we may
assume that C' N Q] is a dipath.

Doing so, for all j, we may assume that C' N Q;r is a dipath for every C; € C N ;.
Without loss of generality, we may assume that there are directed cycles Cy, ..., C, such
that

e ("isin Qy U---UQ;

e forall2 < j<p C'N Q;“ is a dipath Pj+ with initial vertex a; and terminal vertex
bj;

e the a; and the b; appear according to the following order around C’: (as, by, ag, b,
ooty Gy, by_1, a2) with possibly a;; = b; for some 1 < j < p where a,41 = as.

For 2 < j < p, set B; = C}[bj,a;]. Note that B; has length at least 4k, because Q3 has
length less than 3k.
Consider the closed directed walk

W = Cp[CLQ, bp] ® Bp ® C’p_l[ap, bp_l] (OEERNO) B3 ® Cg[ag, bQ] ® BQ.

W contains a directed cycle Cy,. Wihtout loss of generality, we may assume that this
cycle is of the form

CW = Bq[U, aq] ® qul[aq, bqfl] (OEEENO) Bg ® 02[0/3, bz] ® Bg[bg, ’U]

for some vertex v € BoNB,. (The case when W is a directed cycle corresponds to ¢ = p+1
and B2 = Bp+1.)

Note that necessarily, ¢ > 4, for B3 does not intersect By, for otherwise b3 = by since
the intersection of Cy and (Y is a dipath.

Observe that Cy[be,v] = Cy[by,v] or Cy v, ag] has length at least k. Indeed, if ¢ =
p + 1, then it follows from the fact that B has length as least 4k; if 5 < ¢ < p, then it
comes from the fact that By is a subdipath of Cy[v,a,|; if ¢ = 4, then it follows from
Lemma 26 applied to C5, Cs, Cy in the role of C, Cy, C3 respectively. In both cases,
Cw [b2, ay] has length at least k.

Furthermore, Cy |a4, by] has length at least k because it contains Bs. Therefore the
union of Cylbe, as], Cwlayg,bs] and C'[be,as] = Cs[bs,a4] is a B(k,1; k)-subdivision, a
contradiction. O]

Lemma 30. Let C be a k-suitable collection of directed cycles in a B(k,1; k)-subdivision-
free digraph.

Let ¢ be a partial colouring of a directed cycle Cy € C such that only a path of length
at most Tk is coloured and this path is rainbow-coloured. Then ¢ can be extended into a
colouring of I(CY) using oy, colours, such that every subdipath of length at most 7k of Cy
is rainbow-coloured and Q); is rainbow-coloured, for every C; € C N C}.
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Proof. We can easily extend ¢ to C} using 14k colours (including the at most 7k already
used colours) so that every subdipath of C} of length 7k is rainbow-coloured.

We shall now prove that there exists a colouring ¢+ of I (C}) with (6k%)% (new)
colours so that Qj is rainbow-coloured for every C; € CNCYy, and a colouring ¢~ of 1~ (C4)
with (6k%)% (other new) colours so that Q; is rainbow-coloured for every C; € C N Cy.
The union of the three colourings ¢, ¢™, and ¢~ is clearly the desired colouring of 1(C}).
(Observe that a vertex of I(C4) is coloured only once because Cy, I7(Cy) and I~ (CY) are
disjoint by Corollary 27.)

It remains to prove the existence of ¢ and ¢~. By symmetry, it suffices to prove the
existence of ¢*. To do so, we consider an auxiliary digraph D". For each C; € CN (Y, let
T;" be the transitive tournament whose hamiltonian dipath is Q. Let Df” = U, cene, 75

The arcs of A(T;")\ A(Q]") are called fake arcs. Clearly, ¢ exists if and only if D} admits
a proper (6k2)%-colouring. Henceforth it remains to prove the following claim.

Claim 31. x(Dy) < (6k%)3*.

Subproof. To each vertex v in IT(C}) we associate the set Dis(v) of the lengths of the
Cjlt1;,v] for all directed cycles C; € C N C; containing v such that C;[t; ;,v] has length
at most 3k.

Suppose for a contradiction that x(D;]) < (6k?)3. By Theorem 1, D] admits a dipath
of length (6k%)**. Replacing all fake arcs (u,v) in some A(T}"), by Q;[u,v] we obtain a
directed walk P in IT(C}) of length at least (6k%)3*. By Lemma 29, P is necessarily a
dipath. Set P = (vy,...,v,). We have p > (6k%)3.

For 1 <i < p, let m; = min Dis(v;). Lemma 20 applied to (m;)1<i<p, yields a set L of
6k? indices such that for any i < j € L, m; = m; and my > m;, for all i < k < j. Let

Iy <ly <--- <lg2 be the elements of L and let m =my, =--- = m -
For 1 < j < 6k*—1, let M; = max Uy, <i<y,., Dis(vi). By definition M; < 3k. Applying
Lemma 21 to (M;)1<j<ek2, We get a sequence of size 2k M 11, ..., Mj,1or such that Mjo o

is the greatest. For sake of simplicity, we set ¢; = jo + ¢ for 1 < ¢ < 2k. Let f be the
smallest index not smaller than £y, for which My, € Dis(vy).

Let j; be an index such that C}, [ty ;,, vy, ] has length m and set P = C}, [ty j,,vs,]. Let
J2 be an index such that C}, [ty ;,, vy, | has length m and set P, = C}, [t 5,, ve,|. Let j3 be
an index such that Cj,[ty j,, vs] has length My, and set Py = Cj,[vy, S1,55] (some vertices
of Ps are not in I7(C)).

Note that any internal vertex x of P, or P, has an integer in Dis(z) which is smaller
than m and every internal vertex y of P3 has an integer in Dis(y) which is greater than
M,,, , or does not belong to I (Cy). Hence, Py, P, and Pj are disjoint from Plvy,, vg].

We distinguish between the intersection of P;, P, and Pj:

e Suppose P does not intersect P, U Ps.

— Assume first that Py and P, are disjoint. If s(Py) isin Cy[t(Ps), s(P,)], then the
union of Py® Py, , vy, ], Plug,, vi]OPs@C[t(Ps), s(Pr)] and Cy[s(FPy), s(P)]|©P;
is a B(k, 1; k)-subdivision, a contradiction. If s(P;) is in Cy[s(P,), t(Ps)], then
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the union of Cy[s(P2), s(P1)]® Py ® Plug,, ve, ], Plug,, ve] © Ps© Ch[t(Ps3), s(P2)],
and P, is a B(k, 1; k)-subdivision, a contradiction.

— Assume now P; and P, intersect. Let u be the last vertex along P, on
which they intersect. The union of Pi[u, vy ] ® Plug,,ve,], Plue,,vs] © Py ®
Clt(Ps),s(P1)] © Pi[s(P1),u], and Pylu, vy ] is a B(k,1; k)-subdivision, a con-
tradiction.

e Assume Pj intersects Py N P;. Let v be the first vertex along P; in Py N P, and let u
be the last vertex of PyN P, along P,. The union of P [u, vy, |® Plvg, , ve, |, Plve,, vf]©
Ps[vs,v] ® Piv,u], and Palu, vy, ] is a B(k, 1; k)-subdivision, a contradiction.

e Assume now that P; intersects P, U P, but not P, N P,. Let v be the first vertex
along P3 in P1UP2.

— If v € Py, let u be the last vertex on P, N P; along P3. Observe that Ps[v, u]
is also a subdipath of P, and therefore contains no vertex of P;. Furthermore,
there is a dipath @ from u to vy, in Ps[u,t(Ps)] U Cy U P;. Hence, the union of
Plug,,vf] © Ps[vg,v], Q@ ® Plug,,ve,], and Pylu, vy, | is a B(k, 1; k)-subdivision,
a contradiction.

— If v € Py, let u be the last vertex on P N P; along P3. Observe that Ps[v, u]
is also a subdipath of P, and therefore contains no vertex of P,. Furthermore,
there is a dipath @ from u to vy, in Psfu,t(P3)] U Cy U P,. The union of
Plug,,ve] @ Ps[vg, u], Prlu,ve,] ® Plug,, v, and @ is a B(k, 1; k)-subdivision, a
contradiction. O

Claim 31 shows the existence of ¢ and completes the proof of Lemma 30. n

We are now ready to prove Lemma 25. In fact, we prove the following stronger
statement.

Lemma 32. If there exists a partial colouring ¢ such that one of the directed cycle Cy has
a path of length less than Tk which is rainbow-coloured, then we can extend this colouring
to all D[C] using less than ay colours such that, on each directed cycle, every subdipath of
length Tk s rainbow-coloured.

Proof. By induction on the number of directed cycles in C. Consider a rainbow-colouring
of a subdipath of length less than 7k of a directed cycle C; € C. By Lemma 30, we
can extend this colouring to a colouring ¢; of I(C}) at most a4 colours. Note that the
non-coloured vertices of | JC are in one of the connected components of | JC — I(C}). Let
A be a connected component of | JC — I(C}). The coloured (by ¢;) vertices of C N A are
those of (CN A) — A. Hence, by Lemma 28, they all belong to some directed cycle C; and
so to the dipath ); which has length at most 7k. Hence, by the induction hypothesis, we
can extend ¢; to A. Doing this for each component, we extend ¢; to the whole | JC. [

Set B, = k(4k* + 2)(2 - (4k)* + 1)ay. The second step of the proof is the following
lemma.
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Lemma 33. Let C be a k-suitable collection of directed cycles in a B(k,1; k)-subdivision-
free digraph D. For every component S of C, we have x(DI[S]) < .

Proof. We define a sort of Breadth-First-Search for S. Let Cj be a directed cycle of &
and set Lo = {Cy}. For every directed cycle Cs of S N Cpy, we put Cj in level L; and say
that Cjy is the father of C;. We build the levels L; inductively until all directed cycles of
S are put in a level : L;;; consists of every directed cycle C; not in |J i<i Lj such that
there exists a directed cycle in L; intersecting C;. For every C; € L;,1, we choose one of
the directed cycles in L; intersecting it to be its father. Henceforth every directed cycle
in L;;1 has a unique father even though it might intersect many directed cycles of L;. A
directed cycle C' is an ancestor of C” if there is a sequence C' = (4, ..., C, = C" such that
C; is the father of Cyyq for all i € [¢ — 1].

For a vertex z of |JS, we say that x belongs to level L; if i is the smallest integer
such that there exists a directed cycle in L; containing x. Observe that the vertices of
each directed cycle C} of § belong to consecutive levels, that is there exists ¢ such that
V(Cl) CL;ULjyy.

To bound the chromatic number of D[S], we partition its arc set in (Ao, A1, A3), where

e Ay is the set of arcs of D[S]| which ends belong to the same level, and

e A is the set of arcs of D[S| which ends belong to different levels ¢ and j with
li — j| < k.

e A, is the set of arcs of D[S| which ends belong to different levels ¢ and j with
i —jl = k.

For i € {0, 1,2}, let D; be the spanning subdigraph of D[S] with arc set A;. We shall
now bound the chromatic numbers of Dy, Dy and Ds.

Claim 34. x(D;) < k.

Subproof. Let ¢, be the colouring that assigns to all vertices of level L; the colour ¢
modulo k, it is easy to see that ¢; is a proper colouring of D;. O

Let C; be a directed cycle of L;, 7 > 1 and Cy its father.

Let p;” and r;" be the vertices such that Ci[t;, p;] and Ci[p;", ;"] have length k. Let
p; and r; be the vertices such that Ci[p; , s;r] and Cj[r;,p,; | have length k. Let R, be
the set of vertices of Cy]r; , s;1[, P, the set of vertices of Cy]p; , s,r[, R, the set of vertices
of Ciftyp,m[, P the set of vertices of Ci]t;», p;[, and finally let R be the set of vertices
belonging to L; in C; \ {R;” U R, }.

Claim 35. Let x be a vertex in L; with i > 1. Let C; and C,, be two directed cycles of L;
containing x. Then either v € P" and x € P}, orx € P, and z € P,,.

m’

Subproof. Suppose for a contradiction that z € P;" and z € P,.. Let Cy and C,, be the
fathers of C; and C,, respectively (they can be the same directed cycle). By definition of
the L,’s, there exists a dipath P from ¢, to sy, , only going through Cy, Cy and their
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ancestors. In particular P is disjoint from C; — Cp and Cs — Cy. Observe that Ci[s;p, €]
has length at most 3k because it is contained in the union of Py, P, ,,, and Cj[t; , x] which
has length at most k£ because x € Pl+. Hence Ci[t;m, siv] has length at least k. Moreover
Con[Smms, tim] contains Cp, [t m, ] which has length at least k because x ¢ Pf. Thus the
union of Cj[t;m, Sir] © Py Coultim, Smm], and Co[Spmms tim] 1s a B(k, 1; k)-subdivision, a
contradiction. The case where x € P and = ¢€ P,, is symmetrical and the case where z
does not belong to P, U Pt U P, U P} is identical. O

Claim 35 implies that each level L; may be partitioned into sets X;", X, and X/,
where X' (resp. X;) is the set of vertices z of L; such that every z € R} (resp. z € R;)
for every directed cycle C; of L; containing x and X/ is set of vertices in L; but not in
XTUX7 Set Xt = V(Co) Uy XJF, X7 = Upsy Xi and X' = J,o, X]. Clearly
(X*, X, X') is a partition of V(D[S]).

Claim 36. x(D,) < 4k + 2.

Subproof. Since XTUX~UX' = V(D,), we have x(D3) < x(D2[XTUX']) 4+ x(Do[ X~ U
X']). We shall prove that y (D[ X+TUX']) < 2k*+1 and x(Do[ X~ UX']) < 2k?+1, which
imply the result.

Let x and y be two adjacent vertices of Do[X ™ U X']. Let L; be the level of x and
L; be the level of y. Without loss of generality, we may assume that j > i 4+ k. Let C,
be the directed cycle of L; such that x € C, and C, the directed cycle of L; such that
y € Cy. By considering ancestors of C, and C,, there is a shortest sequence of directed
cycles C1, ..., C, such that Cy = C, and C, = C, and for all | € [p — 1], either () is the
father of Cj4q or Cjyq is the father of Cj. In particular C,_; is the father of C),. Since
y € XTUX', then Cly,t,_1,] has length at least k.

Assume that (x,y) is an arc. In f;ll Ci, there is a dipath P from ¢, 1, to x. This
dipath has length at least k — 1 because it must go through all levels Ly, i <i' < j — 1
because the vertices of any directed cycle of S are in two consecutive levels. Hence the
union of PO(x,y), Cplty—1,,y], and Cply, t,—1,] is a B(k, 1; k)-subdivision, a contradiction.
Hence (y, ) is an arc.

Suppose that C, is not an ancestor of C,. In particular, C5 is the father of C; and
there exists a path P from ;5 to ¥ in Uf;; C; of length at least £ — 1 and internally
disjoint from Cy. Hence the union of P ® yz, Ci[z,t1 2] and C[t1 2, ] is a subdivsion of
B(k,1; k). Hence C, is an ancestor of C,,.

In particular, C; is the father of Cj; for all [ € [p — 1]. Let P be the dipath from
t12 to y in U)_, Ci. It has length at least k — 1 because it must go through all levels
L;; 1 <i<p—1. Cilz,ti5] has length less than k, for otherwise the union of P ® yz,
Chlz,t1 2] and Cy[ty 2, z] would be a subdivision of B(k,1;k).

To summarize, the only arcs of Dy[X U X'] are arcs (y, x) such that C,, is an ancestor
of Cy and Ci[z,t; 5] has length less than k with C ... C), the sequence of directed cycles
such that C; = C, to C, = C,, and () is the father of Cj4; for all [ € [p—1]. In particular,
D[ X+ U X'] is acyclic.
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Let y be a vertex of Do[ X U X']. Let L, be the level of y and let Cy,...,C, be the
sequence of directed cycles such that C)_; is the father of C; for all [ € [p|. For0 <1 < p—1,
let R; be the subdipath of Cj of length k£ — 1 terminating at ¢;;1;. By the above property,
the out-neighbbours of y are in Uf:_ol R;. Suppose for a contradiction that y has out-degree
at least 2k% 4+ 1. Then there are 2k 4 1 distinct indices I; < -+ < lop41 such that for all
i € [2k + 1], C}, contains an out-neighbour X; of y. Let P be the shortest dipath from z;
to y in Uf:ll C;. This dipath intersects all directed cycles C; I3 <1 < p. Let z be the first
vertex of P along Cy, [Tr41,t1,,,1,.,)- Vertex z belongs to either Ly, _ or L; . Thus
P[zy, z] and P|z,y| have length at least £k — 1 and k respectively since P goes through all
levels from L;, to L,. Hence the union of (y, 1) ® Plxy, 2], (v, Zp41) © Oy, [Tr41, 2], and
P|z,y] is a B(k, 1; k)-subdivision, a contradiction. Therefore Dy[X* U X'] has maximum
out-degree at most 2k2.

Do[ X+ U X'] is acyclic and has maximum out-degree at most 2k*. Therefore it is 2k2-
degenerate, and so x(Dy[XT U X']) < 2k? + 1. By symmetry, we have y(Dy[ X~ U X']) <
2k* + 1. O

To bound x(Dy) we partition the vertex set according to a colouring ¢ of | JS given
by Lemma 25. For every colour ¢ € [ay], let X T(c) be the set X N ¢~!(c) of vertices of
X coloured ¢, and X~ (c) the set X~ N ¢ !(c) of vertices of X~ coloured c. Similarly,
let X;"(c) = X;" N¢~(c) and X, (¢) = X; N¢L(c). We denote by Dy (c) (resp. Dy (c),
D{(c)) the subdigraph of Dy induced by the vertices of X*(c), (resp. X~ (c), X'(¢c)).

Claim 37. x(D{(c)) =1 for all ¢ € [ay].

Subproof. We need to prove that D{(c) has no arc. Suppose for a contradiction that
(x,y) is an arc of D{(c). By definition of Dy, the vertices  and y are in a same level L;.
Let C; and C,, be two directed cycles of L; such that z € C; and y € C,,.

If C; = Cy, then both Cjlz,y] and Ci[y, x] have length at least 7k because the sub-
dipaths of length 7k of C; are rainbow-coloured by ¢. Hence the union of those paths
and (z,y) is a B(k, 1; k)-subdivision, a contradiction. Henceforth, C; and C,, are distinct
directed cycles.

Suppose first that C; and (), intersect. By Claim 35, s;,,, belongs to P, PlJr or L;_q,
and by construction of R}, Ci[z, S, and Ci[s;,, z] are both longer than k. Therefore
they form with (x,y) ® Cy,ly, sim) a B(k, 1; k)-subdivision, a contradiction.

Suppose now that C; and (), do not intersect. Let C] and C] be the fathers of
C; and C,, respectively. Let P be the dipath from s, to s, in Uj<l. L;. Then the
union of Ci[s;p, x|, (z,y) © Cly, Smm| © P, and Cj|x, s;r] is a B(k,1; k)-subdivision, a
contradiction. O

Claim 38. x(D{ (c)) < (4k)* for all ¢ € [ay].

Subproof. Set p = (4k)*. Suppose for a contradiction that there exists ¢ such that
x(Dg (¢)) > p. Observe that D{ (c) is the disjoint union of the D[X;"(c)]. Thus there
exists a level L;, such that x(D[X;"(c)]) > p. Moreover iy > 0, because the vertices of
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Cy coloured ¢ form a stable set. By Theorem 1, there exists a dipath P = (vy,...,v,) of
length p in D[X;"(c)].

Suppose that P contains two vertices x and y of a same directed cycle C of S. Without
loss of generality, we may assume that P|z, y[ contains no vertices of C'. Now both C[z, y]
and C|[y, z] have length at least Tk because the subdipaths of length 7k of C' are rainbow-
coloured by ¢. Thus the union of C[z,y], P|x,y| and C[y, z] is a B(k, 1; k)-subdivision, a
contradiction. Hence P intersects every directed cycle of S at most once.

For every v € V(P), let Len(v) be the set of lengths of Cj[t; s, v] for all directed cycles
C) € L;, containing v and whose father is Cj.

For 1 < i < p, let m; = min Len(v;). By Claim 35, Len(v;) C [2k]. Lemma 20 applied
to (m;)1<icp yields a set L of 4k? indices such that for any i < j € L, m; = m; and

my > m;, for all @ < k < j. Let I3 < Iy < -+ < ly2 be the elements of L and let
m=my =---=my,,.

For 1 < j < 4k?—1, let M; = max Ulj<i<lj+1 Len(v;). By definition M; < 2k. Applying
Lemma 21 to (M;)1<j<ar2, We get a sequence of size 2k M 11, ..., Mj,or such that M; ;o

is the greatest. For sake of simplicity, we set ¢; = jo + ¢ for 1 < i < 2k. Let f be the
smallest index not smaller than ¢y for which M,,, € Len(vy).

Let j, and j; be indices such that v, € Cj, Cj, is in Ly, Cj is the father of Cj
and Cj, [ty j,,vp] has length m. Set Py = Cj, [ty j,,ve]. Let j» and jy be indices such
that vy, € Cj,, Cj, is in Ly, Cjy is the father of Cj, and Cj, [ty 5,5 v, ] has length m. Set

0

P, = Cj, [tbm,wk] Let j3 and Jj4s be indices such that vp € Cjy, Cyy is in Ly, Cjy is the
father of Cj, and Cj[ty; j,,vs] has length My, . Set P3 = Cj, [vf,sjsds]. Note that any
internal vertex x of P, or P, has an integer in Len(z) which is smaller than m and every
internal vertex y of Pj either has an integer in Len(y) which is greater than M, , or does
not belong to X*(c). Hence, Py, P, and Py are disjoint from Plvg,,vy].

We distinguish cases according to the intersection between P;, P, and Ps: Let P, be a
shortest dipath in Uje;, L; from ty j, to tj 5, and P5 be a shortest dipath in U;<;,L; from

e Suppose P; does not intersect P, U Ps.

— Suppose P; and P, are disjoint. Let v be the last vertex of P, in Py N P5. The
union of Ps|v, ty il © Py ® Plug,,ve, ], Palv, ti ol © P, and Plug,,vf] © Py ®
Ps[sj; 5, v] is a B(k, 1; k)-subdivision, a contradiction.

— Assume now P; and P, intersect. Let u be the last vertex along P, on which
they intersect. The union of P;[u, ve,] ® Plue,,ve,], Palu, vy, ], and Plug,,ve] ©
Py © Ps © Pty j,,u] is a B(k,1; k)-subdivision, a contradiction.

e Assume Pj intersects Py N P;. Let v be the first vertex along P3 in PN P, and let u
be the last vertex of PN P, along P,. The union of Py[u, v, | ® Plug,, ve, |, Palu, vy, ],
and Plvg,, ve] © Ps[vg,v] © Pi[v,u] is a B(k, 1; k)-subdivision, a contradiction.

e Assume now that P; intersects P, U P, but not P, N P,. Let v be the first vertex
along P; in P, U Ps.
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— If v € Py, let u be the last vertex of P, N P3 along P;. Observe that Ps[v, u]
is also a subdipath of P, and therefore contains no vertex of P;. Hence, the
union of P3[u, 551 ;.1 © Ps © P1 © Plug, vy, ], Palu, vy, ], and Plug, , vf] © Pslvg, v]
is a B(k, 1; k)-subdivision, a contradiction.

— If v € Py, let u be the last vertex of P N P3 along P3. Observe that Ps[v,u] is
also a subdipath of P, and therefore contains no vertex of . Hence the union
of Piu,vy,] © Plvg,ve], Ps[u, s 5] © Ps © Py, and Plog,, vf] © Pa[vy,ul, is a
B(k, 1; k)-subdivision, a contradiction. O

Similarly to Claim 38, one proves that x(Dy (c)) < (4k)* for all ¢ € [ay]. Hence,
X(Do(c)) < x(Dg (¢)) + x(Dg (0)) + x(Dg(c)) < 2+ (4k)* + 1. Thus

X(Do) < (2 (4k)* + Day,.
Via Lemma 17, this equation and Claims 34 and 36 yield
X(D) < x(Do) x x(D1) x x(D2) < k(4k* +2)(2 - (4k)* + 1)ay, = Br. L

4.2 Proof of Theorem 13

Consider a maximal k-suitable collection C of directed cycles in D. Recall that De is
the digraph obtained by contracting every component of C into one vertex. For each
connected component S; of C, we call s; the new vertex created.

Claim 39. x(D¢) < 8k.

Proof. First note that since D is strong so is De.

Suppose for a contradiction that x(D¢) > 8k. By Theorem 5, there exists a directed
cycle C = (21, g, ..., 2, x1) of length at least 8k. For each vertex z; that corresponds to
an s; in D, the arc (z;_1,x;) corresponds in D to an arc whose head is a vertex p; of S;
and the arc (z;,x;41) corresponds to an arc whose tail is a vertex [; of S;. Let P; be the
dipath from p; to [; in | JC. Note that this dipath intersects the elements of S; only along a
subdipath. Let C’ be the directed cycle obtained from C where we replace all contracted
vertices x; by the dipath P;. First note that C' has length at least 8&. Moreover, a
directed cycle of C can intersect C’ only along one P;, because they all correspond to
different strong components of | JC. Thus C’ intersects each directed cycle of C on a
subdipath. Moreover this subdipath has length less than k for otherwise D would contain
a B(k,1; k)-subdivision. So C’ is a directed cycle of length at least 8k which intersects
every directed cycle of C along a subdipath of length less than k. This contradicts the
maximality of C. O

Using Lemma 18 with Claim 39 and Lemma 33, we get that x(D) < 8k - x. This
proves Theorem 13 for v, = 8k - B), = 8k?(4k? + 2)(2 - (4k)*™ + 1)(2 - (6k%)3" + 14k).
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